Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Fish Biol ; 100(6): 1432-1446, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35362094

RESUMEN

Arctic char (Salvelinus alpinus) is a facultatively anadromous fish species that is critically important to many Inuit communities in the Canadian Arctic. Plasticity in life history has allowed the species to persist in a diversity of challenging Holarctic environments. Despite their ecological and cultural importance and their presence in aquatic ecosystems that are ice-covered for much of the year, few under-ice studies of Arctic char have been conducted. Most winter studies of adult Arctic char have focused on lakes, where they typically overwinter. Several populations of Arctic char, however, overwinter in large river systems, and subsistence fishers have reported that Arctic char overwinter in the lower reaches of the Coppermine River. The Coppermine River is a large Arctic river that flows into Coronation Gulf near Kugluktuk, Nunavut, Canada. The authors used acoustic telemetry to investigate the overwintering ecology of Arctic char in the region. Consistent with local knowledge, they detected Arctic char overwintering within the fluvial environment of the Coppermine River from 2018 to 2020. Unlike other fluvial environments known to be used by overwintering Arctic char, the lower reaches of the Coppermine River are completely ice-covered throughout the winter, are of moderate depths (3.8-14.1 m) and have no known groundwater inputs. Acoustic telemetry observations indicated long-distance movement (7-8 km) within the river in early winter (October) in response to dynamic ice formation. Under-ice movement generally declined 2 weeks after river freeze-up but continued throughout winter in the lower 5 km of the river, where there were fewer under-ice disturbances. Migration into the marine environment before river ice break-up (June), as well as winter (November-May) movements into and within the marine environment, was unexpectedly observed for some fish. Under-ice use of the marine environment is unusual for Arctic char at the distances observed (up to 18 km) and has not previously been documented at the temperatures (fish body temperatures from -0.76 to 1.90°C) observed. Results allow further understanding of the diverse life-history tactics employed by Arctic char and lay a foundation for future research into fluvial and other diverse overwintering tactics employed by the species.


Asunto(s)
Hielo , Ríos , Animales , Regiones Árticas , Canadá , Ecosistema , Trucha/fisiología
2.
Mov Ecol ; 12(1): 12, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310319

RESUMEN

BACKGROUND: The ice-free season (typically late-June to early-October) is crucial for anadromous species of fish in the Arctic, including Arctic Char (Salvelinus alpinus), which must acquire adequate resources for growth, reproduction, and survival during a brief period of feeding in the marine environment. Arctic Char is an important food fish for Inuit communities across the Arctic. Understanding drivers and patterns of migration in the marine environment is thus essential for conservation and management of the species. METHODS: We used passive acoustic telemetry to characterize migration patterns of 51 individual anadromous Arctic Char during the ice-free season in the marine environment of Coronation Gulf (Nunavut, Canada; 2019-2022). Based on recent genetic evidence, some tagged individuals were likely Dolly Varden (Salvelinus malma malma), a closely related species to Arctic Char. Using local Getis G* and network analysis, we described movement patterns and identified high-use locations in the marine environment. We also related freshwater overwintering location to migration timing and movement pattern. RESULTS: Comparing groups of fish that overwintered in distinct locations, we found: (i) limited evidence that marine movements were associated with overwintering location; (ii) minor differences in use of marine space; and, (iii) timing of freshwater return differed significantly between overwintering groups, and was related to length and difficulty of the migratory pathway in freshwater. Results from both network analysis and local Getis G* revealed that, regardless of overwintering location, coastal locations were highly used by fish. CONCLUSIONS: Overwintering locations, and the migratory routes to access overwintering locations, affect the timing of freshwater return. Preference of fish for coastal marine locations is likely due to abundance of forage and patterns in break-up of sea ice. Similarities in marine space use and movement patterns present challenges for managing this and other mixed stock fisheries of anadromous Salvelinus spp. Absences or periods of time when fish were not detected prevented comprehensive assessment of movement patterns. Local Getis G*, a local indicator of spatial association, is a helpful tool in identifying locations associated with absences in acoustic telemetry arrays, and is a complementary method to network analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA