Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Med Mycol ; 59(12): 1191-1201, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34424316

RESUMEN

Lipopeptide biosurfactants (LBs) are biological molecules with low toxicity that have aroused growing interest in the pharmaceutical industry. Their chemical structure confers antimicrobial and antibiofilm properties against different species. Despite their potential, few studies have demonstrated their capability against Malassezia spp., commensal yeasts which can cause dermatitis and serious infections. Thus, the aim of this study was to evaluate the antifungal activity of biosurfactants produced by new strains of Bacillus subtilis TIM10 and B. vallismortis TIM68 against M. furfur and their potential for removal and inhibition of yeast biofilms. Biosurfactants were classified as lipopeptides by FTIR, and their composition was characterized by ESI-Q-TOF/MS, showing ions for iturin, fengycin, and surfactin, with a greater abundance of surfactin. Through the broth microdilution method, both biosurfactants inhibited the growth of clinical M. furfur strains. Biosurfactant TIM10 showed greater capacity for growth inhibition, with no statistical difference compared to those obtained by the commercial antifungal fluconazole for M. furfur 153DR5 and 154DR8 strains. At minimal inhibitory concentrations (MIC-2), TIM10 and TIM68 were able to inhibit biofilm formation, especially TIM10, with an inhibition rate of approximately 90%. In addition, both biosurfactants were able to remove pre-formed biofilm. Both biosurfactants showed no toxicity against murine fibroblasts, even at concentrations above MIC-2. Our results show the effectiveness of LBs in controlling the growth and biofilm formation of M. furfur clinical strains and highlight the potential of these agents to compose new formulations for the treatment of these fungi.


Asunto(s)
Malassezia , Animales , Antifúngicos/farmacología , Biopelículas , Lipopéptidos/farmacología , Ratones , Pruebas de Sensibilidad Microbiana/veterinaria
2.
Appl Biochem Biotechnol ; 195(2): 753-771, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36166154

RESUMEN

Surfactants are applied in several industrial processes when the modification of interface activity and the stability of colloidal systems are required. Lipopeptides are a class of microbial biosurfactants produced by species of the Bacillus genus. The present study aimed at assembling and analyzing the genome of a new Bacillus vallismortis strain, TIM68, that was shown to produce surfactant lipopeptides. The draft genome was also screened for common virulence factors and antibiotics resistance genes to investigate the strain biosafety. Comparative genomics analyses, i.e., synteny, average nucleotide identity (ANI), and pangenome, were also carried out using strain TIM68 and publicly available B. vallismortis complete and partial genomes. Three peptide synthetase operons were found in TIM68 genome, and they were surfactin A, mojavensin, and a novel plipastatin-like lipopeptide named vallisin. No virulence factors that render pathogenicity to the strain have been identified, but a region of prophage, that may contain unknown pathogenic factors, has been predicted. The pangenome of the species was characterized as closed, with 57% of genes integrating the core genome. The results obtained here on the genetic potential of TIM68 strain should contribute to its exploration in biotechnological applications.


Asunto(s)
Bacillus , Lipopéptidos , Lipopéptidos/farmacología , Tensoactivos/farmacología , Tensoactivos/química , Bacillus/genética , Genómica
3.
Microorganisms ; 11(4)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37110323

RESUMEN

Amphibian foam nests are unique microenvironments that play a crucial role in the development of tadpoles. They contain high levels of proteins and carbohydrates, yet little is known about the impact of their microbiomes on tadpole health. This study provides a first characterization of the microbiome of foam nests from three species of Leptodactylids (Adenomera hylaedactyla, Leptodactylus vastus, and Physalaemus cuvieri) by investigating the DNA extracted from foam nests, adult tissues, soil, and water samples, analyzed via 16S rRNA gene amplicon sequencing to gain insight into the factors driving its composition. The results showed that the dominant phyla were proteobacteria, bacteroidetes, and firmicutes, with the most abundant genera being Pseudomonas, Sphingobacterium, and Paenibacillus. The foam nest microbiomes of A. hylaedactyla and P. cuvieri were more similar to each other than to that of L. vastus, despite their phylogenetic distance. The foam nests demonstrated a distinct microbiome that clustered together and separated from the microbiomes of the environment and adult tissue samples. This suggests that the peculiar foam nest composition shapes its microbiome, rather than vertical or horizontal transference forces. We expanded this knowledge into amphibian foam nest microbiomes, highlighting the importance of preserving healthy foam nests for amphibian conservation.

4.
Artículo en Inglés | MEDLINE | ID: mdl-22442233

RESUMEN

Lv-ranaspumin is a natural surfactant protein with a molecular mass of 23.5 kDa which was isolated from the foam nest of the frog Leptodactylus vastus. Only a partial amino-acid sequence is available for this protein and it shows it to be distinct from any protein sequence reported to date. The protein was purified from the natural source by ion-exchange and size-exclusion chromatography and was crystallized by sitting-drop vapour diffusion using the PEG/Ion screen at 293 K. A complete data set was collected to 3.5 Å resolution. The crystal belonged to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 51.96, b = 89.99, c = 106.00 Å. Assuming the presence of two molecules in the asymmetric unit, the solvent content was estimated to be 54%.


Asunto(s)
Anuros , Proteínas de la Membrana/química , Animales , Cristalización , Cristalografía por Rayos X , Proteínas de la Membrana/aislamiento & purificación
5.
Mol Biotechnol ; 63(4): 289-304, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33502742

RESUMEN

This study reports an alternative strategy for the expression of a recombinant L-AI from Enterococcus faecium DBFIQ E36 by auto-induction using glucose and glycerol as carbon sources and residual whey lactose as inducer agent. Commercial lactose and isopropyl ß-D-1-thiogalactopyranoside (IPTG) were also evaluated as inducers for comparison of enzyme expression levels. The enzymatic extracts were purified by affinity chromatography, characterized, and applied in the bioconversion of D-galactose into D-tagatose. L-AI presented a catalytic activity of 1.67 ± 0.14, 1.52 ± 0.01, and 0.7 ± 0.04 U/mL, when expressed using commercial lactose, lactose from whey, and IPTG, respectively. Higher activities could be obtained by changing the protocol of enzyme extraction and, for instance, the enzymatic extract produced with whey presented a catalytic activity of 3.8 U/mL. The specific activity of the enzyme extracts produced using lactose (commercial or residual whey) after enzyme purification was also higher when compared to the enzyme expressed with IPTG. Best results were achieved when enzyme expression was conducted using 4 g/L of residual whey lactose for 11 h. These results proved the efficacy of an alternative and economic protocol for the effective expression of a recombinant L-AI aiming its high-scale production.


Asunto(s)
Isomerasas Aldosa-Cetosa/genética , Isomerasas Aldosa-Cetosa/metabolismo , Enterococcus faecium/enzimología , Escherichia coli/crecimiento & desarrollo , Isopropil Tiogalactósido/metabolismo , Lactosa/metabolismo , Isomerasas Aldosa-Cetosa/aislamiento & purificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clonación Molecular , Medios de Cultivo/química , Enterococcus faecium/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Glucosa/metabolismo , Glicerol/metabolismo , Concentración de Iones de Hidrógeno , Proteínas Recombinantes/metabolismo , Suero Lácteo/química
6.
Chemosphere ; 264(Pt 2): 128538, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33038734

RESUMEN

Cry1C, Cry1F and Cry1Ab are insecticidal proteins from Bacillus thuringiensis (Bt) which are expressed in transgenic crops. Given the entry of these proteins into aquatic environments, it is relevant to evaluate their impacts on aquatic organisms. In this work, we sought to evaluate the effects of Cry1C, Cry1F and Cry1Ab on zebrafish embryos and larvae of a predicted worst-case scenario concentration of these proteins (set to 1.1 mg/L). For that, we coupled a traditional toxicity approach (the zebrafish embryotoxicity test and dosage of enzymatic biomarkers) to gel free proteomics analysis. At the concentration tested, these proteins did not cause adverse effects in the zebrafish early life stages, either by verifying phenotypic endpoints of toxicity or alterations in representative enzymatic biomarkers (catalase, glutathione-S-tranferase and lactate-dehydrogenase). At the molecular level, the Cry proteins tested lead to very small changes in the proteome of zebrafish larvae. In a global way, these proteins upregulated the expression of vitellogenins. Besides that, Cry1C e Cry1F deregulated heterogeneous nuclear ribonucleoproteins (Hnrnpa0l and Hnrnpaba, respectively), implicated in mRNA processing and gene regulation. Overall, these data lead to the conclusion that Cry1C, Cry1F and Cry1Ab proteins, even at a very high concentration, have limited effects in the early stages of zebrafish life.


Asunto(s)
Bacillus thuringiensis , Proteínas Hemolisinas , Animales , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/genética , Endotoxinas/toxicidad , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/toxicidad , Larva , Plantas Modificadas Genéticamente , Proteómica , Pez Cebra
7.
Mol Biotechnol ; 61(6): 385-399, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30919326

RESUMEN

D-Tagatose is a ketohexose, which presents unique properties as a low-calorie functional sweetener possessing a sweet flavor profile similar to D-sucrose and having no aftertaste. Considered a generally recognized as safe (GRAS) substance by FAO/WHO, D-tagatose can be used as an intermediate for the synthesis of other optically active compounds as well as an additive in detergent, cosmetic, and pharmaceutical formulations. This study reports important features for L-arabinose isomerase (EC 5.3.1.4) (L-AI) use in industry. We describe arabinose (araA) gene virulence analysis, gene isolation, sequencing, cloning, and heterologous overexpression of L-AI from the food-grade GRAS bacterium Enterococcus faecium DBFIQ E36 in Escherichia coli and assess biochemical properties of this recombinant enzyme. Recombinant L-AI (rL-AI) was one-step purified to homogeneity by Ni2+-agarose resin affinity chromatography and biochemical characterization revealed low identity with both thermophilic and mesophilic L-AIs but high degree of conservation in residues involved in substrate recognition. Optimal conditions for rL-AI activity were 50 °C, pH 5.5, and 0.3 mM Mn2+, exhibiting a low cofactor concentration requirement and an acidic optimum pH. Half-life at 45 °C and 50 °C were 1427 h and 11 h, respectively, and 21.5 h and 39.5 h at pH 4.5 and 5.6, respectively, showing the high stability of the enzyme in the presence of a metallic cofactor. Bioconversion yield for D-tagatose biosynthesis was 45% at 50 °C after 48 h. These properties highlight the technological potential of E. faecium rL-AI as biocatalyst for D-tagatose production.


Asunto(s)
Isomerasas Aldosa-Cetosa/metabolismo , Proteínas Bacterianas/metabolismo , Enterococcus faecium/enzimología , Galactosa/metabolismo , Hexosas/biosíntesis , Isomerasas Aldosa-Cetosa/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Cationes Bivalentes , Clonación Molecular , Coenzimas/metabolismo , Enterococcus faecium/genética , Pruebas de Enzimas , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Calor , Concentración de Iones de Hidrógeno , Cinética , Manganeso/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
8.
J Exp Zool A Ecol Genet Physiol ; 325(7): 425-33, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27460953

RESUMEN

Some amphibian species have developed a breeding strategy in which they deposit their eggs in stable foam nests to protect their eggs and larvae. The frog foam nests are rich in proteins (ranaspumin), especially surfactant proteins, involved in the production of the foam nest. Despite the ecological importance of the foam nests for evolution and species conservation, the biochemical composition, the long-term stability and even the origin of the components are still not completely understood. Recently we showed that Lv-RSN-1, a 23.5-kDa surfactant protein isolated from the nest of the frog Leptodacylus vastus, presents a structural conformation distinct from any protein structures yet reported. So, in the current study we aimed to reveal the protein composition of the foam nest of L. vastus and further characterize the Lv-RSN-1. Proteomic analysis showed the foam nest contains more than 100 of proteins, and that Lv-RSN-1 comprises 45% of the total proteins, suggesting a key role in the nest construction and stability. We demonstrated by Western blotting that Lv-RSN-1 is mainly produced only by the female in the pars convoluta dilata, which highlights the importance of the female preservation for conservation of species that depend on the production of foam nests in the early stages of development. Overall, our results showed the foam nest of L. vastus is composed of a great diversity of proteins and that besides Lv-RSN-1, the main protein in the foam, other proteins must have a coadjuvant role in building and stability of the nest.


Asunto(s)
Proteínas Anfibias/química , Anuros/metabolismo , Cloaca/metabolismo , Oviductos/metabolismo , Proteínas Anfibias/análisis , Proteínas Anfibias/aislamiento & purificación , Proteínas Anfibias/metabolismo , Animales , Anuros/fisiología , Femenino , Masculino , Conformación Proteica , Proteómica , Reproducción , Tensoactivos/química
9.
Braz J Microbiol ; 44(4): 1291-8, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24688525

RESUMEN

The amidated analog of Plantaricin149, an antimicrobial peptide from Lactobacillus plantarum NRIC 149, directly interacts with negatively charged liposomes and bacterial membranes, leading to their lysis. In this study, four Pln149-analogs were synthesized with different hydrophobic groups at their N-terminus with the goal of evaluating the effect of the modifications at this region in the peptide's antimicrobial properties. The interaction of these peptides with membrane models, surface activity, their hemolytic effect on red blood cells, and antibacterial activity against microorganisms were evaluated. The analogs presented similar action of Plantaricin149a; three of them with no hemolytic effect (< 5%) until 0.5 mM, in addition to the induction of a helical element when binding to negative liposomes. The N-terminus difference between the analogs and Plantaricin149a retained the antibacterial effect on S. aureus and P. aeruginosa for all peptides (MIC50 of 19 µM and 155 µM to Plantaricin149a, respectively) but resulted in a different mechanism of action against the microorganisms, that was bactericidal for Plantaricin149a and bacteriostatic for the analogs. This difference was confirmed by a reduction in leakage action for the analogs. The lytic activity of Plantaricin149a is suggested to be a result of the peptide-lipid interactions from the amphipathic helix and the hydrophobic residues at the N-terminus of the antimicrobial peptide.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Bacterias/efectos de los fármacos , Bacteriocinas/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Dobles de Lípidos/metabolismo , Péptidos Catiónicos Antimicrobianos/genética , Bacteriocinas/genética , Lactobacillus plantarum/metabolismo , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
10.
Braz. j. microbiol ; 44(4): 1291-1298, Oct.-Dec. 2013. ilus, tab
Artículo en Inglés | LILACS | ID: lil-705286

RESUMEN

The amidated analog of Plantaricin149, an antimicrobial peptide from Lactobacillus plantarum NRIC 149, directly interacts with negatively charged liposomes and bacterial membranes, leading to their lysis. In this study, four Pln149-analogs were synthesized with different hydrophobic groups at their N-terminus with the goal of evaluating the effect of the modifications at this region in the peptide's antimicrobial properties. The interaction of these peptides with membrane models, surface activity, their hemolytic effect on red blood cells, and antibacterial activity against microorganisms were evaluated. The analogs presented similar action of Plantaricin149a; three of them with no hemolytic effect (< 5%) until 0.5 mM, in addition to the induction of a helical element when binding to negative liposomes. The N-terminus difference between the analogs and Plantaricin149a retained the antibacterial effect on S. aureus and P. aeruginosa for all peptides (MIC50 of 19 µM and 155 µM to Plantaricin149a, respectively) but resulted in a different mechanism of action against the microorganisms, that was bactericidal for Plantaricin149a and bacteriostatic for the analogs. This difference was confirmed by a reduction in leakage action for the analogs. The lytic activity of Plantaricin149a is suggested to be a result of the peptide-lipid interactions from the amphipathic helix and the hydrophobic residues at the N-terminus of the antimicrobial peptide.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Bacterias/efectos de los fármacos , Bacteriocinas/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Dobles de Lípidos/metabolismo , Péptidos Catiónicos Antimicrobianos/genética , Bacteriocinas/genética , Lactobacillus plantarum/metabolismo , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
11.
J Exp Biol ; 211(Pt 16): 2707-11, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18689424

RESUMEN

Many amphibians lay their eggs in foam nests, which allow the eggs to be deposited out of the water. Analysis of some of these foam nests has revealed that they are a rich source of proteins with unusual primary structures and remarkable surfactant activity, named ranaspumins. The aim of this work was to study the foam nests of the frog Leptodactylus vastus in order to obtain information regarding their composition and function and to improve the understanding of ranaspumins, which are probably a novel class of surfactant proteins. Analyses of the foam fluid composition showed proteins and carbohydrates that presumably are responsible for providing nutrients for the developing tadpoles. Investigation of the function of foam fluid in chemical defence revealed no significant biological activity that could be associated with recognized defence compounds. However, foam fluid presented UV absorbance, suggesting a role in protection against sun damage, which is considered to be one of the possible causes of recently reported amphibian population declines. The foam nests do not prevent the colonization of microorganisms, such as the observed bacterial community of predominantly Gram-positive bacilli. L. vastus foam fluid shows a strong surfactant activity that was associated with their proteins and this activity seems to be due mainly to a protein named Lv-ranaspumin. This protein was isolated by ion-exchange chromatography and found to be a 20 kDa monomeric molecule with the following N-terminal sequence: FLEGFLVPKVVPGPTAALLKKALDD. This protein did not show any match to known proteins or structures, which suggests that it belongs to a new class of surfactant protein.


Asunto(s)
Comportamiento de Nidificación/fisiología , Proteínas/metabolismo , Ranidae/metabolismo , Tensoactivos/metabolismo , Animales , Electroforesis en Gel de Poliacrilamida , Proteínas/aislamiento & purificación , Tensoactivos/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA