Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Anal Chem ; 96(25): 10237-10245, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38870418

RESUMEN

Dot-blot immunoassays are widely used for the user-friendly detection of clinical biomarkers. However, the majority of dot-blot assays have only limited sensitivity and are only used for qualitative or semiquantitative analysis. To overcome this limitation, we have employed labels based on photon-upconversion nanoparticles (UCNPs) that exhibit anti-Stokes luminescence and can be detected without optical background interference. First, the dot-blot immunoassay on a nitrocellulose membrane was optimized for the quantitative analysis of human serum albumin (HSA), resulting in a limit of detection (LOD) of 0.19 ng/mL and a signal-to-background ratio (S/B) of 722. Commercial quantum dots were used as a reference label, reaching the LOD of 4.32 ng/mL and the S/B of 3, clearly indicating the advantages of UCNPs. In addition, the potential of UCNP-based dot-blot for real sample analysis was confirmed by analyzing spiked urine samples, reaching the LOD of 0.24 ng/mL and recovery rates from 79 to 123%. Furthermore, we demonstrated the versatility and robustness of the assay by adapting it to the detection of two other clinically relevant biomarkers, prostate-specific antigen (PSA) and cardiac troponin (cTn), reaching the LODs in spiked serum of 9.4 pg/mL and 0.62 ng/mL for PSA and cTn, respectively. Finally, clinical samples of patients examined for prostate cancer were analyzed, achieving a strong correlation with the reference electrochemiluminescence immunoassay (recovery rates from 89 to 117%). The achieved results demonstrate that UCNPs are highly sensitive labels that enable the development of dot-blot immunoassays for quantitative analysis of low-abundance biomarkers.


Asunto(s)
Biomarcadores , Límite de Detección , Nanopartículas , Antígeno Prostático Específico , Humanos , Inmunoensayo/métodos , Nanopartículas/química , Antígeno Prostático Específico/sangre , Antígeno Prostático Específico/análisis , Biomarcadores/sangre , Biomarcadores/orina , Biomarcadores/análisis , Puntos Cuánticos/química , Albúmina Sérica Humana/análisis , Albúmina Sérica Humana/orina , Masculino
2.
Anal Chem ; 95(33): 12256-12263, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37552526

RESUMEN

Massively parallel spectroscopy (MPS) of many single nanoparticles in an aqueous dispersion is reported. As a model system, bioconjugated photon-upconversion nanoparticles (UCNPs) with a near-infrared excitation are prepared. The UCNPs are doped either with Tm3+ (emission 450 and 802 nm) or Er3+ (emission 554 and 660 nm). These UCNPs are conjugated to biotinylated bovine serum albumin (Tm3+-doped) or streptavidin (Er3+-doped). MPS is correlated with an ensemble spectra measurement, and the limit of detection (1.6 fmol L-1) and the linearity range (4.8 fmol L-1 to 40 pmol L-1) for bioconjugated UCNPs are estimated. MPS is used for observing the bioaffinity clustering of bioconjugated UCNPs. This observation is correlated with a native electrophoresis and bioaffinity assay on a microtiter plate. A competitive MPS bioaffinity assay for biotin is developed and characterized with a limit of detection of 6.6 nmol L-1. MPS from complex biological matrices (cell cultivation medium) is performed without increasing background. The compatibility with polydimethylsiloxane microfluidics is proven by recording MPS from a 30 µm deep microfluidic channel.


Asunto(s)
Inteligencia Artificial , Nanopartículas , Nanopartículas/química , Estreptavidina , Análisis Espectral
3.
Anal Chem ; 95(10): 4753-4759, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36916131

RESUMEN

The COVID-19 crisis requires fast and highly sensitive tests for the early stage detection of the SARS-CoV-2 virus. For detecting the nucleocapsid protein (N protein), the most abundant viral antigen, we have employed upconversion nanoparticles that emit short-wavelength light under near-infrared excitation (976 nm). The anti-Stokes emission avoids autofluorescence and light scattering and thus enables measurements without optical background interference. The sandwich upconversion-linked immunosorbent assay (ULISA) can be operated both in a conventional analog mode and in a digital mode based on counting individual immune complexes. We have investigated how different antibody combinations affect the detection of the wildtype N protein and the detection of SARS-CoV-2 (alpha variant) in lysed culture fluid via the N protein. The ULISA yielded a limit of detection (LOD) of 1.3 pg/mL (27 fM) for N protein detection independent of the analog or digital readout, which is approximately 3 orders of magnitude more sensitive than conventional enzyme-linked immunosorbent assays or commercial lateral flow assays for home testing. In the case of SARS-CoV-2, the digital ULISA additionally improved the LOD by a factor of 10 compared to the analog readout.


Asunto(s)
COVID-19 , Inmunoadsorbentes , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Ensayo de Inmunoadsorción Enzimática , Proteínas de la Nucleocápside , Anticuerpos Antivirales , Sensibilidad y Especificidad
4.
Anal Chem ; 94(41): 14340-14348, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36194835

RESUMEN

Number concentration─the number of nanoparticles in a given volume─is an important characteristic of any nanoparticle dispersion. However, its estimation for small nanoparticles (∼30 nm) is generally challenging. We introduce an absolute and widely applicable method for analyzing aqueous dispersions of nanoparticles. An innovative immobilization of nanomaterials in the anisotropically collapsed agarose gel is pioneered, followed by optical microscopy and nanoparticle counting. The number of counted nanoparticles is inherently coupled with sampled volume (517 pL) and translates to the number concentration. Photon-upconversion, fluorescence, bright-field, and dark-field microscopy techniques have been proven applicable and used for imaging lanthanide-doped photon-upconversion nanoparticles, their bioconjugates with antibodies, silica dye-doped fluorescent nanoparticles, quantum dots, and pure silica submicron particles. The precision and linearity were characterized by constructing a dilution series of photon-upconversion nanoparticles. The limit of detection was 2.0 × 106 mL-1, and the working range was from 4.4 × 107 to 2.2 × 1010 mL-1. The quantification of nanoparticle clusters was achieved by a thorough analysis of the micrographs. The accuracy was confirmed using gravimetric analysis and transmission electron microscopy as a reference. Multiplexed detection of two nanoparticle types in a mixed dispersion was feasibly demonstrated. The low thickness of the collapsed gel (<1 µm) supported extremely sensitive imaging. This was proven by imaging Tm3+-doped photon-upconversion nanoparticles (17 nm hydrodynamic diameter) with a nanoparticle emission rate of only ∼900 photons/s at a wavelength of 800 nm (excitation wavelength 976 nm).


Asunto(s)
Elementos de la Serie de los Lantanoides , Nanopartículas , Geles , Microscopía Electrónica de Transmisión , Sefarosa , Dióxido de Silicio
5.
Anal Chem ; 94(47): 16376-16383, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36383476

RESUMEN

Conventional immunochemical methods used in clinical analysis are often not sensitive enough for early-stage diagnosis, resulting in the need for novel assay formats. Here, we provide a detailed comparison of the effect of different labels and solid supports on the performance of heterogeneous immunoassays. When comparing three types of streptavidin-modified labels─horseradish peroxidase, carboxyfluorescein, and photon-upconversion nanoparticles (UCNPs)─UCNPs led to the most sensitive and robust detection of the cancer biomarker prostate-specific antigen. Additionally, we compared the immunoassay formats based on conventional microtiter plates and magnetic microbeads (MBs). In both cases, the highest signal-to-background ratios and the lowest limits of detection (LODs) were obtained by using the UCNP labels. The MB-based upconversion-linked immunosorbent assay carried out with a preconcentration step provided the lowest LOD of 0.46 pg/mL in serum. The results demonstrate that the use of UCNPs and MBs can significantly improve the sensitivity and working range of heterogeneous immunoassays for biomarker detection.


Asunto(s)
Inmunoadsorbentes , Nanopartículas , Masculino , Humanos , Inmunoensayo/métodos , Límite de Detección , Estreptavidina , Magnetismo
6.
Ecotoxicol Environ Saf ; 214: 112113, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33690006

RESUMEN

The main purpose of this work is to thoroughly describe the implementation protocol of laser-induced breakdown spectroscopy (LIBS) method in the plant analysis. Numerous feasibility studies and recent progress in instrumentation and trends in chemical analysis make LIBS an established method in plant bioimaging. In this work, we present an easy and straightforward phytotoxicity case study with a focus on LIBS method. We intend to demonstrate in detail how to manipulate with plants after exposures and how to prepare them for analyses. Moreover, we aim to achieve 2D maps of spatial element distribution with a good resolution without any loss of sensitivity. The benefits of rapid, low-cost bioimaging are highlighted. In this study, cabbage (Brassica oleracea L.) was treated with an aqueous dispersion of photon-upconversion nanoparticles (NaYF4 doped with Yb3+ and Tm3+ coated with carboxylated silica shell) in a hydroponic short-term toxicity test. After a 72-hour plant exposure, several macroscopic toxicity end-points were monitored. The translocation of Y, Yb, and Tm across the whole plant was set by employing LIBS with a lateral resolution 100 µm. The LIBS maps of rare-earth elements in B.oleracea plant grown with 50 µg/mL nanoparticle-treated and ion-treated exposures showed the root as the main storage, while the transfer via stem into leaves was minimal. On the contrary, the LIBS maps of plants exposed to the 500 µg/mL nanoparticle-treated and ion-treated uncover slightly different trends, nanoparticles as well as ions were transferred through the stem into leaves. However, the main storage organ was a root as well.


Asunto(s)
Brassica/metabolismo , Fluoruros/administración & dosificación , Nanopartículas/administración & dosificación , Dióxido de Silicio/administración & dosificación , Tulio/toxicidad , Iterbio/administración & dosificación , Itrio/administración & dosificación , Rayos Láser , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Tallos de la Planta/metabolismo , Análisis Espectral
7.
Analyst ; 145(23): 7718-7723, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-32996917

RESUMEN

We report luminescent photon-upconversion barcodes for indexing the chemical content of droplets. The barcode is compatible with the simultaneous detection of fluorescence. The encoding and decoding of the initial concentration of enzyme ß-galactosidase and substrate 4-methylumbelliferyl ß-d-galactopyranoside are described. The fluorescent product 4-methylumbelliferone is detected simultaneously with the barcode.


Asunto(s)
Colorantes Fluorescentes , Microfluídica , Galactosa , beta-Galactosidasa/genética
8.
Anal Chem ; 91(20): 12630-12635, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31514495

RESUMEN

Barcoding facilitates high-throughput analytical methods in complex matrixes with a reduced volume of sample, reagents, time, and cost. Because of orthogonality to fluorescence, photon-upconversion barcodes attracted considerable attention in recent years. We constructed an epiluminescence detector, which, for the first time, demonstrated the reading of photon-upconversion spectra from microdroplets in a microfluidic chip with frequency up to 10 Hz. Non-negative least-squares deconvolution enabled the reading of an unprecedented number of photon-upconversion barcode channels (six) from emission spectra (excitation 980 nm, emission 430-875 nm). The standard deviation of barcode reading from microdroplets was ∼1%. Described barcoding can be, for example, used for multiparameter titrations, multiplexed biological and chemical assays, optimizations on a microfluidic platform, and preparation of barcoded concentration gradients and libraries.

9.
Anal Chem ; 91(2): 1241-1246, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30525484

RESUMEN

The performance of photon-upconversion nanoparticles (UCNPs) as background-free luminescent labels in bioanalytical applications strongly depends on the preparation of well-defined and water-dispersible nanoconjugates. We have exploited the separation power of agarose-gel electrophoresis to purify milligram amounts of homogeneous UCNPs covered with carboxylated silica, biotin, or streptavidin with recovery rates of 30 to 50%. Clusters containing discrete numbers of UCNPs were isolated from the gel and reanalyzed by agarose-gel electrophoresis, single-nanoparticle-upconversion microscopy, and additional complementary methods. The purified nanoconjugates improved conventional (analogue) bioaffinity assays and provided highly monodisperse conjugates for assays that rely on counting individual UCNPs (digital assays).


Asunto(s)
Sustancias Luminiscentes/aislamiento & purificación , Nanopartículas del Metal/química , Biotina/química , Electroforesis en Gel de Agar/métodos , Europio/química , Rayos Infrarrojos , Sustancias Luminiscentes/química , Sustancias Luminiscentes/efectos de la radiación , Nanopartículas del Metal/efectos de la radiación , Tamaño de la Partícula , Dióxido de Silicio/química , Estreptavidina/química
10.
Anal Chem ; 91(15): 9435-9441, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31246416

RESUMEN

Single-molecule (digital) immunoassays provide the ability to detect much lower protein concentrations than conventional immunoassays. As photon-upconversion nanoparticles (UCNPs) can be detected without optical background interference, they are excellent labels for so-called single-molecule upconversion-linked immunosorbent assays (ULISAs). We have introduced a UCNP label design based on streptavidin-PEG-neridronate and a two-step detection scheme involving a biotinylated antibody that efficiently reduces nonspecific binding on microtiter plates. In a microtiter plate immunoassay, individual sandwich immune complexes of the cancer marker prostate-specific antigen (PSA) are detected and counted by wide-field epiluminescence microscopy (digital readout). The digital detection is 16× more sensitive than the respective analogue readout and thus expands the limit of detection to the sub-femtomolar concentration range (LOD: 23 fg mL-1, 800 aM). The single molecule ULISA shows excellent correlation with an electrochemiluminescence reference method. Although the analogue readout can routinely measure PSA concentrations in human serum samples, very low concentrations have to be monitored after radical prostatectomy. Combining the digital and analogue readout covers a dynamic range of more than 3 orders of magnitude in a single experiment.


Asunto(s)
Inmunoensayo/métodos , Técnicas de Inmunoadsorción , Antígeno Prostático Específico/sangre , Imagen Individual de Molécula/métodos , Dermoscopía/métodos , Difosfonatos , Humanos , Masculino , Nanopartículas/química , Fotones , Polietilenglicoles , Estreptavidina
11.
Anal Chem ; 90(3): 2348-2354, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29314828

RESUMEN

Enzyme immunoassays are widely used for detection of analytes within various samples. However, enzymes as labels suffer several disadvantages such as high production cost and limited stability. Catalytic nanoparticles (nanozymes) can be used as an alternative label in immunoassays overcoming the inherent disadvantages of enzymes. Prussian blue nanoparticles (PBNPs) are nanozymes composed of the Fe4[Fe(CN)6]3-based coordination polymer. They reveal peroxidase-like activity and are capable of catalyzing the oxidation of colorless 3,3',5,5'-tetramethylbenzidine in the presence of H2O2 to form intensely blue product. Here, we introduce the method for conjugation of PBNPs with antibodies and their application in nanozyme-linked immunosorbent assay (NLISA). Sandwich NLISA for detection of human serum albumin in urine was developed with limit of detection (LOD) of 1.2 ng·mL-1 and working range up to 1 µg·mL-1. Furthermore, the microbial contamination of Salmonella Typhimurium in powdered milk was detected with LOD of 6 × 103 colony-forming units (cfu)·mL-1 and working range up to 106 cfu·mL-1. In both cases, a critical comparison with the same immunoassay but using native peroxidase as label was realized. The achieved results confirmed the suitability of PBNPs for universal and robust replacement of enzyme labels.


Asunto(s)
Técnicas Biosensibles/métodos , Ferrocianuros/química , Técnicas de Inmunoadsorción , Nanopartículas/química , Animales , Anticuerpos Antibacterianos/inmunología , Catálisis , Humanos , Límite de Detección , Leche/microbiología , Salmonella typhimurium/inmunología , Salmonella typhimurium/aislamiento & purificación , Albúmina Sérica Humana/inmunología , Albúmina Sérica Humana/orina
12.
Electrophoresis ; 39(17): 2246-2252, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29882600

RESUMEN

Upconversion nanoparticles (UCNPs) are an emerging class of optical materials with high potential in bioimaging due to practically no background signal and high penetration depth. Their excellent optical properties and easy surface functionalization make them perfect for conjugation with targeting ligands. In this work, capillary electrophoretic (CE) method with laser-induced fluorescence detection was used to investigate the behavior of carboxyl-silica-coated UCNPs. Folic acid, targeting folate receptor overexpressed by wide variety of cancer cells, was used for illustrative purposes and assessed by CE under optimized conditions. Peptide-mediated bioconjugation of antibodies to UCNPs was also investigated. Despite the numerous advantages of CE, this is the first time that CE was employed for characterization of UCNPs and their bioconjugates. The separation conditions were optimized including the background electrolyte concentration and pH. The optimized electrolyte was 20 mM borate buffer with pH 8.


Asunto(s)
Electroforesis Capilar/métodos , Nanoconjugados/química , Anticuerpos/química , Colorantes Fluorescentes/química , Ácido Fólico/química , Límite de Detección , Modelos Lineales , Reproducibilidad de los Resultados , Espectrometría de Fluorescencia/métodos
13.
Anal Chem ; 89(21): 11825-11830, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-28949515

RESUMEN

The ability to detect disease markers at the single molecule level promises the ultimate sensitivity in clinical diagnosis. Fluorescence-based single-molecule analysis, however, is limited by matrix interference and can only probe a very small detection volume, which is typically not suitable for real world analytical applications. We have developed a microtiter plate immunoassay for counting single molecules of the cancer marker prostate specific antigen (PSA) using photon-upconversion nanoparticles (UCNPs) as labels that can be detected without background fluorescence. Individual sandwich immunocomplexes consisting of (1) an anti-PSA antibody immobilized to the surface of a microtiter well, (2) PSA, and (3) an anti-PSA antibody-UCNP conjugate were counted under a wide-field epifluorescence microscope equipped with a 980 nm laser excitation source. The single-molecule (digital) upconversion-linked immunosorbent assay (ULISA) reaches a limit of detection of 1.2 pg mL-1 (42 fM) PSA in 25% blood serum, which is about ten times more sensitive than commercial ELISAs, and covers a dynamic range of three orders of magnitude. This upconversion detection mode has the potential to pave the way for a new generation of digital immunoassays.


Asunto(s)
Inmunoensayo/métodos , Inmunoadsorbentes/química , Límite de Detección , Antígeno Prostático Específico/análisis , Biomarcadores/análisis , Inmunoadsorbentes/inmunología , Luminiscencia , Nanopartículas/química
14.
Anal Chem ; 88(11): 6011-7, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27167775

RESUMEN

Photon-upconverting nanoparticles (UCNPs) emit light of shorter wavelength under near-infrared excitation and thus avoid optical background interference. We have exploited this unique photophysical feature to establish a sensitive competitive immunoassay for the detection of the pharmaceutical micropollutant diclofenac (DCF) in water. The so-called upconversion-linked immunosorbent assay (ULISA) was critically dependent on the design of the upconversion luminescent detection label. Silica-coated UCNPs (50 nm in diameter) exposing carboxyl groups on the surface were conjugated to a secondary anti-IgG antibody. We investigated the structure and monodispersity of the nanoconjugates in detail. Using a highly affine anti-DCF primary antibody, the optimized ULISA reached a detection limit of 0.05 ng DCF per mL. This performance came close to a conventional enzyme-linked immunosorbent assay (ELISA) without the need for an enzyme-mediated signal amplification step. The ULISA was further employed for analyzing drinking and surface water samples. The results were consistent with a conventional ELISA as well as liquid chromatography-mass spectrometry (LC-MS).


Asunto(s)
Diclofenaco/análisis , Inmunoensayo/métodos , Inmunoadsorbentes/química , Contaminantes Químicos del Agua/análisis , Agua Potable/química , Nanopartículas/química , Tamaño de la Partícula , Dióxido de Silicio/química , Propiedades de Superficie
15.
Anal Chem ; 88(3): 1835-41, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26704024

RESUMEN

An upconversion laser scanner has been optimized to exploit the advantages of photon-upconverting nanoparticles (UCNPs) for background-free imaging on a macroscopic scale. A collimated 980 nm laser beam afforded high local excitation densities to account for the nonlinear luminescence response of UCNPs. As few as 2000 nanoparticles were detectable, and the linear dynamic range covered more than 5 orders of magnitude, which is essentially impossible by using conventional fluorescent dyes. UCNPs covered by a dye-doped silica shell were separated by agarose gel electrophoresis and scanned by a conventional fluorescence scanner as well as the upconversion scanner. Both optical labels could be detected independently. Finally, upconversion images of lateral flow test strips were recorded to facilitate the sensitive and quantitative detection of disease markers. A marker for the parasitic worm Schistosoma was used in this study.


Asunto(s)
Antígenos Helmínticos/análisis , Glicoproteínas/análisis , Proteínas del Helminto/análisis , Rayos Láser , Nanopartículas/química , Fotones , Schistosoma/química , Animales , Luminiscencia
16.
Lab Chip ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946347

RESUMEN

Early-stage diagnosis of prostatic carcinoma is essential for successful treatment and, thus, significant prognosis improvement. In laboratory practice, the standard non-invasive diagnostic approach is the immunochemical detection of the associated biomarker, prostate-specific antigen (PSA). Ultrasensitive detection of PSA is essential for both diagnostic and recurrence monitoring purposes. To achieve exceptional sensitivity, we have developed a microfluidic device with a flow-through cell for single-molecule analysis using photon-upconversion nanoparticles (UCNPs) as a detection label. For this purpose, magnetic microparticles (MBs) were first optimized for the capture and preconcentration of PSA and then used to implement a bead-based upconversion-linked immunoassay (ULISA) in the microfluidic device. The digital readout based on counting single nanoparticle-labeled PSA molecules on MBs enabled a detection limit of 1.04 pg mL-1 (36 fM) in 50% fetal bovine serum, which is an 11-fold improvement over the respective analog MB-based ULISA. The microfluidic technique conferred several other advantages, such as easy implementation and the potential for achieving high-throughput analysis. Finally, it was proven that the microfluidic setup is suitable for clinical sample analysis, showing a good correlation with a reference electrochemiluminescence assay (recovery rates between 97% and 105%).

17.
Electrophoresis ; 33(9-10): 1427-30, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22648811

RESUMEN

Synthesized nanoparticles often require fine fractionation according to shape, dimension, mass, chemical composition, charge, and other properties in order to become suitable for practical use. Quantum dots (QDs) are luminescent nanocrystals with narrow emission peaks. This property has been widely utilized for the multiplexed sensing and barcoding of microparticles. QDs with narrower emission peaks are preferred for such applications. The width of the emission peaks can be significantly reduced after purification. A newly developed preparative isotachophoretic method employs the dependence of spectral properties and electrophoretic mobility on the diameter of QDs. Separated fractions of QDs revealed narrower emission peaks (72% of the original width) and improved quantum yield (two-fold). The usefulness of the developed isotachophoresis for purification and analysis of other nanostructures, for example, plasmonic nanoparticles and nanobioconjugates, is expected, too.


Asunto(s)
Isotacoforesis/métodos , Nanopartículas/química , Puntos Cuánticos , Compuestos de Cadmio/química , Tamaño de la Partícula , Telurio/química
18.
PeerJ ; 10: e14393, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36523467

RESUMEN

Background: The migration of hoverflies (Diptera: Syrphidae) is a well-known phenomenon, with growing interest due to the ecosystem services provided by migrants. However, we still lack fundamental data on species composition, timing of migration, or sex ratio of migrants. To address this gap, we focused on the southward autumnal migration of hoverflies through central Europe. Methods: To recognize migrating individuals from resident ones, we used a pair of one-side-blocked Malaise traps, exposed in a mountain pass in the Jeseníky mountains, Czech Republic, where a mass migration of hoverflies takes place annually. Traps were set for 4 years, from August to October. Results: In total, we recorded 31 species of migrating hoverflies. The timing of migration differed between the years, taking place from the beginning of September to the end of October. Differences in phenology were observed in the four most common migrant species, where larger species seemed to migrate earlier or at the same time compared to the smaller ones. The sex ratio was strongly asymmetrical in most common species Episyrphus balteatus, Eupeodes corollae, and Sphaerophoria scripta, and varied between years for each species. Weather conditions strongly influenced the migration intensity at ground-level: hoverflies migrate mainly during days with south wind, high temperature, high atmospheric pressure, and low precipitation.


Asunto(s)
Dípteros , Humanos , Animales , Ecosistema , Razón de Masculinidad , Europa (Continente) , República Checa
19.
Nat Protoc ; 17(4): 1028-1072, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35181766

RESUMEN

The detection of cancer biomarkers in histological samples and blood is of paramount importance for clinical diagnosis. Current methods are limited in terms of sensitivity, hindering early detection of disease. We have overcome the shortcomings of currently available staining and fluorescence labeling methods by taking an integrative approach to establish photon-upconversion nanoparticles (UCNP) as a powerful platform for cancer detection. These nanoparticles are readily synthesized in different sizes to yield efficient and tunable short-wavelength light emission under near-infrared excitation, which eliminates optical background interference of the specimen. Here we present a protocol for the synthesis of UCNPs by high-temperature co-precipitation or seed-mediated growth by thermal decomposition, surface modification by silica or poly(ethylene glycol) that renders the particles resistant to nonspecific binding, and the conjugation of streptavidin or antibodies for biological detection. To detect blood-based biomarkers, we present an upconversion-linked immunosorbent assay for the analog and digital detection of the cancer marker prostate-specific antigen. When applied to immunocytochemistry analysis, UCNPs enable the detection of the breast cancer marker human epidermal growth factor receptor 2 with a signal-to-background ratio 50-fold higher than conventional fluorescent labels. UCNP synthesis takes 4.5 d, the preparation of the antibody-silica-UCNP conjugate takes 3 d, the streptavidin-poly(ethylene glycol)-UCNP conjugate takes 2-3 weeks, upconversion-linked immunosorbent assay takes 2-4 d and immunocytochemistry takes 8-10 h. The procedures can be performed after standard laboratory training in nanomaterials research.


Asunto(s)
Nanopartículas , Neoplasias , Biomarcadores de Tumor , Humanos , Inmunoadsorbentes , Masculino , Nanopartículas/química , Neoplasias/diagnóstico , Polietilenglicoles/química , Dióxido de Silicio/química , Estreptavidina
20.
Materials (Basel) ; 14(14)2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34300837

RESUMEN

This paper focuses on the investigation of a multiphase flow of water, air, and abrasive particles inside and at the outlet of the abrasive head with the help of computational fluid dynamics calculations and measurements. A standard abrasive head with a water nozzle hole diameter of 0.33 mm (0.013") and an abrasive nozzle cylindrical hole diameter of 1.02 mm (0.04") were used for numerical modelling and practical testing. The computed tomography provided an exact 3D geometrical model of the cutting head that was used for the creation of the model. Velocity fields of abrasive particles at the outlet of the abrasive head were measured and analysed using particle tracking velocimetry and, consequently, compared with the calculated results. The calculation model took the distribution of the abrasive particle diameters with the help of the Rosin-Rammler function in intervals of diameters from 150 to 400 mm. In the present study, four levels of water pressure (105, 194, 302, 406 MPa) and four levels of abrasive mass flow rate (100, 200, 300, 400 kg/min) were combined. The values of water pressures and hydraulic powers measured at the abrasive head inlet were used as boundary conditions for numerical modelling. The hydraulic characteristics of the water jet were created from the measured and calculated data. The calculated pressure distribution in the cylindrical part of the abrasive nozzle was compared with studies by other authors. The details of the experiments and calculations are presented in this paper.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA