Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Acc Chem Res ; 56(8): 938-947, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36976880

RESUMEN

The quantum chemical cluster approach has been used for modeling enzyme active sites and reaction mechanisms for more than two decades. In this methodology, a relatively small part of the enzyme around the active site is selected as a model, and quantum chemical methods, typically density functional theory, are used to calculate energies and other properties. The surrounding enzyme is modeled using implicit solvation and atom fixing techniques. Over the years, a large number of enzyme mechanisms have been solved using this method. The models have gradually become larger as a result of the faster computers, and new kinds of questions have been addressed. In this Account, we review how the cluster approach can be utilized in the field of biocatalysis. Examples from our recent work are chosen to illustrate various aspects of the methodology. The use of the cluster model to explore substrate binding is discussed first. It is emphasized that a comprehensive search is necessary in order to identify the lowest-energy binding mode(s). It is also argued that the best binding mode might not be the productive one, and the full reactions for a number of enzyme-substrate complexes have therefore to be considered to find the lowest-energy reaction pathway. Next, examples are given of how the cluster approach can help in the elucidation of detailed reaction mechanisms of biocatalytically interesting enzymes, and how this knowledge can be exploited to develop enzymes with new functions or to understand the reasons for lack of activity toward non-natural substrates. The enzymes discussed in this context are phenolic acid decarboxylase and metal-dependent decarboxylases from the amidohydrolase superfamily. Next, the application of the cluster approach in the investigation of enzymatic enantioselectivity is discussed. The reaction of strictosidine synthase is selected as a case study, where the cluster calculations could reproduce and rationalize the selectivities of both the natural and non-natural substrates. Finally, we discuss how the cluster approach can be used to guide the rational design of enzyme variants with improved activity and selectivity. Acyl transferase from Mycobacterium smegmatis serves as an instructive example here, for which the calculations could pinpoint the factors controlling the reaction specificity and enantioselectivity. The cases discussed in this Account highlight thus the value of the cluster approach as a tool in biocatalysis. It complements experiments and other computational techniques in this field and provides insights that can be used to understand existing enzymes and to develop new variants with tailored properties.


Asunto(s)
Teoría Cuántica , Biocatálisis
2.
Chemistry ; 30(13): e202303911, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38224206

RESUMEN

Methylation of amines inside an introverted resorcinarene-based deep methyl ester cavitand is investigated by means of molecular dynamics simulations and quantum chemical calculations. Experimentally, the cavitand has been shown to bind a number of amines and accelerate the methylation reaction by more than four orders of magnitude for some of them. Eight different amines are considered in the present study, and the geometries and energies of their binding to the cavitand are first characterized and analyzed. Next, the methyl transfer reactions are investigated and the calculated barriers are found to be in generally good agreement with experimental results. In particular, the experimentally-observed rate acceleration in the cavitand as compared to the solution reaction is well reproduced by the calculations. The origins of this rate acceleration are analyzed by computational modifications made to the structure of the cavitand, and the role of the solvent is discussed.

3.
Chemistry ; : e202402152, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940291

RESUMEN

The synthesis of strained carbocyclic building blocks is relevant for Medicinal Chemistry, and methylenecyclobutanes are particularly challenging with current synthetic technology. Careful inspection of the reactivity of [1.1.1]propellane and diboron reagents has revealed that bis(catecholato)diboron (B2cat2) can produce a bis(borylated) methylenecyclobutane in a few minutes at room temperature. This reaction constitutes the first example of B-B bond activation by a special apolar hydrocarbon and also the first time that propellane is electrophilically activated by boron. Mechanistic studies including in situ NMR kinetics and DFT calculations demonstrate that the diboron moiety can be directly activated through coordination with the inverted sigma bond of propellane, and reveal that DMF is involved in the stabilization of diboronate ylide intermediates rather than the activation of the B-B bond. These results enable new possibilities for both diboron and propellane chemistry, and for further developments in the synthesis of methylenecyclobutanes based on propellane strain release.

4.
J Org Chem ; 89(7): 4538-4548, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38527364

RESUMEN

Density functional theory calculations have been performed to investigate the mechanism for the BINOL-catalyzed asymmetric homologation of alkenylboronic acids with CF3-diazomethane. The reaction proceeds via a chiral BINOL ester of the alkenylboronic acid substrate. The calculations reveal a complex scenario for the formation of the chiral BINOL-alkenylboronate species, which is the key intermediate in the catalytic process. The aliphatic alcohol additive plays an important role in the reaction. This study provides a rationalization of the stereoinduction step of the reaction, and the enantioselectivity is mainly attributed to the steric repulsion between the CF3 group of the diazomethane reagent and the γ-substituent of the BINOL catalyst. The complex potential energy surface obtained by the calculations is analyzed by means of microkinetic simulations.

5.
J Am Chem Soc ; 144(31): 14258-14268, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35914774

RESUMEN

Human PAICS is a bifunctional enzyme that is involved in the de novo purine biosynthesis, catalyzing the conversion of aminoimidazole ribonucleotide (AIR) into N-succinylcarboxamide-5-aminoimidazole ribonucleotide (SAICAR). It comprises two distinct active sites, AIR carboxylase (AIRc) where the AIR is initially converted to carboxyaminoimidazole ribonucleotide (CAIR) by reaction with CO2 and SAICAR synthetase (SAICARs) in which CAIR then reacts with an aspartate to form SAICAR, in an ATP-dependent reaction. Human PAICS is a promising target for the treatment of various types of cancer, and it is therefore of high interest to develop a detailed understanding of its reaction mechanism. In the present work, density functional theory calculations are employed to investigate the PAICS reaction mechanism. Starting from the available crystal structures, two large models of the AIRc and SAICARs active sites are built and different mechanistic proposals for the carboxylation and phosphorylation-condensation mechanisms are examined. For the carboxylation reaction, it is demonstrated that it takes place in a two-step mechanism, involving a C-C bond formation followed by a deprotonation of the formed tetrahedral intermediate (known as isoCAIR) assisted by an active site histidine residue. For the phosphorylation-condensation reaction, it is shown that the phosphorylation of CAIR takes place before the condensation reaction with the aspartate. It is further demonstrated that the three active site magnesium ions are involved in binding the substrates and stabilizing the transition states and intermediates of the reaction. The calculated barriers are in good agreement with available experimental data.


Asunto(s)
Ácido Aspártico , Ribonucleótidos , Dominio Catalítico , Humanos , Ribonucleótidos/química
6.
Chemistry ; 28(60): e202201792, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-35859038

RESUMEN

The Nazarov cyclization is investigated in solution and within K12 [Ga4 L6 ] supramolecular organometallic cage by means of computational methods. The reaction needs acidic condition in solution but works at neutral pH in the presence of the metallocage. The reaction steps for the process are analogous in both media: (a) protonation of the alcohol group, (b) water loss and (c) cyclization. The relative Gibbs energies of all the steps are affected by changing the environment from solvent to the metallocage. The first step in the mechanism, the alcohol protonation, turns out to be the most critical one for the acceleration of the reaction inside the metallocage. In order to calculate the relative stability of protonated alcohol inside the cavity, we propose a computational scheme for the calculation of basicity for species inside cavities and can be of general use. These results are in excellent agreement with the experiments, identifying key steps of catalysis and providing an in-depth understanding of the impact of the metallocage on all the reaction steps.


Asunto(s)
Etanol , Agua , Ciclización , Catálisis , Solventes
7.
Angew Chem Int Ed Engl ; 61(29): e202205534, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35488890

RESUMEN

A water-soluble cavitand bearing a benzotriazole upper rim was prepared and characterized. It exists as a dimeric velcraplex in D2 O, but forms host-guest complexes with hydrophobic and amphiphilic guests. Alkanes (C5 to C10), cyclic ketones (C6-C10), cyclic alcohols (C6-C8) and various amphiphilic guests form 1 : 1 cavitand complexes. A cyclic array of hydrogen bonds, bridged by solvent/water (D2 O) molecules, stabilizes the vase conformation of the complexes. With longer alkanes (C12-C15), symmetrical dialkyl amine, urea and phosphate, 2 : 1 host:guest capsules are formed. Computations indicate that additional waters on the upper rim create a self-complementary hydrogen-bonding pattern for capsule formation.


Asunto(s)
Alcanos , Agua , Alcanos/química , Éteres Cíclicos , Modelos Moleculares , Resorcinoles , Triazoles , Agua/química
8.
Chembiochem ; 22(4): 652-656, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33090643

RESUMEN

Broad substrate tolerance and excellent regioselectivity, as well as independence from sensitive cofactors have established benzoic acid decarboxylases from microbial sources as efficient biocatalysts. Robustness under process conditions makes them particularly attractive for preparative-scale applications. The divalent metal-dependent enzymes are capable of catalyzing the reversible non-oxidative (de)carboxylation of a variety of electron-rich (hetero)aromatic substrates analogously to the chemical Kolbe-Schmitt reaction. Elemental mass spectrometry supported by crystal structure elucidation and quantum chemical calculations verified the presence of a catalytically relevant Mg2+ complexed in the active site of 2,3-dihydroxybenoic acid decarboxylase from Aspergillus oryzae (2,3-DHBD_Ao). This unique example with respect to the nature of the metal is in contrast to mechanistically related decarboxylases, which generally have Zn2+ or Mn2+ as the catalytically active metal.


Asunto(s)
Aspergillus oryzae/enzimología , Carboxiliasas/química , Carboxiliasas/metabolismo , Hidroxibenzoatos/metabolismo , Magnesio/metabolismo , Catálisis , Cinética , Magnesio/química , Especificidad por Sustrato , Termodinámica
9.
Chemistry ; 27(8): 2767-2773, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33044772

RESUMEN

The dynamic equilibria of organomagnesium reagents are known to be very complex, and the relative reactivity of their components is poorly understood. Herein, a combination of DFT calculations and kinetic experiments is employed to investigate the detailed reaction mechanism of the Pummerer coupling between sulfoxides and turbo-organomagnesium amides. Among the various aggregates studied, unprecedented heterometallic open cubane structures are demonstrated to yield favorable barriers through a concerted anion-anion coupling/ S-O cleavage step. Beyond a structural curiosity, these results introduce open cubane organometallics as key reactive intermediates in turbo-organomagnesium amide mixtures.

10.
J Org Chem ; 86(15): 10665-10671, 2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34255506

RESUMEN

The mechanism of the Kinugasa reaction, that is, the copper-catalyzed formation of ß-lactams from nitrones and terminal alkynes, is re-evaluated by means of density functional theory calculations and in light of recent experimental findings. Different possible mechanistic scenarios are investigated using phenanthroline as a ligand and triethylamine as a base. The calculations confirm that after an initial two-step cycloaddition promoted by two copper ions, the resulting five-membered ring intermediate can undergo a fast and irreversible cycloreversion to generate an imine and a dicopper-ketenyl intermediate. From there, the reaction can proceed through a nucleophilic attack of a ketenyl copper intermediate on the imine and an intramolecular cyclization, rather than through the previously suggested (2 + 2) Staudinger synthesis.


Asunto(s)
Alquinos , Iminas , Cobre , Ciclización , Reacción de Cicloadición
11.
Angew Chem Int Ed Engl ; 60(50): 26327-26331, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34613633

RESUMEN

The electrophilic fluorination of geminal alkyl substituted vinyl-Bmida derivatives proceeds via bora-Wagner-Meerwein rearrangement. According to DFT modelling studies this rearrangement occurs with a low activation barrier via a bora-cyclopropane shaped TS. The Bmida group has a larger migration aptitude than the alkyl moiety in the Wagner-Meerwein rearrangement of the presented electrophilic fluorination reactions.

12.
J Am Chem Soc ; 142(12): 5751-5759, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32101690

RESUMEN

An efficient Pd/ETM (ETM = electron transfer mediator)-cocatalyzed stereoselective oxidative carbocyclization of dienallenes under aerobic oxidation conditions has been developed to afford six-membered heterocycles. The use of a bifunctional cobalt complex [Co(salophen)-HQ] as hybrid ETM gave a faster aerobic oxidation than the use of separated ETMs, indicating that intramolecular electron transfer between the hydroquinone unit and the oxidized metal macrocycle occurs. In this way, a class of important cis-1,4-disubstituted six-membered heterocycles, including dihydropyran and tetrahydropyridine derivatives were obtained in high diastereoselectivity with good functional group compatibility. The experimental and computational (DFT) studies reveal that the pendent olefin does not only act as an indispensable element for the initial allene attack involving allenic C(sp3)-H bond cleavage, but it also induces a face-selective reaction of the olefin of the allylic group, leading to a highly diastereoselective formation of the product. Finally, the deuterium kinetic isotope effects measured suggest that the initial allenic C(sp3)-H bond cleavage is the rate-limiting step, which was supported by DFT calculations.

13.
J Am Chem Soc ; 142(47): 20048-20057, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33191747

RESUMEN

1,1-Disubstituted styrenes with internal oxygen and nitrogen nucleophiles undergo oxidative fluorocyclization reactions with in situ generated chiral iodine(III)-catalysts. The resulting fluorinated tetrahydrofurans and pyrrolidines contain a tertiary carbon-fluorine stereocenter. Application of a new 1-naphthyllactic acid-based iodine(III)-catalyst allows the control of tertiary carbon-fluorine stereocenters with up to 96% ee. Density functional theory calculations are performed to investigate the details of the mechanism and the factors governing the stereoselectivity of the reaction.

14.
Chemistry ; 26(47): 10861-10870, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32428333

RESUMEN

Quantum chemical calculations were used to study the reaction of carboxylic acids with isonitriles inside a resorcinarene-based self-assembled capsule. Experimentally, it has been shown that the reactions between p-tolylacetic acid and n-butyl isonitrile or isopropyl isonitrile behave differently in the presence of the capsule compared both with each other and also with their solution counterparts. Herein, the reasons for these divergent behaviors are addressed by comparing the detailed energy profiles for the reactions of the two isonitriles inside and outside the capsule. An energy decomposition analysis was conducted to quantify the different factors affecting the reactivity. The calculations reproduce the experimental findings very well. Thus, encapsulation leads to lowering of the energy barrier for the first step of the reaction, the concerted α-addition and proton transfer, which in solution is rate-determining, and this explains the rate acceleration observed in the presence of the capsule. The barrier for the final step of the reaction, the 1,3 O→N acyl transfer, is calculated to be higher with the isopropyl substituent inside the capsule compared with n-butyl. With the isopropyl substituent, the transition state and the product of this step are significantly shorter than the preceding intermediate, and this results in energetically unfavorable empty spaces inside the capsule, which cause a higher barrier. With the n-butyl substituent, on the other hand, the carbon chain can untwine and hence uphold an appropriate guest length.

15.
Chemistry ; 26(47): 10647, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32776619

RESUMEN

Invited for the cover of this issue are the groups of Fahmi Himo and Kazushi Mashima at Stockholm University and Osaka University. The image depicts a Mn-K scissor, which is able to break a C-N bond, represented by a tree branch. Read the full text of the article at 10.1002/chem.202001447.

16.
Chemistry ; 26(65): 14978-14986, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-32757212

RESUMEN

We have used experimental studies and DFT calculations to investigate the IrIII -catalyzed isomerization of allylic alcohols into carbonyl compounds, and the regiospecific isomerization-chlorination of allylic alcohols into α-chlorinated carbonyl compounds. The mechanism involves a hydride elimination followed by a migratory insertion step that may take place at Cß but also at Cα with a small energy-barrier difference of 1.8 kcal mol-1 . After a protonation step, calculations show that the final tautomerization can take place both at the Ir center and outside the catalytic cycle. For the isomerization-chlorination reaction, calculations show that the chlorination step takes place outside the cycle with an energy barrier much lower than that for the tautomerization to yield the saturated ketone. All the energies in the proposed mechanism are plausible, and the cycle accounts for the experimental observations.

17.
Chemistry ; 26(47): 10735-10742, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32346933

RESUMEN

A catalyst system of mononuclear manganese precursor 3 combined with potassium alkoxide served as a superior catalyst compared with our previously reported manganese homodinuclear catalyst 2 a for esterification of not only tertiary aryl amides, but also tertiary aliphatic amides. On the basis of stoichiometric reactions of 3 and potassium alkoxide salt, kinetic studies, and density functional theory (DFT) calculations, we clarified a plausible reaction mechanism in which in situ generated manganese-potassium heterodinuclear species cooperatively activates the carbonyl moiety of the amide and the OH moiety of the alcohols. We also revealed details of the reaction mechanism of our previous manganese homodinuclear system 2 a, and we found that the activation free energy (ΔG≠ ) for the manganese-potassium heterodinuclear complex catalyzed esterification of amides is lower than that for the manganese homodinuclear system, which was consistent with the experimental results. We further applied our catalyst system to deprotect the acetyl moiety of primary and secondary amines.

18.
J Org Chem ; 85(23): 15577-15585, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33201704

RESUMEN

Togni's benziodoxole-based reagents are widely used in trifluoromethylation reactions. It has been established that the kinetically stable hypervalent iodine form (I-CF3) of the reagents is thermodynamically less stable than its acyclic ether isomer (O-CF3). On the other hand, the trifluoromethylthio analogue exists in the thermodynamically stable thioperoxide form (O-SCF3), and the hypervalent form (I-SCF3) has been elusive. Despite the importance of these reagents, very little is known about the reaction mechanisms of their syntheses, which has hampered the development of new reagents of the same family. Herein, we use density functional theory calculations to understand the reasons for the divergent behaviors between the CF3 and SCF3 reagents. We demonstrate that they follow different mechanisms of formation and that the metals involved in the syntheses (potassium in the case of the trifluoromethyl reagent and silver in the trifluoromethylthio analogue) play key roles in the mechanisms and greatly influence the possibility of their rearrangements from the hypervalent (I-CF3, I-SCF3) to the corresponding ether-type form (O-CF3, O-SCF3).

19.
Nucleic Acids Res ; 46(11): 5345-5354, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29746669

RESUMEN

The peptidyl transfer reaction on the large ribosomal subunit depends on the protonation state of the amine nucleophile and exhibits a large kinetic solvent isotope effect (KSIE ∼8). In contrast, the related peptidyl-tRNA hydrolysis reaction involved in termination shows a KSIE of ∼4 and a pH-rate profile indicative of base catalysis. It is, however, unclear why these reactions should proceed with different mechanisms, as the experimental data suggests. One explanation is that two competing mechanisms may be operational in the peptidyl transferase center (PTC). Herein, we explored this possibility by re-examining the previously proposed proton shuttle mechanism and testing the feasibility of general base catalysis also for peptide bond formation. We employed a large cluster model of the active site and different reaction mechanisms were evaluated by density functional theory calculations. In these calculations, the proton shuttle and general base mechanisms both yield activation energies comparable to the experimental values. However, only the proton shuttle mechanism is found to be consistent with the experimentally observed pH-rate profile and the KSIE. This suggests that the PTC promotes the proton shuttle mechanism for peptide bond formation, while prohibiting general base catalysis, although the detailed mechanism by which general base catalysis is excluded remains unclear.


Asunto(s)
Extensión de la Cadena Peptídica de Translación/fisiología , Aminoacil-ARN de Transferencia/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Biocatálisis , Hidrólisis , Modelos Moleculares , Termodinámica , Thermus thermophilus/metabolismo
20.
Angew Chem Int Ed Engl ; 59(51): 22973-22977, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-32914510

RESUMEN

The enzyme 3-methylglutaconyl coenzyme A (CoA) decarboxylase (called AibA/AibB) catalyzes the decarboxylation of 3-methylglutaconyl CoA to generate 3,3-dimethylacrylyl-CoA, representing an important step in the biosynthesis of isovaleryl-coenzyme A in Myxococcus xanthus when the regular pathway is blocked. A novel mechanism involving a pericyclic transition state has previously been proposed for this enzyme, making AibA/AibB unique among decarboxylases. Herein, density functional calculations are used to examine the energetic feasibility of this mechanism. It is shown that the intramolecular pericyclic reaction is associated with a very high energy barrier that is similar to the barrier of the same reaction in the absence of the enzyme. Instead, the calculations show that a direct decarboxylation mechanism has feasible energy barriers that are in line with the experimental observations.


Asunto(s)
Carboxiliasas/metabolismo , Coenzima A/metabolismo , Biocatálisis , Carboxiliasas/química , Descarboxilación , Teoría Funcional de la Densidad , Modelos Moleculares , Estructura Molecular , Myxococcus xanthus/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA