Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Hepatology ; 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37078444

RESUMEN

Epigenetic changes are a common feature of human disease, including liver disease and its progression to liver cancer. The most frequent form of liver cancer, HCC, is unusual because most of its causes, or etiologic drivers, are known and are dominated by environmental exposures, including viral infection, alcohol abuse, and overnutrition/metabolic syndrome. The epigenome is a regulatory system overlayed on the genetic material that regulates when, where, and to what extent genes are expressed in developmental, cell type, and disease-associated contexts. Deregulation of the epigenome has emerged as a major player in the pathologic effects of liver disease driving exposures, particularly during their early phases when genetic changes are uncommon. Although it is inherent in the definition of an epigenetic process to be reversible, emerging evidence indicates that epigenetic changes persist after the removal of the exposure and contribute to long-term risk of disease progression. In other systems, environmental exposures lead to beneficial adaptive changes in expression that facilitate processes such as wound healing, and these too are driven by epigenetic changes. What remains unclear, however, is what drives the transition from a beneficial epigenetic memory to a maladaptive scar, the epigenetic processes involved in forming these memories, and whether this process can be modulated for therapeutic purposes. In this review, we discuss these concepts in relation to liver disease and more broadly using examples from other tissue types and diseases, and finally consider how epigenetic therapies could be used to reprogram maladaptive epigenetic memories to delay and/or prevent hepatocarcinogenesis.

2.
Hepatology ; 75(4): 983-996, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34387871

RESUMEN

BACKGROUND AND AIMS: Chronic HCV infection is a leading etiologic driver of cirrhosis and ultimately HCC. Of the approximately 71 million individuals chronically infected with HCV, 10%-20% are expected to develop severe liver complications in their lifetime. Epigenetic mechanisms including DNA methylation and histone modifications become profoundly disrupted in disease processes including liver disease. APPROACH AND RESULTS: To understand how HCV infection influences the epigenome and whether these events remain as "scars" following cure of chronic HCV infection, we mapped genome-wide DNA methylation, four key regulatory histone modifications (H3K4me3, H3K4me1, H3K27ac, and H3K27me3), and open chromatin in parental and HCV-infected immortalized hepatocytes and the Huh7.5 HCC cell line, along with DNA methylation and gene-expression analyses following elimination of HCV in these models through treatment with interferon-α (IFN-α) or a direct-acting antiviral (DAA). Our data demonstrate that HCV infection profoundly affects the epigenome (particularly enhancers); HCV shares epigenetic targets with interferon-α targets; and an overwhelming majority of epigenetic changes induced by HCV remain as "scars" on the epigenome following viral cure. Similar findings are observed in primary human patient samples cured of chronic HCV infection. Supplementation of IFN-α/DAA antiviral regimens with DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine synergizes in reverting aberrant DNA methylation induced by HCV. Finally, both HCV-infected and cured cells displayed a blunted immune response, demonstrating a functional effect of epigenetic scarring. CONCLUSIONS: Integration of epigenetic and transcriptional data elucidate key gene deregulation events driven by HCV infection and how this may underpin the long-term elevated risk for HCC in patients cured of HCV due to epigenome scarring.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis C Crónica , Hepatitis C , Neoplasias Hepáticas , Antivirales/farmacología , Antivirales/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Epigenoma , Hepacivirus/genética , Hepatitis C/complicaciones , Hepatitis C/tratamiento farmacológico , Hepatitis C/genética , Hepatitis C Crónica/tratamiento farmacológico , Hepatitis C Crónica/genética , Humanos , Interferón-alfa/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética
3.
Hepatology ; 69(2): 639-652, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30136421

RESUMEN

Disruption of epigenetic mechanisms has been intimately linked to the etiology of human cancer. Understanding how these epigenetic mechanisms (including DNA methylation [5mC], hydroxymethylation [5hmC], and histone post-translational modifications) work in concert to drive cancer initiation and progression remains unknown. Hepatocellular carcinoma (HCC) is increasing in frequency in Western countries but lacks efficacious treatments. The epigenome of HCC remains understudied. To better understand the epigenetic underpinnings of HCC, we performed a genome-wide assessment of 5mC, 5hmC, four histone modifications linked to promoter/enhancer function (H3K4me1, H3K27ac, H3K4me3, and H3K27me3), and transcription across normal, cirrhotic, and HCC liver tissue. Implementation of bioinformatic strategies integrated these epigenetic marks with each other and with transcription to provide a comprehensive epigenetic profile of how and when the liver epigenome is perturbed during progression to HCC. Our data demonstrate significant deregulation of epigenetic regulators combined with disruptions in the epigenome hallmarked by profound loss of 5hmC, locus-specific gains in 5mC and 5hmC, and markedly altered histone modification profiles, particularly remodeling of enhancers. Data integration demonstrates that these marks collaborate to influence transcription (e.g., hyper-5hmC in HCC-gained active enhancers is linked to elevated expression) of genes regulating HCC proliferation. Two such putative epigenetic driver loci identified through our integrative approach, COMT and FMO3, increase apoptosis and decrease cell viability in liver-derived cancer cell lines when ectopically re-expressed. Conclusion: Altogether, integration of multiple epigenetic parameters is a powerful tool for identifying epigenetically regulated drivers of HCC and elucidating how epigenome deregulation contributes to liver disease and HCC.


Asunto(s)
Carcinoma Hepatocelular/genética , Epigenoma , Cirrosis Hepática/genética , Neoplasias Hepáticas/genética , Estudios de Casos y Controles , Metilación de ADN , Código de Histonas , Humanos , Hígado/metabolismo
4.
Hepatology ; 70(1): 51-66, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30681738

RESUMEN

Alpha-1 antitrypsin deficiency (AATD) liver disease is characterized by marked heterogeneity in presentation and progression, despite a common underlying gene mutation, strongly suggesting the involvement of other genetic and/or epigenetic modifiers. Variation in clinical phenotype has added to the challenge of detection, diagnosis, and testing of new therapies in patients with AATD. We examined the contribution of DNA methylation (5-methylcytosine [5mC]) to AATD liver disease heterogeneity because 5mC responds to environmental and genetic cues and its deregulation is a major driver of liver disease. Using liver biopsies from adults with early-stage AATD and the ZZ genotype, genome-wide 5mC patterns were interrogated. We compared DNA methylation among patients with early AATD, and among patients with normal liver, cirrhosis, and hepatocellular carcinoma derived from multiple etiologic exposures, and linked patient clinical/demographic features. Global analysis revealed significant genomic hypomethylation in AATD liver-impacting genes related to liver cancer, cell cycle, and fibrosis, as well as key regulatory molecules influencing growth, migration, and immune function. Further analysis indicated that 5mC changes are localized, with hypermethylation occurring within a background of genome-wide 5mC loss and with patients with AATD manifesting distinct epigenetic landscapes despite their mutational homogeneity. By integrating clinical data with 5mC landscapes, we observed that CpGs differentially methylated among patients with AATD disease are linked to hallmark clinical features of AATD (e.g., hepatocyte degeneration and polymer accumulation) and further reveal links to well-known sex-specific effects of liver disease progression. Conclusion: Our data reveal molecular epigenetic signatures within this mutationally homogeneous group that point to ways to stratify patients for liver disease risk.


Asunto(s)
Metilación de ADN , Hepatopatías/etiología , Obesidad/complicaciones , Deficiencia de alfa 1-Antitripsina/complicaciones , Anciano , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad
5.
PLoS Genet ; 12(9): e1006334, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27690235

RESUMEN

DNA methyltransferase 3A (DNMT3A) is an enzyme involved in DNA methylation that is frequently mutated in human hematologic malignancies. We have previously shown that inactivation of Dnmt3a in hematopoietic cells results in chronic lymphocytic leukemia in mice. Here we show that 12% of Dnmt3a-deficient mice develop CD8+ mature peripheral T cell lymphomas (PTCL) and 29% of mice are affected by both diseases. 10% of Dnmt3a+/- mice develop lymphomas, suggesting that Dnmt3a is a haploinsufficient tumor suppressor in PTCL. DNA methylation was deregulated genome-wide with 10-fold more hypo- than hypermethylated promoters and enhancers, demonstrating that hypomethylation is a major event in the development of PTCL. Hypomethylated promoters were enriched for binding sites of transcription factors AML1, NF-κB and OCT1, implying the transcription factors potential involvement in Dnmt3a-associated methylation. Whereas 71 hypomethylated genes showed an increased expression in PTCL, only 3 hypermethylated genes were silenced, suggesting that cancer-specific hypomethylation has broader effects on the transcriptome of cancer cells than hypermethylation. Interestingly, transcriptomes of Dnmt3a+/- and Dnmt3aΔ/Δ lymphomas were largely conserved and significantly overlapped with those of human tumors. Importantly, we observed downregulation of tumor suppressor p53 in Dnmt3a+/- and Dnmt3aΔ/Δ lymphomas as well as in pre-tumor thymocytes from 9 months old but not 6 weeks old Dnmt3a+/- tumor-free mice, suggesting that p53 downregulation is chronologically an intermediate event in tumorigenesis. Decrease in p53 is likely an important event in tumorigenesis because its overexpression inhibited proliferation in mouse PTCL cell lines, suggesting that low levels of p53 are important for tumor maintenance. Altogether, our data link the haploinsufficient tumor suppressor function of Dnmt3a in the prevention of mouse mature CD8+ PTCL indirectly to a bona fide tumor suppressor of T cell malignancies p53.

6.
Semin Liver Dis ; 38(1): 41-50, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29471564

RESUMEN

Hepatocellular carcinoma (HCC) is the most prevalent primary tumor of the liver, and is steadily becoming one of the most lethal cancers worldwide. Liver resection, which is the recommended procedure for early localized HCC, results in frequent recurrence (50-70%), while the standard of care for late-stage HCC, multikinase inhibitors, only improves survival by a few months. The lack of success for these treatment modalities is attributable, at least in part, to marked phenotypic heterogeneity within the tumor. Intratumoral heterogeneity (ITH) has emerged as a defining characteristic of human tumors, with individual cancer cells displaying distinct differences in properties including growth rate, metastatic capacity, and response to treatment. This heterogeneity, which is unlikely to be captured from a biopsy, impacts outcome because a single treatment targeting one cancer-specific pathway would spare tumor cells having distinct characteristics. Development of effective biomarkers remains a major challenge for similar reasons. Understanding, interpreting, and circumventing the impact of ITH is therefore paramount for developing reliable biomarkers and designing effective individualized treatment strategies for HCC.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/genética , Epigénesis Genética , Heterogeneidad Genética , Neoplasias Hepáticas/genética , Hígado/patología , Animales , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/terapia , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Homeostasis , Humanos , Hígado/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/terapia , Regeneración Hepática , Fenotipo , Resultado del Tratamiento
7.
Proc Natl Acad Sci U S A ; 111(39): E4066-75, 2014 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-25118277

RESUMEN

Aberrant expression of immature truncated O-glycans is a characteristic feature observed on virtually all epithelial cancer cells, and a very high frequency is observed in early epithelial premalignant lesions that precede the development of adenocarcinomas. Expression of the truncated O-glycan structures Tn and sialyl-Tn is strongly associated with poor prognosis and overall low survival. The genetic and biosynthetic mechanisms leading to accumulation of truncated O-glycans are not fully understood and include mutation or dysregulation of glycosyltransferases involved in elongation of O-glycans, as well as relocation of glycosyltransferases controlling initiation of O-glycosylation from Golgi to endoplasmic reticulum. Truncated O-glycans have been proposed to play functional roles for cancer-cell invasiveness, but our understanding of the biological functions of aberrant glycosylation in cancer is still highly limited. Here, we used exome sequencing of most glycosyltransferases in a large series of primary and metastatic pancreatic cancers to rule out somatic mutations as a cause of expression of truncated O-glycans. Instead, we found hypermethylation of core 1 ß3-Gal-T-specific molecular chaperone, a key chaperone for O-glycan elongation, as the most prevalent cause. We next used gene editing to produce isogenic cell systems with and without homogenous truncated O-glycans that enabled, to our knowledge, the first polyomic and side-by-side evaluation of the cancer O-glycophenotype in an organotypic tissue model and in xenografts. The results strongly suggest that truncation of O-glycans directly induces oncogenic features of cell growth and invasion. The study provides support for targeting cancer-specific truncated O-glycans with immunotherapeutic measures.


Asunto(s)
Neoplasias Pancreáticas/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , Animales , Adhesión Celular , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Exoma/genética , Glicómica , Glicosilación , Xenoinjertos , Humanos , Ratones , Ratones Noqueados , Ratones Desnudos , Ratones SCID , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutación , Invasividad Neoplásica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Fenotipo , Proteómica , Transducción de Señal
9.
Mol Oncol ; 18(1): 44-61, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37418588

RESUMEN

Histone-lysine N-methyltransferase SETD2 (SETD2), the sole histone methyltransferase that catalyzes trimethylation of lysine 36 on histone H3 (H3K36me3), is often mutated in clear cell renal cell carcinoma (ccRCC). SETD2 mutation and/or loss of H3K36me3 is linked to metastasis and poor outcome in ccRCC patients. Epithelial-to-mesenchymal transition (EMT) is a major pathway that drives invasion and metastasis in various cancer types. Here, using novel kidney epithelial cell lines isogenic for SETD2, we discovered that SETD2 inactivation drives EMT and promotes migration, invasion, and stemness in a transforming growth factor-beta-independent manner. This newly identified EMT program is triggered in part through secreted factors, including cytokines and growth factors, and through transcriptional reprogramming. RNA-seq and assay for transposase-accessible chromatin sequencing uncovered key transcription factors upregulated upon SETD2 loss, including SOX2, POU2F2 (OCT2), and PRRX1, that could individually drive EMT and stemness phenotypes in SETD2 wild-type (WT) cells. Public expression data from SETD2 WT/mutant ccRCC support the EMT transcriptional signatures derived from cell line models. In summary, our studies reveal that SETD2 is a key regulator of EMT phenotypes through cell-intrinsic and cell-extrinsic mechanisms that help explain the association between SETD2 loss and ccRCC metastasis.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/metabolismo , Neoplasias Renales/patología , Factor de Crecimiento Transformador beta/metabolismo , Histonas/metabolismo , Células Epiteliales/metabolismo , Proteínas de Homeodominio/metabolismo
10.
Drug Alcohol Depend ; 256: 111116, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38364647

RESUMEN

BACKGROUND: Alcohol use disorders are prevalent mental disorders with significant health implications. Epigenetic alterations may play a role in their pathogenesis, as DNA methylation at several genes has been associated with these disorders. We have previously shown that methylation in the DLGAP2 gene, coding for a synaptic density protein, is associated with alcohol dependence. In this study, we aimed to examine the association between DLGAP2 methylation and treatment response among patients undergoing acamprosate treatment. METHODS: 102 patients under acamprosate treatment were included. DNA methylation analysis at DLGAP2 was performed by bisulfite pyrosequencing at the start and after 3-month treatment. Treatment outcomes were having a relapse during the treatment and severity of craving at the end of three months. Cox proportional hazard and linear regression models were performed. RESULTS: Patients whose methylation levels were decreased during the treatment showed an increased risk for relapse within three months in comparison to the ones without methylation change (hazard ratio [HR]=2.44; 95% confidence interval [CI]=1.04, 5.73; p=0.04). For the same group, a positive association for the severity of craving was observed, yet statistical significance was not reached (ß=2.97; 95% CI=-0.41, 6.34; p=0.08). CONCLUSION: We demonstrate that patients whose DLGAP2 methylation levels decrease during acamprosate treatment are more likely to relapse compared to the ones without changes. This is in line with our previous findings showing that DLGAP2 methylation is lower in alcohol dependent subjects compared to controls, and might suggest a role for changes in DLGAP2 methylation in treatment response.


Asunto(s)
Alcoholismo , Humanos , Alcoholismo/tratamiento farmacológico , Alcoholismo/genética , Acamprosato , Metilación de ADN , Enfermedad Crónica , Recurrencia , Proteínas del Tejido Nervioso
11.
Clin Epigenetics ; 15(1): 71, 2023 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-37120552

RESUMEN

BACKGROUND: Clear cell renal cell cancer (ccRCC), the 8th leading cause of cancer-related death in the US, is challenging to treat due to high level intratumoral heterogeneity (ITH) and the paucity of druggable driver mutations. CcRCC is unusual for its high frequency of epigenetic regulator mutations, such as the SETD2 histone H3 lysine 36 trimethylase (H3K36me3), and low frequency of traditional cancer driver mutations. In this work, we examined epigenetic level ITH and defined its relationships with pathologic features, aspects of tumor biology, and SETD2 mutations. RESULTS: A multi-region sampling approach coupled with EPIC DNA methylation arrays was conducted on a cohort of normal kidney and ccRCC. ITH was assessed using DNA methylation (5mC) and CNV-based entropy and Euclidian distances. We found elevated 5mC heterogeneity and entropy in ccRCC relative to normal kidney. Variable CpGs are highly enriched in enhancer regions. Using intra-class correlation coefficient analysis, we identified CpGs that segregate tumor regions according to clinical phenotypes related to tumor aggressiveness. SETD2 wild-type tumors overall possess greater 5mC and copy number ITH than SETD2 mutant tumor regions, suggesting SETD2 loss contributes to a distinct epigenome. Finally, coupling our regional data with TCGA, we identified a 5mC signature that links regions within a primary tumor with metastatic potential. CONCLUSION: Taken together, our results reveal marked levels of epigenetic ITH in ccRCC that are linked to clinically relevant tumor phenotypes and could translate into novel epigenetic biomarkers.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/metabolismo , Neoplasias Renales/patología , Metilación de ADN , Riñón/metabolismo , Epigénesis Genética , Mutación
12.
Clin Epigenetics ; 13(1): 12, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33461589

RESUMEN

BACKGROUND: Despite using prognostic algorithms and standard surveillance guidelines, 17% of patients initially diagnosed with low risk clear cell renal cell carcinoma (ccRCC) ultimately relapse and die of recurrent disease, indicating additional molecular parameters are needed for improved prognosis. RESULTS: To address the gap in ccRCC prognostication in the lower risk population, we performed a genome-wide analysis for methylation signatures capable of distinguishing recurrent and non-recurrent ccRCCs within the subgroup classified as 'low risk' by the Mayo Clinic Stage, Size, Grade, and Necrosis score (SSIGN 0-3). This approach revealed that recurrent patients have globally hypermethylated tumors and differ in methylation significantly at 5929 CpGs. Differentially methylated CpGs (DMCpGs) were enriched in regulatory regions and genes modulating cell growth and invasion. A subset of DMCpGs stratified low SSIGN groups into high and low risk of recurrence in independent data sets, indicating that DNA methylation enhances the prognostic power of the SSIGN score. CONCLUSIONS: This study reports a global DNA hypermethylation in tumors of recurrent ccRCC patients. Furthermore, DMCpGs were capable of discriminating between aggressive and less aggressive tumors, in addition to SSIGN score. Therefore, DNA methylation presents itself as a potentially strong biomarker to further improve prognostic power in patients with low risk SSIGN score (0-3).


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/fisiopatología , Metilación de ADN , Neoplasias Renales/genética , Neoplasias Renales/fisiopatología , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/fisiopatología , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Factores de Riesgo
13.
Cancer Med ; 8(12): 5760-5768, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31361072

RESUMEN

There are currently no effective treatments for advanced-stage papillary renal cell carcinoma (PRCC). The goal of this study is to define potential DNA methylation-based markers and treatment targets for advanced-stage type 2 PRCC. Progressive DNA methylation changes and copy number variation (CNV) from localized to advanced-stage type 2 PRCC are analyzed by using methylation data generated by TCGA's kidney renal papillary cell carcinoma (TCGA-KIRP, 450k array) project. Survival analyses are performed for the identified biomarkers and genes with CNV. In addition, expression of the corresponding genes is investigated by RNA-seq analysis. Progressive methylation changes in several CpGs from localized to advanced-stage type 2 PRCC are observed. Four CpGs (cg00489401, cg27649239, cg20555674, and cg07196505) in particular are identified as markers for differentiating between localized and advanced-stage type 2 PRCC. Copy number analysis reveals that copy gain of PTK7 mostly occurs in advanced-stage type 2 PRCC. Both the four CpG methylation changes and PTK7 copy number gain are associated with patient survival. RNA-seq analysis demonstrates that PTK7 copy gain leads to higher PTK7 expression relative to tumors without copy number gain. Moreover, PTK7 is significantly upregulated from localized to advanced-stage type 2 PRCC and is linked to cancer cell invasion. In conclusion, DNA methylation markers that differentiate between localized and advanced-stage type 2 PRCC may serve as useful markers for disease staging or outcome, while PTK7 copy gain represents a potential treatment target for advanced-stage type 2 PRCC. Stepwise methylation changes and copy number gain also associate with disease stage in PRCC patients.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma de Células Renales/genética , Moléculas de Adhesión Celular/genética , Metilación de ADN , Perfilación de la Expresión Génica/métodos , Neoplasias Renales/genética , Proteínas Tirosina Quinasas Receptoras/genética , Carcinoma de Células Renales/patología , Islas de CpG , Variaciones en el Número de Copia de ADN , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Renales/patología , Estadificación de Neoplasias , Pronóstico , Análisis de Secuencia de ARN , Análisis de Supervivencia , Regulación hacia Arriba
14.
Theranostics ; 9(24): 7239-7250, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31695765

RESUMEN

Hepatocellular carcinoma (HCC), the most prevalent form of liver cancer, is growing in incidence but treatment options remain limited, particularly for late stage disease. As liver cirrhosis is the principal risk state for HCC development, markers to detect early HCC within this patient population are urgently needed. Perturbation of epigenetic marks, such as DNA methylation (5mC), is a hallmark of human cancers, including HCC. Identification of regions with consistently altered 5mC levels in circulating cell free DNA (cfDNA) during progression from cirrhosis to HCC could therefore serve as markers for development of minimally-invasive screens of early HCC diagnosis and surveillance. Methods: To discover DNA methylation derived biomarkers of HCC in the background of liver cirrhosis, we profiled genome-wide 5mC landscapes in patient cfDNA using the Infinium HumanMethylation450k BeadChip Array. We further linked these findings to primary tissue data available from TCGA and other public sources. Using biological and statistical frameworks, we selected CpGs that robustly differentiated cirrhosis from HCC in primary tissue and cfDNA followed by validation in an additional independent cohort. Results: We identified CpGs that segregate patients with cirrhosis, from patients with HCC within a cirrhotic liver background, through genome-wide analysis of cfDNA 5mC landscapes. Lasso regression analysis pinpointed a panel of probes in our discovery cohort that were validated in two independent datasets. A panel of five CpGs (cg04645914, cg06215569, cg23663760, cg13781744, and cg07610777) yielded area under the receiver operating characteristic (AUROC) curves of 0.9525, 0.9714, and 0.9528 in cfDNA discovery and tissue validation cohorts 1 and 2, respectively. Validation of a 5-marker panel created from combining hypermethylated and hypomethylated CpGs in an independent cfDNA set by bisulfite pyrosequencing yielded an AUROC of 0.956, compared to the discovery AUROC of 0.996. Conclusion: Our finding that 5mC markers derived from primary tissue did not perform well in cfDNA, compared to those identified directly from cfDNA, reveals potential advantages of starting with cfDNA to discover high performing markers for liquid biopsy development.


Asunto(s)
Carcinoma Hepatocelular/diagnóstico , Ácidos Nucleicos Libres de Células/sangre , Neoplasias Hepáticas/diagnóstico , Adulto , Biomarcadores de Tumor/sangre , Carcinoma Hepatocelular/sangre , Carcinoma Hepatocelular/genética , Ácidos Nucleicos Libres de Células/genética , Estudios de Cohortes , Metilación de ADN , Femenino , Humanos , Neoplasias Hepáticas/sangre , Neoplasias Hepáticas/genética , Masculino , Persona de Mediana Edad
15.
Clin Epigenetics ; 11(1): 145, 2019 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-31639042

RESUMEN

BACKGROUND: The two most common repetitive elements (REs) in humans, long interspersed nuclear element-1 (LINE-1) and Alu element (Alu), have been linked to various cancers. Hepatitis C virus (HCV) may cause hepatocellular carcinoma (HCC) by suppressing host defenses, through DNA methylation that controls the mobilization of REs. We aimed to investigate the role of RE methylation in HCV-induced HCC (HCV-HCC). RESULTS: We studied methylation of over 30,000 locus-specific REs across the genome in HCC, cirrhotic, and healthy liver tissues obtained by surgical resection. Relative to normal liver tissue, we observed the largest number of differentially methylated REs in HCV-HCC followed by alcohol-induced HCC (EtOH-HCC). After excluding EtOH-HCC-associated RE methylation (FDR < 0.001) and those unable to be validated in The Cancer Genome Atlas (TCGA), we identified 13 hypomethylated REs (11 LINE-1 and 2 Alu) and 2 hypermethylated REs (1 LINE-1 and 1 Alu) in HCV-HCC (FDR < 0.001). A majority of these REs were located in non-coding regions, preferentially enriched with chromatin repressive marks H3K27me3, and positively associated with gene expression (median correlation r = 0.32 across REs). We further constructed an HCV-HCC RE methylation score that distinguished HCV-HCC (lowest score), HCV-cirrhosis, and normal liver (highest score) in a dose-responsive manner (p for trend < 0.001). HCV-cirrhosis had a lower score than EtOH-cirrhosis (p = 0.038) and HCV-HCC had a lower score than EtOH-HCC in TCGA (p = 0.024). CONCLUSIONS: Our findings indicate that HCV infection is associated with loss of DNA methylation in specific REs, which could implicate molecular mechanisms in liver cancer development. If our findings are validated in larger sample sizes, methylation of these REs may be useful as an early detection biomarker for HCV-HCC and/or a target for prevention of HCC in HCV-positive individuals.


Asunto(s)
Carcinoma Hepatocelular/genética , Metilación de ADN , Hepatitis C/complicaciones , Cirrosis Hepática/genética , Neoplasias Hepáticas/genética , Secuencias Repetitivas de Ácidos Nucleicos , Anciano , Anciano de 80 o más Años , Elementos Alu , Carcinoma Hepatocelular/virología , Estudios de Casos y Controles , Epigénesis Genética , Femenino , Hepatitis C/genética , Humanos , Cirrosis Hepática Alcohólica/genética , Neoplasias Hepáticas/virología , Elementos de Nucleótido Esparcido Largo , Masculino , Persona de Mediana Edad
16.
Nat Commun ; 10(1): 4374, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31558711

RESUMEN

DNA methylation regulates gene expression in a variety of processes, including mouse embryonic development. Four catalytically active enzymes function in mice as DNA methyltransferases (Dnmts) and as transcriptional regulators. Inactivation of Dnmt3b results in mouse embryonic lethality, but which activities are involved is unclear. Here we show that catalytically inactive Dnmt3b restores a majority of methylation and expression changes deregulated in the absence of Dnmt3b, and as a result, mice survive embryonic development. Thus, Dnmt3b functions as an accessory cofactor supporting catalytic activities performed by other Dnmts. We further demonstrate that Dnmt3b is linked to a control of major developmental pathways, including Wnt and hedgehog signaling. Dnmt3b directly represses Wnt9b whose aberrant up-regulation contributes to embryonic lethality of Dnmt3b knockout embryos. Our results highlight that Dnmt3b is a multifaceted protein that serves as an enzyme, an accessory factor for other methyltransferases, and as a transcriptional repressor in mouse embryogenesis.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Animales , Biocatálisis , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Femenino , Células HEK293 , Proteínas Hedgehog/genética , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Transducción de Señal/genética , Proteínas Wnt/genética , ADN Metiltransferasa 3B
17.
Transl Psychiatry ; 8(1): 182, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-30185790

RESUMEN

Alcohol dependence (ALC) is a chronic, relapsing disorder that increases the burden of chronic disease and significantly contributes to numerous premature deaths each year. Previous research suggests that chronic, heavy alcohol consumption is associated with differential DNA methylation patterns. In addition, DNA methylation levels at certain CpG sites have been correlated with age. We used an epigenetic clock to investigate the potential role of excessive alcohol consumption in epigenetic aging. We explored this question in five independent cohorts, including DNA methylation data derived from datasets from blood (n = 129, n = 329), liver (n = 92, n = 49), and postmortem prefrontal cortex (n = 46). One blood dataset and one liver tissue dataset of individuals with ALC exhibited positive age acceleration (p < 0.0001 and p = 0.0069, respectively), whereas the other blood and liver tissue datasets both exhibited trends of positive age acceleration that were not significant (p = 0.83 and p = 0.57, respectively). Prefrontal cortex tissue exhibited a trend of negative age acceleration (p = 0.19). These results suggest that excessive alcohol consumption may be associated with epigenetic aging in a tissue-specific manner and warrants further investigation using multiple tissue samples from the same individuals.


Asunto(s)
Envejecimiento/genética , Alcoholismo/genética , Islas de CpG , Metilación de ADN , Adulto , Estudios de Casos y Controles , Epigénesis Genética , Femenino , Humanos , Modelos Lineales , Hígado/patología , Masculino , Persona de Mediana Edad , Corteza Prefrontal/patología
18.
Hepatol Commun ; 2(12): 1493-1512, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30556038

RESUMEN

With the epidemic of obesity, nonalcoholic fatty liver disease (NAFLD) has become the most common pediatric liver disease. The influence of a perinatal obesity-inducing diet (OID) on the development and progression of NAFLD in offspring is important but incompletely studied. Hence, we fed breeding pairs of C57BL/6J mice during gestation and lactation (perinatally) either chow or an OID rich in fat, fructose, and cholesterol (FFC). The offspring were weaned to either chow or an FFC diet, generating four groups: perinatal (p)Chow-Chow, pChow-FFC, pFFC-Chow, and pFFC-FFC. Mice were sacrificed at 10 weeks of age. We examined the whole-liver transcriptome by RNA sequencing (RNA-seq) and whole-liver genome methylation by reduced representation bisulfite sequencing (RRBS). Our results indicated that the pFFC-FFC mice had a significant increase in hepatic steatosis, injury, inflammation, and fibrosis, as assessed histologically and biochemically. We identified 189 genes that were differentially expressed and methylated in the pFFC-FFC mice versus the pChow-FFC mice. Gene set enrichment analysis identified hepatic fibrosis/hepatic stellate cell activation as the top canonical pathway, suggesting that the differential DNA methylation events in the mice exposed to the FFC diet perinatally were associated with a profibrogenic transcriptome. To verify that this finding was consistent with perinatal nutritional reprogramming of the methylome, we exposed pFFC-Chow mice to an FFC diet in adulthood. These mice developed significant hepatic steatosis, injury, inflammation, and more importantly fibrosis when compared to the appropriate controls. Conclusion: Perinatal exposure to an OID primes the immature liver for an accentuated fibrosing nonalcoholic steatohepatitis (NASH) phenotype, likely through nutritional reprogramming of the offspring methylome. These data have potential clinical implications for monitoring children of obese mothers and risk stratification of children with NAFLD.

19.
Genome Biol ; 19(1): 43, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29587824

RESUMEN

BACKGROUND: Glioma stem cells (GSCs) are a subpopulation of stem-like cells that contribute to glioblastoma (GBM) aggressiveness, recurrence, and resistance to radiation and chemotherapy. Therapeutically targeting the GSC population may improve patient survival, but unique vulnerabilities need to be identified. RESULTS: We isolate GSCs from well-characterized GBM patient-derived xenografts (PDX), characterize their stemness properties using immunofluorescence staining, profile their epigenome including 5mC, 5hmC, 5fC/5caC, and two enhancer marks, and define their transcriptome. Fetal brain-derived neural stem/progenitor cells are used as a comparison to define potential unique and common molecular features between these different brain-derived cells with stem properties. Our integrative study reveals that abnormal expression of ten-eleven-translocation (TET) family members correlates with global levels of 5mC and 5fC/5caC and may be responsible for the distinct levels of these marks between glioma and neural stem cells. Heterogenous transcriptome and epigenome signatures among GSCs converge on several genes and pathways, including DNA damage response and cell proliferation, which are highly correlated with TET expression. Distinct enhancer landscapes are also strongly associated with differential gene regulation between glioma and neural stem cells; they exhibit unique co-localization patterns with DNA epigenetic mark switching events. Upon differentiation, glioma and neural stem cells exhibit distinct responses with regard to TET expression and DNA mark changes in the genome and GSCs fail to properly remodel their epigenome. CONCLUSIONS: Our integrative epigenomic and transcriptomic characterization reveals fundamentally distinct yet potentially targetable biologic features of GSCs that result from their distinct epigenomic landscapes.


Asunto(s)
Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Células Madre Neoplásicas/metabolismo , Animales , Diferenciación Celular , Metilación de ADN , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Elementos de Facilitación Genéticos , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Glioma/metabolismo , Código de Histonas , Humanos , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Regiones Promotoras Genéticas
20.
Epigenetics ; 13(4): 449-457, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30056798

RESUMEN

International experts gathered at the Mayo Clinic (Rochester MN, USA) on February 27th-28th, 2017 for a meeting entitled 'Basic and Translational Facets of the Epigenetics of GI Diseases'. This workshop summarized recent advances on the role of epigenetics in the pathobiology of gastrointestinal (GI) diseases. Highlights of the meeting included recent advances on the involvement of different epigenetic mechanisms in malignant and nonmalignant GI disorders and the epigenetic heterogeneity exhibited in these diseases. The translational value of epigenetic drugs, as well as the current and future use of epigenetic changes (i.e., DNA methylation patterns) as biomarkers for early detection tools or disease stratification were also important topics of discussion.


Asunto(s)
Epigénesis Genética , Enfermedades Gastrointestinales/genética , Metilación de ADN , Heterogeneidad Genética , Marcadores Genéticos , Humanos , Investigación Biomédica Traslacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA