Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(49): 24819-24829, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31740620

RESUMEN

Chronic gut inflammatory diseases are associated with disruption of intestinal epithelial barriers and impaired mucosal immunity. HIV-1 (HIV) causes depletion of mucosal CD4+ T cells early in infection and disruption of gut epithelium, resulting in chronic inflammation and immunodeficiency. Although antiretroviral therapy (ART) is effective in suppressing viral replication, it is incapable of restoring the "leaky gut," which poses an impediment for HIV cure efforts. Strategies are needed for rapid repair of the epithelium to protect intestinal microenvironments and immunity in inflamed gut. Using an in vivo nonhuman primate intestinal loop model of HIV/AIDS, we identified the pathogenic mechanism underlying sustained disruption of gut epithelium and explored rapid repair of gut epithelium at the intersection of microbial metabolism. Molecular, immunological, and metabolomic analyses revealed marked loss of peroxisomal proliferator-activated receptor-α (PPARα) signaling, predominant impairment of mitochondrial function, and epithelial disruption both in vivo and in vitro. To elucidate pathways regulating intestinal epithelial integrity, we introduced probiotic Lactobacillus plantarum into Simian immunodeficiency virus (SIV)-inflamed intestinal lumen. Rapid recovery of the epithelium occurred within 5 h of L. plantarum administration, independent of mucosal CD4+ T cell recovery, and in the absence of ART. This intestinal barrier repair was driven by L. plantarum-induced PPARα activation and restoration of mitochondrial structure and fatty acid ß-oxidation. Our data highlight the critical role of PPARα at the intersection between microbial metabolism and epithelial repair in virally inflamed gut and as a potential mitochondrial target for restoring gut barriers in other infectious or gut inflammatory diseases.


Asunto(s)
Metabolismo Energético/fisiología , Microbioma Gastrointestinal/fisiología , Intestinos/inmunología , Intestinos/microbiología , Mitocondrias/metabolismo , PPAR alfa/metabolismo , Animales , Terapia Antirretroviral Altamente Activa , Linfocitos T CD4-Positivos/inmunología , Modelos Animales de Enfermedad , Metabolismo Energético/efectos de los fármacos , Epitelio/inmunología , Infecciones por VIH , Humanos , Inmunidad Mucosa , Interleucina-1beta/metabolismo , Intestinos/patología , Lactobacillus plantarum/fisiología , Macaca mulatta , Masculino , Metabolómica , Mitocondrias/efectos de los fármacos , Probióticos/administración & dosificación , Probióticos/uso terapéutico , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología
2.
J Virol ; 92(13)2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29669841

RESUMEN

Subclinical viral infections (SVI), including cytomegalovirus (CMV), are highly prevalent in humans, resulting in lifelong persistence. However, the impact of SVI on the interplay between the host immunity and gut microbiota in the context of environmental exposures is not well defined. We utilized the preclinical nonhuman primate (NHP) model consisting of SVI-free (specific-pathogen-free [SPF]) rhesus macaques and compared them to the animals with SVI (non-SPF) acquired through natural exposure and investigated the impact of SVI on immune cell distribution and function, as well as on gut microbiota. These changes were examined in animals housed in the outdoor environment compared to the controlled indoor environment. We report that SVI are associated with altered immune cell subsets and gut microbiota composition in animals housed in the outdoor environment. Non-SPF animals harbored a higher proportion of potential butyrate-producing Firmicutes and higher numbers of lymphocytes, effector T cells, and cytokine-producing T cells. Surprisingly, these differences diminished following their transfer to the controlled indoor environment, suggesting that non-SPFs had increased responsiveness to environmental exposures. An experimental infection of indoor SPF animals with CMV resulted in an increased abundance of butyrate-producing bacteria, validating that CMV enhanced colonization of butyrate-producing commensals. Finally, non-SPF animals displayed lower antibody responses to influenza vaccination compared to SPF animals. Our data show that subclinical CMV infection heightens host immunity and gut microbiota changes in response to environmental exposures. This may contribute to the heterogeneity in host immune response to vaccines and environmental stimuli at the population level.IMPORTANCE Humans harbor several latent viruses that modulate host immunity and commensal microbiota, thus introducing heterogeneity in their responses to pathogens, vaccines, and environmental exposures. Most of our understanding of the effect of CMV on the immune system is based on studies of children acquiring CMV or of immunocompromised humans with acute or reactivated CMV infection or in ageing individuals. The experimental mouse models are genetically inbred and are completely adapted to the indoor laboratory environment. In contrast, nonhuman primates are genetically outbred and are raised in the outdoor environment. Our study is the first to report the impact of long-term subclinical CMV infection on host immunity and gut microbiota, which is evident only in the outdoor environment but not in the indoor environment. The significance of this study is in highlighting the impact of SVI on enhancing host immune susceptibility to environmental exposures and immune heterogeneity.


Asunto(s)
Bacterias/clasificación , Infecciones por Citomegalovirus/veterinaria , Citomegalovirus/patogenicidad , Enfermedades de los Monos/inmunología , Enfermedades de los Monos/microbiología , Animales , Bacterias/aislamiento & purificación , Citocinas/metabolismo , Infecciones por Citomegalovirus/inmunología , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Vivienda para Animales , Linfocitos/metabolismo , Macaca mulatta , Filogenia , Organismos Libres de Patógenos Específicos , Linfocitos T/inmunología
3.
PLoS Pathog ; 10(8): e1004311, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25166758

RESUMEN

HIV causes rapid CD4+ T cell depletion in the gut mucosa, resulting in immune deficiency and defects in the intestinal epithelial barrier. Breakdown in gut barrier integrity is linked to chronic inflammation and disease progression. However, the early effects of HIV on the gut epithelium, prior to the CD4+ T cell depletion, are not known. Further, the impact of early viral infection on mucosal responses to pathogenic and commensal microbes has not been investigated. We utilized the SIV model of AIDS to assess the earliest host-virus interactions and mechanisms of inflammation and dysfunction in the gut, prior to CD4+ T cell depletion. An intestinal loop model was used to interrogate the effects of SIV infection on gut mucosal immune sensing and response to pathogens and commensal bacteria in vivo. At 2.5 days post-SIV infection, low viral loads were detected in peripheral blood and gut mucosa without CD4+ T cell loss. However, immunohistological analysis revealed the disruption of the gut epithelium manifested by decreased expression and mislocalization of tight junction proteins. Correlating with epithelial disruption was a significant induction of IL-1ß expression by Paneth cells, which were in close proximity to SIV-infected cells in the intestinal crypts. The IL-1ß response preceded the induction of the antiviral interferon response. Despite the disruption of the gut epithelium, no aberrant responses to pathogenic or commensal bacteria were observed. In fact, inoculation of commensal Lactobacillus plantarum in intestinal loops led to rapid anti-inflammatory response and epithelial tight junction repair in SIV infected macaques. Thus, intestinal Paneth cells are the earliest responders to viral infection and induce gut inflammation through IL-1ß signaling. Reversal of the IL-1ß induced gut epithelial damage by Lactobacillus plantarum suggests synergistic host-commensal interactions during early viral infection and identify these mechanisms as potential targets for therapeutic intervention.


Asunto(s)
Interleucina-1beta/biosíntesis , Células de Paneth/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Animales , Técnica del Anticuerpo Fluorescente , Interacciones Huésped-Parásitos/inmunología , Inmunohistoquímica , Interleucina-1beta/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/ultraestructura , Mucosa Intestinal/virología , Macaca mulatta , Masculino , Microscopía Electrónica de Transmisión , Análisis de Secuencia por Matrices de Oligonucleótidos , Células de Paneth/metabolismo , Células de Paneth/virología , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Uniones Estrechas/ultraestructura , Carga Viral
4.
J Med Primatol ; 44(5): 241-52, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26275157

RESUMEN

BACKGROUND: The impact of HIV infection on pattern recognition receptor (PRR) expression in gut-associated lymphoid tissue and its association with dysbiosis is not well understood. METHODS: PRR and cytokine gene expression were examined in mesenteric lymph nodes (mLN) of rhesus macaques during acute and chronic (untreated and early antiretroviral (ART) treated) infections. Gene expression was correlated with microbial abundance in the gut and immune activation. RESULTS: PRR expression rapidly increases during acute infection and is significantly decreased in chronic infection. Early ART maintains elevated PRR expression. Correlation analysis revealed three distinct groups of bacterial taxa that were associated with gene expression changes in infection. CONCLUSIONS: PRR and cytokine gene expression in the gut-draining mLN are rapidly modulated in response to viral infection and are correlated with gut dysbiosis. These data suggest that the dysregulation of PRR and related cytokine expression may contribute to chronic immune activation in SIV infection.


Asunto(s)
Antirretrovirales/farmacología , Citocinas/genética , Microbioma Gastrointestinal , Regulación de la Expresión Génica , Receptores de Reconocimiento de Patrones/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/genética , Enfermedad Aguda , Animales , Enfermedad Crónica , Citocinas/metabolismo , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/virología , Receptores de Reconocimiento de Patrones/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/fisiología
5.
J Infect Dis ; 203(1): 95-102, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21148501

RESUMEN

The threat of a smallpox-based bioterrorist event or a human monkeypox outbreak has heightened the importance of new, safe vaccine approaches for these pathogens to complement older poxviral vaccine platforms. As poxviruses are large, complex viruses, they present technological challenges for simple recombinant vaccine development where a multicomponent mixtures of vaccine antigens are likely important in protection. We report that a synthetic, multivalent, highly concentrated, DNA vaccine delivered by a minimally invasive, novel skin electroporation microarray can drive polyvalent immunity in macaques, and offers protection from a highly pathogenic monkeypox challenge. Such a diverse, high-titer antibody response produced against 8 different DNA-encoded antigens delivered simultaneously in microvolumes has not been previously described. These studies represent a significant improvement in the efficiency of the DNA vaccine platform, resulting in immune responses that mimic live viral infections, and would likely have relevance for vaccine design against complex human and animal pathogens.


Asunto(s)
Mpox/prevención & control , Vacuna contra Viruela/inmunología , Vacunas de ADN/inmunología , Animales , Anticuerpos Antivirales/sangre , Electroporación/métodos , Humanos , Macaca mulatta , Vacuna contra Viruela/administración & dosificación , Análisis de Supervivencia , Vacunas de ADN/administración & dosificación
6.
Mol Ther ; 18(8): 1568-76, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20551910

RESUMEN

DNA vaccines have undergone important enhancements in their design, formulation, and delivery process. Past literature supports that DNA vaccines are not as immunogenic in nonhuman primates as live vector systems. The most potent recombinant vector system for induction of cellular immune responses in macaques and humans is adenovirus serotype 5 (Ad5), an important benchmark for new vaccine development. Here, we performed a head-to-head evaluation of the Merck Ad5 SIV vaccine and an optimized electroporation (EP) delivered SIV DNA vaccine in macaques. Animals receiving the Ad5 vaccine were immunized three times, whereas the DNA-vaccinated animals were immunized up to four times based on optimized protocols. We observed significant differences in the quantity of IFNgamma responses by enzyme-linked immunosorbent spot (ELISpot), greater proliferative capacity of CD8(+) T cells, and increased polyfunctionality of both CD4(+) and CD8(+) T cells in the DNA-vaccinated group. Importantly, Ad5 immunizations failed to boost following the first immunization, whereas DNA responses were continually boosted with all four immunizations demonstrating a major advantage of these improved DNA vaccines. These optimized DNA vaccines induce very different immune phenotypes than traditional Ad5 vaccines, suggesting that they could play an important role in vaccine research and development.


Asunto(s)
Adenoviridae/genética , Vectores Genéticos/genética , Vacunas contra el SIDAS/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Macaca mulatta , Plásmidos/genética , Vacunas de ADN/inmunología
7.
JCI Insight ; 6(12)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34014838

RESUMEN

Although antiretroviral therapy suppresses HIV replication, it does not eliminate viral reservoirs or restore damaged lymphoid tissue, posing obstacles to HIV eradication. Using the SIV model of AIDS, we investigated the effect of mesenchymal stem/stromal cell (MSC) infusions on gut mucosal recovery, antiviral immunity, and viral suppression and determined associated molecular/metabolic signatures. MSC administration to SIV-infected macaques resulted in viral reduction and heightened virus-specific responses. Marked clearance of SIV-positive cells from gut mucosal effector sites was correlated with robust regeneration of germinal centers, restoration of follicular B cells and T follicular helper (Tfh) cells, and enhanced antigen presentation by viral trapping within the follicular DC network. Gut transcriptomic analyses showed increased antiviral response mediated by pathways of type I/II IFN signaling, viral restriction factors, innate immunity, and B cell proliferation and provided the molecular signature underlying enhanced host immunity. Metabolic analysis revealed strong correlations between B and Tfh cell activation, anti-SIV antibodies, and IL-7 expression with enriched retinol metabolism, which facilitates gut homing of antigen-activated lymphocytes. We identified potentially new MSC functions in modulating antiviral immunity for enhanced viral clearance predominantly through type I/II IFN signaling and B cell signature, providing a road map for multipronged HIV eradication strategies.


Asunto(s)
Centro Germinal , Mucosa Intestinal/inmunología , Células Madre Mesenquimatosas , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Citocinas/metabolismo , Centro Germinal/citología , Centro Germinal/inmunología , Centro Germinal/metabolismo , Inmunidad Humoral/inmunología , Macaca mulatta , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/inmunología
8.
J Virol ; 82(23): 11536-44, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18799583

RESUMEN

Chronic viral infection is characterized by the functional impairment of virus-specific T-cell responses. Recent evidence has suggested that the inhibitory receptor programmed death 1 (PD-1) is specifically upregulated on antigen-specific T cells during various chronic viral infections. Indeed, it has been reported that human immunodeficiency virus (HIV)-specific T cells express elevated levels of PD-1 and that this expression correlates with the viral load and inversely with CD4(+) T-cell counts. More importantly, antibody blockade of the PD-1/PD-L1 pathway was sufficient to both increase and stimulate virus-specific T-cell proliferation and cytokine production. However, the mechanisms that mediate HIV-induced PD-1 upregulation are not known. Here, we provide evidence that the HIV type 1 (HIV-1) accessory protein Nef can transcriptionally induce the expression of PD-1 during infection in vitro. Nef-induced PD-1 upregulation requires its proline-rich motif and the activation of the downstream kinase p38. Further, inhibition of Nef activity by p38 MAPK inhibitor effectively blocked PD-1 upregulation, suggesting that p38 MAPK activation is an important initiating event in Nef-mediated PD-1 expression in HIV-1-infected cells. These data demonstrate an important signaling event of Nef in HIV-1 pathogenesis.


Asunto(s)
Antígenos CD/genética , Proteínas Reguladoras de la Apoptosis/genética , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología , Síndrome de Inmunodeficiencia Adquirida/metabolismo , Antígenos CD/biosíntesis , Proteínas Reguladoras de la Apoptosis/biosíntesis , Linfocitos T CD4-Positivos/metabolismo , Células Cultivadas , Regulación de la Expresión Génica , Humanos , Receptor de Muerte Celular Programada 1 , Regulación hacia Arriba
9.
Hum Gene Ther ; 18(7): 603-13, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17594244

RESUMEN

Immune responses to the factor IX (F.IX) transgene product are a concern in gene therapy for the X-linked bleeding disorder hemophilia B. The risk for such responses is determined by several factors, including the vector, target tissue, and others. Previously, we have demonstrated that hepatic gene transfer with adeno-associated viral (AAV) vectors can induce F.IX-specific immune tolerance. Muscle-derived F.IX expression, however, is limited by a local immune response. Here, skeletal muscle was investigated as a target for supplemental gene transfer. Given the low invasiveness of intramuscular injections, this route would be ideal for secondary gene transfer, thereby boosting levels of transgene expression. However, this is feasible only if immune tolerance established by compartmentalization of expression to the liver extends to other sites. Immune tolerance to human F.IX established by prior hepatic AAV-2 gene transfer was maintained after subsequent injection of AAV-1 or adenoviral vector into skeletal muscle, and tolerized mice failed to form antibodies or an interferon (IFN)-gamma(+) T cell response to human F.IX. A sustained increase in systemic transgene expression was obtained for AAV-1, whereas an increase after adenoviral gene transfer was transient. A CD8(+) T cell response specifically against adenovirus-transduced fibers was observed, suggesting that cytotoxic T cell responses against viral antigens were sufficient to eliminate expression in muscle. In summary, the data demonstrate that supplemental F.IX gene transfer to skeletal muscle does not break tolerance achieved by liver-derived expression. The approach is efficacious, if the vector for muscle gene transfer does not express immunogenic viral proteins.


Asunto(s)
Factor IX/genética , Terapia Genética , Vectores Genéticos/uso terapéutico , Hemofilia B/genética , Músculo Esquelético , Animales , Anticuerpos/sangre , Dependovirus/genética , Ensayo de Inmunoadsorción Enzimática , Factor IX/inmunología , Factor IX/uso terapéutico , Expresión Génica , Vectores Genéticos/administración & dosificación , Hepatocitos/inmunología , Humanos , Tolerancia Inmunológica , Inyecciones Intramusculares , Interferón gamma/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Músculo Esquelético/virología
10.
mBio ; 8(3)2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28465428

RESUMEN

Antiviral innate host defenses against acute viral infections include suppression of host protein synthesis to restrict viral protein production. Less is known about mechanisms by which viral pathogens subvert host antiviral innate responses for establishing their replication and dissemination. We investigated early innate defense against human immunodeficiency virus (HIV) infection and viral evasion by utilizing human CD4+ T cell cultures in vitro and a simian immunodeficiency virus (SIV) model of AIDS in vivo Our data showed that early host innate defense against the viral infection involves GCN2-ATF4 signaling-mediated suppression of global protein synthesis, which is exploited by the virus for supporting its own replication during early viral infection and dissemination in the gut mucosa. Suppression of protein synthesis and induction of protein kinase GCN2-ATF4 signaling were detected in the gut during acute SIV infection. These changes diminished during chronic viral infection. HIV replication induced by serum deprivation in CD4+ T cells was linked to the induction of ATF4 that was recruited to the HIV long terminal repeat (LTR) to promote viral transcription. Experimental inhibition of GCN2-ATF4 signaling either by a specific inhibitor or by amino acid supplementation suppressed the induction of HIV expression. Enhancing ATF4 expression through selenium administration resulted in reactivation of latent HIV in vitro as well as ex vivo in the primary CD4+ T cells isolated from patients receiving suppressive antiretroviral therapy (ART). In summary, HIV/SIV exploits the early host antiviral response through GCN2-ATF4 signaling by utilizing ATF4 for activating the viral LTR transcription to establish initial viral replication and is a potential target for HIV prevention and therapy.IMPORTANCE Understanding how HIV overcomes host antiviral innate defense response in order to establish infection and dissemination is critical for developing prevention and treatment strategies. Most investigations focused on the viral pathogenic mechanisms leading to immune dysfunction following robust viral infection and dissemination. Less is known about mechanisms that enable HIV to establish its presence despite rapid onset of host antiviral innate response. Our novel findings provide insights into the viral strategy that hijacks the host innate response of the suppression of protein biosynthesis to restrict the virus production. The virus leverages transcription factor ATF4 expression during the GCN2-ATF4 signaling response and utilizes it to activate viral transcription through the LTR to support viral transcription and production in both HIV and SIV infections. This unique viral strategy is exploiting the innate response and is distinct from the mechanisms of immune dysfunction after the critical mass of viral loads is generated.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Linfocitos T CD4-Positivos/virología , VIH-1/fisiología , Interacciones Huésped-Patógeno , Inmunidad Innata , Proteínas Serina-Treonina Quinasas/metabolismo , Replicación Viral , Factor de Transcripción Activador 4/genética , Animales , Linfocitos T CD4-Positivos/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Tracto Gastrointestinal/virología , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/inmunología , VIH-1/patogenicidad , Humanos , Evasión Inmune , Macaca mulatta , Proteínas Serina-Treonina Quinasas/genética , Selenio/farmacología , Transducción de Señal , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios , Carga Viral , Latencia del Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA