Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cell ; 183(3): 568-575, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33125882

RESUMEN

We identify problematic areas throughout the Science, Technology, Engineering and Mathematics (STEM) pipeline that perpetuate racial disparities in academia. Distinct ways to curtail these disparities include early exposure and access to resources, supportive mentoring networks and comprehensive training programs specifically for racially minoritized students and trainees at each career stage. These actions will revitalize the STEM pipeline.


Asunto(s)
Ingeniería/educación , Matemática/educación , Ciencia/educación , Tecnología/educación , Educación de Postgrado , Humanos , Universidades
2.
Circ Res ; 134(11): 1581-1606, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38781302

RESUMEN

HIV infection and antiretroviral therapy alter mitochondrial function, which can progressively lead to mitochondrial damage and accelerated aging. The interaction between persistent HIV reservoirs and mitochondria may provide insight into the relatively high rates of cardiovascular disease and mortality in persons living with HIV. In this review, we explore the intricate relationship between HIV and mitochondrial function, highlighting the potential for novel therapeutic strategies in the context of cardiovascular diseases. We reflect on mitochondrial dynamics, mitochondrial DNA, and mitochondrial antiviral signaling protein in the context of HIV. Furthermore, we summarize how toxicities related to early antiretroviral therapy and current highly active antiretroviral therapy can contribute to mitochondrial dysregulation, chronic inflammation, and poor clinical outcomes. There is a need to understand the mechanisms and develop new targeted therapies. We further consider current and potential future therapies for HIV and their interplay with mitochondria. We reflect on the next-generation antiretroviral therapies and HIV cure due to the direct and indirect effects of HIV persistence, associated comorbidities, coinfections, and the advancement of interdisciplinary research fields. This includes exploring novel and creative approaches to target mitochondria for therapeutic intervention.


Asunto(s)
Enfermedades Cardiovasculares , Infecciones por VIH , Mitocondrias , Humanos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/metabolismo , Infecciones por VIH/complicaciones , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/virología , Mitocondrias/metabolismo , ADN Mitocondrial/metabolismo , ADN Mitocondrial/genética , Animales , Terapia Antirretroviral Altamente Activa/efectos adversos , Dinámicas Mitocondriales/efectos de los fármacos , Fármacos Anti-VIH/uso terapéutico , Fármacos Anti-VIH/efectos adversos
3.
Circ Res ; 134(11): e150-e175, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38781298

RESUMEN

HIV type 1 (HIV-1) is the causative agent of AIDS. Since the start of the epidemic, HIV/AIDS has been responsible for ≈40 million deaths. Additionally, an estimated 39 million people are currently infected with the virus. HIV-1 primarily infects immune cells, such as CD4+ (cluster of differentiation 4+) T lymphocytes (T cells), and as a consequence, the number of CD4+ T cells progressively declines in people living with HIV. Within a span of ≈10 years, HIV-1 infection leads to the systemic failure of the immune system and progression to AIDS. Fortunately, potent antiviral therapy effectively controls HIV-1 infection and prevents AIDS-related deaths. The efficacy of the current antiviral therapy regimens has transformed the outcome of HIV/AIDS from a death sentence to a chronic disease with a prolonged lifespan of people living with HIV. However, antiviral therapy is not curative, is challenged by virus resistance, can be toxic, and, most importantly, requires lifelong adherence. Furthermore, the improved lifespan has resulted in an increased incidence of non-AIDS-related morbidities in people living with HIV including cardiovascular diseases, renal disease, liver disease, bone disease, cancer, and neurological conditions. In this review, we summarize the current state of knowledge of the cardiovascular comorbidities associated with HIV-1 infection, with a particular focus on hypertension. We also discuss the potential mechanisms known to drive HIV-1-associated hypertension and the knowledge gaps in our understanding of this comorbid condition. Finally, we suggest several directions of future research to better understand the factors, pathways, and mechanisms underlying HIV-1-associated hypertension in the post-antiviral therapy era.


Asunto(s)
Infecciones por VIH , Hipertensión , Humanos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/epidemiología , Infecciones por VIH/complicaciones , Hipertensión/tratamiento farmacológico , Hipertensión/epidemiología , Factores de Riesgo , VIH-1/patogenicidad , Animales
4.
Trends Biochem Sci ; 46(5): 345-348, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33622580

RESUMEN

Scientific success is mainly supported by mentoring, which often occurs through face-to-face interactions. Changes to the research environment incurred by the Coronavirus 2019 (COVID-19) pandemic have necessitated mentorship adaptations. Here, we describe how mentors can broaden their mentorship to support trainee growth and provide reassurance about trainee development amid uncertain circumstances.


Asunto(s)
COVID-19/epidemiología , Tutoría , Pandemias , Investigadores/educación , SARS-CoV-2 , Humanos
5.
J Cell Physiol ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775168

RESUMEN

Mitochondrial dysfunction has long been implicated in the development of insulin resistance, which is a hallmark of type 2 diabetes. However, recent studies reveal ethnicity-related differences in mitochondrial processes, underscoring the need for nuance in studying mitochondrial dysfunction and insulin sensitivity. Furthermore, the higher prevalence of type 2 diabetes among African Americans and individuals of African descent has brought attention to the role of ethnicity in disease susceptibility. In this review, which covers existing literature, genetic studies, and clinical data, we aim to elucidate the complex relationship between mitochondrial alterations and insulin stimulation by considering how mitochondrial dynamics, contact sites, pathways, and metabolomics may be differentially regulated across ethnicities, through mechanisms such as single nucleotide polymorphisms (SNPs). In addition to achieving a better understanding of insulin stimulation, future studies identifying novel regulators of mitochondrial structure and function could provide valuable insights into ethnicity-dependent insulin signaling and personalized care.

6.
Curr Hypertens Rep ; 26(7): 339-347, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38613621

RESUMEN

PURPOSE OF REVIEW: Cardiovascular disease (CVD) is a leading cause of death and chronic disability worldwide. Yet, despite extensive intervention strategies the number of persons affected by CVD continues to rise. Thus, there is great interest in unveiling novel mechanisms that may lead to new treatments. Considering this dilemma, recent focus has turned to the neuroimmune mechanisms involved in CVD pathology leading to a deeper understanding of the brain's involvement in disease pathology. This review provides an overview of new and salient findings regarding the neuroimmune mechanisms that contribute to CVD. RECENT FINDINGS: The brain contains neuroimmune niches comprised of glia in the parenchyma and immune cells at the brain's borders, and there is strong evidence that these neuroimmune niches are important in both health and disease. Mechanistic studies suggest that the activation of glia and immune cells in these niches modulates CVD progression in hypertension and heart failure and contributes to the inevitable end-organ damage to the brain. This review provides evidence supporting the role of neuroimmune niches in CVD progression. However, additional research is needed to understand the effects of prolonged neuroimmune activation on brain function.


Asunto(s)
Encéfalo , Enfermedades Cardiovasculares , Neuroinmunomodulación , Humanos , Enfermedades Cardiovasculares/inmunología , Enfermedades Cardiovasculares/fisiopatología , Neuroinmunomodulación/fisiología , Encéfalo/inmunología , Encéfalo/fisiopatología , Encéfalo/patología , Neuroglía/inmunología , Animales
7.
Nature ; 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684394
9.
EMBO Rep ; 21(7): e50918, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32596868

RESUMEN

Many students and early-career scientists too often agree to new tasks and chores and end up overworked. Learning how and when to say "no" is therefore an important part of career development.


Asunto(s)
Selección de Profesión , Estudiantes , Humanos , Aprendizaje
12.
Biotechniques ; 76(4): 125-134, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38420889

RESUMEN

Tweetable abstract Mitochondrial transplantation has been used to treat various diseases associated with mitochondrial dysfunction. Here, we highlight the considerations in quality control mechanisms that should be considered in the context of mitochondrial transplantation.


Asunto(s)
Mitocondrias , Medicina de Precisión
13.
bioRxiv ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38798364

RESUMEN

Alzheimer's Disease (AD) is a global health issue, affecting over 6 million in the United States, with that number expected to increase as the aging population grows. As a neurodegenerative disorder that affects memory and cognitive functions, it is well established that AD is associated with cardiovascular risk factors beyond only cerebral decline. However, the study of cerebrovascular techniques for AD is still evolving. Here, we provide reproducible methods to measure impedance-based pulse wave velocity (PWV), a marker of arterial stiffness, in the systemic vascular (aortic PWV) and in the cerebral vascular (cerebral PWV) systems. Using aortic impedance and this relatively novel technique of cerebral impedance to comprehensively describe the systemic vascular and the cerebral vascular systems, we examined the sex-dependent differences in 5x transgenic mice (5XFAD) with AD under normal and high-fat diet, and in wild-type mice under a normal diet. Additionally, we validated our method for measuring cerebrovascular impedance in a model of induced stress in 5XFAD. Together, our results show that sex and diet differences in wildtype and 5XFAD mice account for very minimal differences in cerebral impedance. Interestingly, 5XFAD, and not wildtype, male mice on a chow diet show higher cerebral impedance, suggesting pathological differences. Opposingly, when we subjected 5XFAD mice to stress, we found that females showed elevated cerebral impedance. Using this validated method of measuring impedance-based aortic and cerebral PWV, future research may explore the effects of modifying factors including age, chronic diet, and acute stress, which may mediate cardiovascular risk in AD.

14.
Artículo en Inglés | MEDLINE | ID: mdl-38389784

RESUMEN

Diversity, equity, and inclusion (DEI) initiatives are critical for fostering growth, innovation, and collaboration in science, technology, engineering, mathematics, and medicine (STEMM). This article focuses on four key topics that have impacted many Black individuals in STEMM: know-your-place aggression, environmental microaggressions, peer mediocrity, and code-switching. We provide a comprehensive background on these issues, discuss current statistics, and provide references that support their existence, as well as offer solutions to recognize and address these problems in the STEMM which can be expanded to all historically underrepresented individuals.

15.
Front Mol Biosci ; 10: 906606, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968274

RESUMEN

Metabolic homeostasis balances the production and consumption of energetic molecules to maintain active, healthy cells. Cellular stress, which disrupts metabolism and leads to the loss of cellular homeostasis, is important in age-related diseases. We focus here on the role of organelle dysfunction in age-related diseases, including the roles of energy deficiencies, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, changes in metabolic flux in aging (e.g., Ca2+ and nicotinamide adenine dinucleotide), and alterations in the endoplasmic reticulum-mitochondria contact sites that regulate the trafficking of metabolites. Tools for single-cell resolution of metabolite pools and metabolic flux in animal models of aging and age-related diseases are urgently needed. High-resolution mass spectrometry imaging (MSI) provides a revolutionary approach for capturing the metabolic states of individual cells and cellular interactions without the dissociation of tissues. mass spectrometry imaging can be a powerful tool to elucidate the role of stress-induced cellular dysfunction in aging.

16.
STAR Protoc ; 4(4): 102591, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37938976

RESUMEN

Isolation of skeletal muscles allows for the exploration of many complex diseases. Here, we present a protocol for isolating mice skeletal muscle myoblasts and myotubes that have been differentiated through antibody validation. We describe steps for collecting and preparing murine skeletal tissue, myoblast cell maintenance, plating, and cell differentiation. We then detail procedures for cell incubation, immunostaining, slide preparation and storage, and imaging for immunofluorescence validation.


Asunto(s)
Fibras Musculares Esqueléticas , Músculo Esquelético , Ratones , Animales , Mioblastos , Diferenciación Celular/fisiología , Técnica del Anticuerpo Fluorescente
17.
Adv Biol (Weinh) ; 7(8): e2300122, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37246245

RESUMEN

Machine learning has proven useful in analyzing complex biological data and has greatly influenced the course of research in structural biology and precision medicine. Deep neural network models oftentimes fail to predict the structure of complex proteins and are heavily dependent on experimentally determined structures for their training and validation. Single-particle cryogenic electron microscopy (cryoEM) is also advancing the understanding of biology and will be needed to complement these models by continuously supplying high-quality experimentally validated structures for improvements in prediction quality. In this perspective, the significance of structure prediction methods is highlighted, but the authors also ask, what if these programs cannot accurately predict a protein structure important for preventing disease? The role of cryoEM is discussed to help fill the gaps left by artificial intelligence predictive models in resolving targetable proteins and protein complexes that will pave the way for personalized therapeutics.


Asunto(s)
Inteligencia Artificial , Medicina de Precisión , Microscopía por Crioelectrón/métodos , Aprendizaje Automático , Redes Neurales de la Computación
18.
bioRxiv ; 2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37292669

RESUMEN

OPA1 is a dynamin-related GTPase that modulates various mitochondrial functions and is involved in mitochondrial morphology. There are eight different isoforms of OPA1 in humans and five different isoforms in mice that are expressed as short or long-form isoforms. These isoforms contribute to OPA1's ability to control mitochondrial functions. However, isolating OPA1 all long and short isoforms through western blot has been a difficult task. To address this issue, we outline an optimized western blot protocol to isolate 5 different isoforms of OPA1 on the basis of different antibodies. This protocol can be used to study changes in mitochondrial structure and function.

19.
bioRxiv ; 2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37292700

RESUMEN

Proximity ligation assays (PLA) use specific antibodies to detect endogenous protein-protein interactions. PLA is a highly useful biochemical technique that allows two proteins within close proximity to be visualized with fluorescent probes amplified by PCR. While this technique has gained prominence, the use of PLA in mouse skeletal muscle (SkM) is novel. In this article, we discuss how the PLA method can be used in SkM to study the protein-protein interactions within mitochondria-endoplasmic reticulum contact sites (MERCs).

20.
bioRxiv ; 2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37292961

RESUMEN

Isolation of skeletal muscles allows for the exploration of many complex diseases. Fibroblasts and myoblast play important roles in skeletal muscle morphology and function. However, skeletal muscles are complex and made up of many cellular populations and validation of these populations is highly important. Therefore, in this article, we discuss a comprehensive method to isolate mice skeletal muscle, create satellite cells for tissue culture, and use immunofluorescence to validate our approach.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA