Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Sci Adv ; 7(45): eabf7910, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34739324

RESUMEN

Cell plasticity plays a key role in embryos by maintaining the differentiation potential of progenitors. Whether postnatal somatic cells revert to an embryonic-like naïve state regaining plasticity and redifferentiate into a cell type leading to a disease remains intriguing. Using genetic lineage tracing and single-cell RNA sequencing, we reveal that Oct4 is induced by nuclear factor κB (NFκB) at embyronic day 9.5 in a subset of mouse endocardial cells originating from the anterior heart forming field at the onset of endocardial-to-mesenchymal transition. These cells acquired a chondro-osteogenic fate. OCT4 in adult valvular aortic cells leads to calcification of mouse and human valves. These calcifying cells originate from the Oct4 embryonic lineage. Genetic deletion of Pou5f1 (Pit-Oct-Unc, OCT4) in the endocardial cell lineage prevents aortic stenosis and calcification of ApoE−/− mouse valve. We established previously unidentified self-cell reprogramming NFκB- and OCT4-mediated inflammatory pathway triggering a dose-dependent mechanism of valve calcification.

2.
J Cardiovasc Dev Dis ; 8(5)2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-34066253

RESUMEN

This paper is dedicated to the memory of Dr. Adriana "Adri" Gittenberger-de Groot and in appreciation of her work in the field of developmental cardiovascular biology and the legacy that she has left behind. During her impressive career, Dr. Gittenberger-de Groot studied many aspects of heart development, including aspects of cardiac valve formation and disease and the role of the epicardium in the formation of the heart. In this contribution, we review some of the work on the role of epicardially-derived cells (EPDCs) in the development of the atrioventricular valves and their potential involvement in the pathogenesis of myxomatous valve disease (MVD). We provide an overview of critical events in the development of the atrioventricular junction, discuss the role of the epicardium in these events, and illustrate how interfering with molecular mechanisms that are involved in the epicardial-dependent formation of the atrioventricular junction leads to a number of abnormalities. These abnormalities include defects of the AV valves that resemble those observed in humans that suffer from MVD. The studies demonstrate the importance of the epicardium for the proper formation and maturation of the AV valves and show that the possibility of epicardial-associated developmental defects should be taken into consideration when determining the genetic origin and pathogenesis of MVD.

3.
J Dev Biol ; 7(2)2019 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-30965570

RESUMEN

The mesothelium is an epithelial structure derived from the embryonic mesoderm. It plays an important role in the development of a number of different organs, including the heart, lungs, and intestines. In this publication, we discuss aspects of the development of the mesothelium, where mesothelial structures can be found, and review molecular and cellular characteristics associated with the mesothelium. Furthermore, we discuss the involvement of the mesothelium in a number of disease conditions, in particular in the pathogenesis of mesotheliomas with an emphasis on malignant pleural mesothelioma (MPM)-a primary cancer developing in the pleural cavity.

4.
Anat Rec (Hoboken) ; 302(1): 136-145, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30289203

RESUMEN

Primary cilia are small organelles projecting from the cell surface of many cell types. They play a crucial role in the regulation of various signaling pathway. In this study, we investigated the importance of cilia for heart development by conditionally deleting intraflagellar transport protein Ift88 using the col3.6-cre mouse. Analysis of col3.6;Ift88 offspring showed a wide spectrum of cardiovascular defects including double outlet right ventricle and atrioventricular septal defects. In addition, we found that in the majority of specimens the pulmonary veins did not properly connect to the developing left atrium. The abnormal connections found resemble those seen in patients with total anomalous pulmonary venous return. Analysis of mutant hearts at early stages of development revealed abnormal development of the dorsal mesocardium, a second heart field-derived structure at the venous pole intrinsically related to the development of the pulmonary veins. Data presented support a crucial role for primary cilia in outflow tract development and atrioventricular septation and their significance for the formation of the second heart field-derived tissues at the venous pole including the dorsal mesocardium. Furthermore, the results of this study indicate that proper formation of the dorsal mesocardium is critically important for the development of the pulmonary veins. Anat Rec, 302:136-145, 2019. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Cilios/patología , Modelos Animales de Enfermedad , Defectos del Tabique Interatrial/patología , Venas Pulmonares/anomalías , Síndrome de Cimitarra/patología , Animales , Colágeno Tipo III/fisiología , Factores de Transcripción MEF2/fisiología , Masculino , Ratones , Ratones Noqueados , Penetrancia , Proteínas Supresoras de Tumor/fisiología
5.
Nat Commun ; 10(1): 1929, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-31028265

RESUMEN

Genetically modified mice have advanced our understanding of valve development and disease. Yet, human pathophysiological valvulogenesis remains poorly understood. Here we report that, by combining single cell sequencing and in vivo approaches, a population of human pre-valvular endocardial cells (HPVCs) can be derived from pluripotent stem cells. HPVCs express gene patterns conforming to the E9.0 mouse atrio-ventricular canal (AVC) endocardium signature. HPVCs treated with BMP2, cultured on mouse AVC cushions, or transplanted into the AVC of embryonic mouse hearts, undergo endothelial-to-mesenchymal transition and express markers of valve interstitial cells of different valvular layers, demonstrating cell specificity. Extending this model to patient-specific induced pluripotent stem cells recapitulates features of mitral valve prolapse and identified dysregulation of the SHH pathway. Concurrently increased ECM secretion can be rescued by SHH inhibition, thus providing a putative therapeutic target. In summary, we report a human cell model of valvulogenesis that faithfully recapitulates valve disease in a dish.


Asunto(s)
Células Endoteliales/patología , Proteínas Hedgehog/genética , Prolapso de la Válvula Mitral/patología , Válvula Mitral/patología , Células Madre Pluripotentes/patología , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Proteína Morfogenética Ósea 2/farmacología , Proteínas Relacionadas con las Cadherinas , Cadherinas/genética , Cadherinas/metabolismo , Diferenciación Celular/efectos de los fármacos , Embrión de Mamíferos , Endocardio/metabolismo , Endocardio/patología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/trasplante , Transición Epitelial-Mesenquimal/efectos de los fármacos , Factor de Transcripción GATA5/genética , Factor de Transcripción GATA5/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Atrios Cardíacos/metabolismo , Atrios Cardíacos/patología , Proteínas Hedgehog/metabolismo , Humanos , Ratones , Válvula Mitral/metabolismo , Prolapso de la Válvula Mitral/genética , Prolapso de la Válvula Mitral/metabolismo , Prolapso de la Válvula Mitral/terapia , Modelos Biológicos , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Cultivo Primario de Células , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Proteína Wnt3A/farmacología
6.
J Cardiovasc Dev Dis ; 3(4)2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28133602

RESUMEN

Congenital heart malformations are the most common type of defects found at birth. About 1% of infants are born with one or more heart defect on a yearly basis. Congenital Heart Disease (CHD) causes more deaths in the first year of life than any other congenital abnormality, and each year, nearly twice as many children die in the United States from CHD as from all forms of childhood cancers combined. Atrioventricular septal defects (AVSD) are congenital heart malformations affecting approximately 1 in 2000 live births. Babies born with an AVSD often require surgical intervention shortly after birth. However, even after successful surgery, these individuals typically have to deal with lifelong complications with the most common being a leaky mitral valve. In recent years the understanding of the molecular etiology and morphological mechanisms associated with the pathogenesis of AVSDs has significantly changed. Specifically, these studies have linked abnormal development of the Dorsal Mesenchymal Protrusion (DMP), a Second Heart Field-derived structure, to the development of this congenital defect. In this review we will be discuss some of the latest insights into the role of the DMP in the normal formation of the atrioventricular septal complex and in the pathogenesis of AVSDs.

7.
Nat Commun ; 6: 6749, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25851587

RESUMEN

Short- and long-scales intra- and inter-chromosomal interactions are linked to gene transcription, but the molecular events underlying these structures and how they affect cell fate decision during embryonic development are poorly understood. One of the first embryonic cell fate decisions (that is, mesendoderm determination) is driven by the POU factor OCT4, acting in concert with the high-mobility group genes Sox-2 and Sox-17. Here we report a chromatin-remodelling mechanism and enhancer function that mediate cell fate switching. OCT4 alters the higher-order chromatin structure at both Sox-2 and Sox-17 loci. OCT4 titrates out cohesin and switches the Sox-17 enhancer from a locked (within an inter-chromosomal Sox-2 enhancer/CCCTC-binding factor CTCF/cohesin loop) to an active (within an intra-chromosomal Sox-17 promoter/enhancer/cohesin loop) state. SALL4 concomitantly mobilizes the polycomb complexes at the Soxs loci. Thus, OCT4/SALL4-driven cohesin- and polycombs-mediated changes in higher-order chromatin structure mediate instruction of early cell fate in embryonic cells.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Embrión de Mamíferos/metabolismo , Corazón/embriología , Células Madre Embrionarias Humanas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factores de Transcripción SOX/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factor de Unión a CCCTC , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes , Proteínas HMGB/genética , Proteínas HMGB/metabolismo , Humanos , Ratones , Proteínas de Neoplasias , Células Madre Pluripotentes , Complejo Represivo Polycomb 1/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción SOXF/genética , Factores de Transcripción SOXF/metabolismo , Factores de Transcripción/metabolismo , Cohesinas
8.
J Vis Exp ; (86)2014 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-24797676

RESUMEN

Testing the fate of embryonic or pluripotent stem cell-derivatives in in vitro protocols has led to controversial outcomes that do not necessarily reflect their in vivo potential. Preferably, these cells should be placed in a proper embryonic environment in order to acquire their definite phenotype. Furthermore, cell lineage tracing studies in the mouse after labeling cells with dyes or retroviral vectors has remained mostly limited to early stage mouse embryos with still poorly developed organs. To overcome these limitations, we designed standard and ultrasound-mediated microinjection protocols to inject various agents in targeted regions of the heart in mouse embryos at E9.5 and later stages of development.  Embryonic explant or embryos are then cultured or left to further develop in utero. These agents include fluorescent dyes, virus, shRNAs, or stem cell-derived progenitor cells. Our approaches allow for preservation of the function of the organ while monitoring migration and fate of labeled and/or injected cells. These technologies can be extended to other organs and will be very helpful to address key biological questions in biology of development.


Asunto(s)
Trasplante de Células/métodos , Corazón/embriología , Microinyecciones/métodos , Miocardio/citología , Animales , Femenino , Vectores Genéticos/administración & dosificación , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA