RESUMEN
Strong epidemiological evidence now exists that sex is an important biologic variable in immunity. Recent studies, for example, have revealed that sex differences are associated with the severity of symptoms and mortality due to coronavirus disease 2019 (COVID-19). Despite this evidence, much remains to be learned about the mechanisms underlying associations between sex differences and immune-mediated conditions. A growing body of experimental data has made significant inroads into understanding sex-influenced immune responses. As physicians seek to provide more targeted patient care, it is critical to understand how sex-defining factors (e.g., chromosomes, gonadal hormones) alter immune responses in health and disease. In this review, we highlight recent insights into sex differences in autoimmunity; virus infection, specifically severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection; and cancer immunotherapy. A deeper understanding of underlying mechanisms will allow the development of a sex-based approach to disease screening and treatment.
Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Femenino , Humanos , Masculino , Caracteres Sexuales , Factores SexualesRESUMEN
Mechanistic studies of life's lower metabolic limits have been limited due to a paucity of tractable experimental systems. Here, we show that redox-cycling of phenazine-1-carboxamide (PCN) by Pseudomonas aeruginosa supports cellular maintenance in the absence of growth with a low mass-specific metabolic rate of 8.7 × 10-4 W (g C)-1 at 25°C. Leveraging a high-throughput electrochemical culturing device, we find that non-growing cells cycling PCN tolerate conventional antibiotics but are susceptible to those that target membrane components. Under these conditions, cells conserve energy via a noncanonical, facilitated fermentation that is dependent on acetate kinase and NADH dehydrogenases. Across PCN concentrations that limit cell survival, the cell-specific metabolic rate is constant, indicating the cells are operating near their bioenergetic limit. This quantitative platform opens the door to further mechanistic investigations of maintenance, a physiological state that underpins microbial survival in nature and disease.
RESUMEN
Interpretation of disease-causing genetic variants remains a challenge in human genetics. Current costs and complexity of deep mutational scanning methods are obstacles for achieving genome-wide resolution of variants in disease-related genes. Our framework, saturation mutagenesis-reinforced functional assays (SMuRF), offers simple and cost-effective saturation mutagenesis paired with streamlined functional assays to enhance the interpretation of unresolved variants. Applying SMuRF to neuromuscular disease genes FKRP and LARGE1, we generated functional scores for all possible coding single-nucleotide variants, which aid in resolving clinically reported variants of uncertain significance. SMuRF also demonstrates utility in predicting disease severity, resolving critical structural regions, and providing training datasets for the development of computational predictors. Overall, our approach enables variant-to-function insights for disease genes in a cost-effective manner that can be broadly implemented by standard research laboratories.
RESUMEN
Streptococcus anginosus (S. anginosus) was enriched in the gastric mucosa of patients with gastric cancer (GC). Here, we show that S. anginosus colonized the mouse stomach and induced acute gastritis. S. anginosus infection spontaneously induced progressive chronic gastritis, parietal cell atrophy, mucinous metaplasia, and dysplasia in conventional mice, and the findings were confirmed in germ-free mice. In addition, S. anginosus accelerated GC progression in carcinogen-induced gastric tumorigenesis and YTN16 GC cell allografts. Consistently, S. anginosus disrupted gastric barrier function, promoted cell proliferation, and inhibited apoptosis. Mechanistically, we identified an S. anginosus surface protein, TMPC, that interacts with Annexin A2 (ANXA2) receptor on gastric epithelial cells. Interaction of TMPC with ANXA2 mediated attachment and colonization of S. anginosus and induced mitogen-activated protein kinase (MAPK) activation. ANXA2 knockout abrogated the induction of MAPK by S. anginosus. Thus, this study reveals S. anginosus as a pathogen that promotes gastric tumorigenesis via direct interactions with gastric epithelial cells in the TMPC-ANXA2-MAPK axis.
Asunto(s)
Gastritis , Neoplasias Gástricas , Infecciones Estreptocócicas , Streptococcus anginosus , Animales , Humanos , Ratones , Atrofia/patología , Carcinogénesis , Transformación Celular Neoplásica , Mucosa Gástrica , Gastritis/patología , Inflamación/patología , Proteínas Quinasas Activadas por Mitógenos , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/patología , Streptococcus anginosus/fisiología , Infecciones Estreptocócicas/patologíaRESUMEN
Clinical trials have identified ARID1A mutations as enriched among patients who respond favorably to immune checkpoint blockade (ICB) in several solid tumor types independent of microsatellite instability. We show that ARID1A loss in murine models is sufficient to induce anti-tumor immune phenotypes observed in ARID1A mutant human cancers, including increased CD8+ T cell infiltration and cytolytic activity. ARID1A-deficient cancers upregulated an interferon (IFN) gene expression signature, the ARID1A-IFN signature, associated with increased R-loops and cytosolic single-stranded DNA (ssDNA). Overexpression of the R-loop resolving enzyme, RNASEH2B, or cytosolic DNase, TREX1, in ARID1A-deficient cells prevented cytosolic ssDNA accumulation and ARID1A-IFN gene upregulation. Further, the ARID1A-IFN signature and anti-tumor immunity were driven by STING-dependent type I IFN signaling, which was required for improved responsiveness of ARID1A mutant tumors to ICB treatment. These findings define a molecular mechanism underlying anti-tumor immunity in ARID1A mutant cancers.
Asunto(s)
Linfocitos T CD8-positivos , Proteínas de Unión al ADN , Interferón Tipo I , Proteínas de la Membrana , Neoplasias , Transducción de Señal , Factores de Transcripción , Animales , Humanos , Ratones , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Exodesoxirribonucleasas/metabolismo , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Interferón Tipo I/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Mutación , Neoplasias/inmunología , Neoplasias/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Factores de Transcripción/metabolismo , Masculino , Quimiocinas/genética , Quimiocinas/metabolismoRESUMEN
Epithelial-to-mesenchymal transitions (EMTs) and extracellular matrix (ECM) remodeling are distinct yet important processes during carcinoma invasion and metastasis. Transforming growth factor ß (TGF-ß) and RAS, signaling through SMAD and RAS-responsive element-binding protein 1 (RREB1), jointly trigger expression of EMT and fibrogenic factors as two discrete arms of a common transcriptional response in carcinoma cells. Here, we demonstrate that both arms come together to form a program for lung adenocarcinoma metastasis and identify chromatin determinants tying the expression of the constituent genes to TGF-ß and RAS inputs. RREB1 localizes to H4K16acK20ac marks in histone H2A.Z-loaded nucleosomes at enhancers in the fibrogenic genes interleukin-11 (IL11), platelet-derived growth factor-B (PDGFB), and hyaluronan synthase 2 (HAS2), as well as the EMT transcription factor SNAI1, priming these enhancers for activation by a SMAD4-INO80 nucleosome remodeling complex in response to TGF-ß. These regulatory properties segregate the fibrogenic EMT program from RAS-independent TGF-ß gene responses and illuminate the operation and vulnerabilities of a bifunctional program that promotes metastatic outgrowth.
Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias Pulmonares , Metástasis de la Neoplasia , Factor de Crecimiento Transformador beta , Humanos , Factor de Crecimiento Transformador beta/metabolismo , Transición Epitelial-Mesenquimal/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Animales , Ratones , Línea Celular Tumoral , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción de la Familia Snail/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patología , Nucleosomas/metabolismo , Hialuronano Sintasas/metabolismo , Hialuronano Sintasas/genética , Interleucina-11/metabolismo , Interleucina-11/genética , Elementos de Facilitación Genéticos/genética , Proteína Smad4/metabolismo , Proteína Smad4/genética , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Proteínas ras/metabolismo , Proteínas ras/genética , Histonas/metabolismo , Regulación Neoplásica de la Expresión Génica , Transducción de Señal , Cromatina/metabolismoRESUMEN
Genomic instability can trigger cancer-intrinsic innate immune responses that promote tumor rejection. However, cancer cells often evade these responses by overexpressing immune checkpoint regulators, such as PD-L1. Here, we identify the SNF2-family DNA translocase SMARCAL1 as a factor that favors tumor immune evasion by a dual mechanism involving both the suppression of innate immune signaling and the induction of PD-L1-mediated immune checkpoint responses. Mechanistically, SMARCAL1 limits endogenous DNA damage, thereby suppressing cGAS-STING-dependent signaling during cancer cell growth. Simultaneously, it cooperates with the AP-1 family member JUN to maintain chromatin accessibility at a PD-L1 transcriptional regulatory element, thereby promoting PD-L1 expression in cancer cells. SMARCAL1 loss hinders the ability of tumor cells to induce PD-L1 in response to genomic instability, enhances anti-tumor immune responses and sensitizes tumors to immune checkpoint blockade in a mouse melanoma model. Collectively, these studies uncover SMARCAL1 as a promising target for cancer immunotherapy.
Asunto(s)
Antígeno B7-H1 , ADN Helicasas , Inmunidad Innata , Melanoma , Escape del Tumor , Animales , Ratones , Antígeno B7-H1/metabolismo , Inestabilidad Genómica , Melanoma/inmunología , Melanoma/metabolismo , ADN Helicasas/metabolismoRESUMEN
The quality and quantity of tumor-infiltrating lymphocytes, particularly CD8+ T cells, are important parameters for the control of tumor growth and response to immunotherapy. Here, we show in murine and human cancers that these parameters exhibit circadian oscillations, driven by both the endogenous circadian clock of leukocytes and rhythmic leukocyte infiltration, which depends on the circadian clock of endothelial cells in the tumor microenvironment. To harness these rhythms therapeutically, we demonstrate that efficacy of chimeric antigen receptor T cell therapy and immune checkpoint blockade can be improved by adjusting the time of treatment during the day. Furthermore, time-of-day-dependent T cell signatures in murine tumor models predict overall survival in patients with melanoma and correlate with response to anti-PD-1 therapy. Our data demonstrate the functional significance of circadian dynamics in the tumor microenvironment and suggest the importance of leveraging these features for improving future clinical trial design and patient care.
Asunto(s)
Linfocitos T CD8-positivos , Inmunoterapia , Linfocitos Infiltrantes de Tumor , Ratones Endogámicos C57BL , Microambiente Tumoral , Animales , Humanos , Ratones , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Relojes Circadianos , Ritmo Circadiano , Células Endoteliales/inmunología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunoterapia/métodos , Linfocitos Infiltrantes de Tumor/inmunología , Melanoma/inmunología , Melanoma/terapia , Melanoma/patología , Microambiente Tumoral/inmunologíaRESUMEN
Aberrant expression of repeat RNAs in pancreatic ductal adenocarcinoma (PDAC) mimics viral-like responses with implications on tumor cell state and the response of the surrounding microenvironment. To better understand the relationship of repeat RNAs in human PDAC, we performed spatial molecular imaging at single-cell resolution in 46 primary tumors, revealing correlations of high repeat RNA expression with alterations in epithelial state in PDAC cells and myofibroblast phenotype in cancer-associated fibroblasts (CAFs). This loss of cellular identity is observed with dosing of extracellular vesicles (EVs) and individual repeat RNAs of PDAC and CAF cell culture models pointing to cell-cell intercommunication of these viral-like elements. Differences in PDAC and CAF responses are driven by distinct innate immune signaling through interferon regulatory factor 3 (IRF3). The cell-context-specific viral-like responses to repeat RNAs provide a mechanism for modulation of cellular plasticity in diverse cell types in the PDAC microenvironment.
RESUMEN
Farmed mammals may act as hosts for zoonotic viruses that can cause disease outbreaks in humans. This SnapShot shows which farmed mammals, and to what extent, are of particular risk of harboring and spreading viruses from viral families that are commonly associated with zoonotic disease. It also discusses genome surveillance methods and biosafety measures. To view this SnapShot, open or download the PDF.
Asunto(s)
Virus , Zoonosis , Animales , Humanos , Mamíferos , Brotes de Enfermedades , Medición de RiesgoRESUMEN
The BQ and XBB subvariants of SARS-CoV-2 Omicron are now rapidly expanding, possibly due to altered antibody evasion properties deriving from their additional spike mutations. Here, we report that neutralization of BQ.1, BQ.1.1, XBB, and XBB.1 by sera from vaccinees and infected persons was markedly impaired, including sera from individuals boosted with a WA1/BA.5 bivalent mRNA vaccine. Titers against BQ and XBB subvariants were lower by 13- to 81-fold and 66- to 155-fold, respectively, far beyond what had been observed to date. Monoclonal antibodies capable of neutralizing the original Omicron variant were largely inactive against these new subvariants, and the responsible individual spike mutations were identified. These subvariants were found to have similar ACE2-binding affinities as their predecessors. Together, our findings indicate that BQ and XBB subvariants present serious threats to current COVID-19 vaccines, render inactive all authorized antibodies, and may have gained dominance in the population because of their advantage in evading antibodies.
Asunto(s)
Anticuerpos Antivirales , COVID-19 , Evasión Inmune , SARS-CoV-2 , Humanos , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19 , SARS-CoV-2/clasificación , SARS-CoV-2/genéticaRESUMEN
A major challenge in understanding SARS-CoV-2 evolution is interpreting the antigenic and functional effects of emerging mutations in the viral spike protein. Here, we describe a deep mutational scanning platform based on non-replicative pseudotyped lentiviruses that directly quantifies how large numbers of spike mutations impact antibody neutralization and pseudovirus infection. We apply this platform to produce libraries of the Omicron BA.1 and Delta spikes. These libraries each contain â¼7,000 distinct amino acid mutations in the context of up to â¼135,000 unique mutation combinations. We use these libraries to map escape mutations from neutralizing antibodies targeting the receptor-binding domain, N-terminal domain, and S2 subunit of spike. Overall, this work establishes a high-throughput and safe approach to measure how â¼105 combinations of mutations affect antibody neutralization and spike-mediated infection. Notably, the platform described here can be extended to the entry proteins of many other viruses.
Asunto(s)
COVID-19 , Virus ARN , Humanos , SARS-CoV-2/genética , Mutación , Anticuerpos Neutralizantes , Anticuerpos AntiviralesRESUMEN
Recent work has identified dozens of non-coding loci for Alzheimer's disease (AD) risk, but their mechanisms and AD transcriptional regulatory circuitry are poorly understood. Here, we profile epigenomic and transcriptomic landscapes of 850,000 nuclei from prefrontal cortexes of 92 individuals with and without AD to build a map of the brain regulome, including epigenomic profiles, transcriptional regulators, co-accessibility modules, and peak-to-gene links in a cell-type-specific manner. We develop methods for multimodal integration and detecting regulatory modules using peak-to-gene linking. We show AD risk loci are enriched in microglial enhancers and for specific TFs including SPI1, ELF2, and RUNX1. We detect 9,628 cell-type-specific ATAC-QTL loci, which we integrate alongside peak-to-gene links to prioritize AD variant regulatory circuits. We report differential accessibility of regulatory modules in late AD in glia and in early AD in neurons. Strikingly, late-stage AD brains show global epigenome dysregulation indicative of epigenome erosion and cell identity loss.
Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Regulación de la Expresión Génica , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Encéfalo/patología , Epigenoma , Epigenómica , Estudio de Asociación del Genoma CompletoRESUMEN
The shock-and-kill strategy reactivates HIV-1 latent reservoir for immune clearance. Einkauf et al. found that some HIV-1-infected cells that persist and proliferate have transcriptionally active HIV-1 in permissive chromatin. Silent proviruses in repressive chromatin resist reactivation. Understanding HIV-1-chromatin interactions and how transcriptionally active HIV-1-infected cells survive is a pressing need.
Asunto(s)
Infecciones por VIH , VIH-1 , Cromatina , VIH-1/genética , Humanos , Provirus/genética , Latencia del VirusRESUMEN
Live bacterial therapeutics (LBTs) could reverse diseases by engrafting in the gut and providing persistent beneficial functions in the host. However, attempts to functionally manipulate the gut microbiome of conventionally raised (CR) hosts have been unsuccessful because engineered microbial organisms (i.e., chassis) have difficulty in colonizing the hostile luminal environment. In this proof-of-concept study, we use native bacteria as chassis for transgene delivery to impact CR host physiology. Native Escherichia coli bacteria isolated from the stool cultures of CR mice were modified to express functional genes. The reintroduction of these strains induces perpetual engraftment in the intestine. In addition, engineered native E. coli can induce functional changes that affect physiology of and reverse pathology in CR hosts months after administration. Thus, using native bacteria as chassis to "knock in" specific functions allows mechanistic studies of specific microbial activities in the microbiome of CR hosts and enables LBT with curative intent.
Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Bacterias/genética , Escherichia coli/genética , Microbioma Gastrointestinal/fisiología , Ratones , TransgenesRESUMEN
Efforts to model the human gut microbiome in mice have led to important insights into the mechanisms of host-microbe interactions. However, the model communities studied to date have been defined or complex, but not both, limiting their utility. Here, we construct and characterize in vitro a defined community of 104 bacterial species composed of the most common taxa from the human gut microbiota (hCom1). We then used an iterative experimental process to fill open niches: germ-free mice were colonized with hCom1 and then challenged with a human fecal sample. We identified new species that engrafted following fecal challenge and added them to hCom1, yielding hCom2. In gnotobiotic mice, hCom2 exhibited increased stability to fecal challenge and robust colonization resistance against pathogenic Escherichia coli. Mice colonized by either hCom2 or a human fecal community are phenotypically similar, suggesting that this consortium will enable a mechanistic interrogation of species and genes on microbiome-associated phenotypes.
Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Bacterias/genética , Escherichia coli , Heces , Microbioma Gastrointestinal/genética , Vida Libre de Gérmenes , Humanos , RatonesRESUMEN
Tumor evolution is driven by the progressive acquisition of genetic and epigenetic alterations that enable uncontrolled growth and expansion to neighboring and distal tissues. The study of phylogenetic relationships between cancer cells provides key insights into these processes. Here, we introduced an evolving lineage-tracing system with a single-cell RNA-seq readout into a mouse model of Kras;Trp53(KP)-driven lung adenocarcinoma and tracked tumor evolution from single-transformed cells to metastatic tumors at unprecedented resolution. We found that the loss of the initial, stable alveolar-type2-like state was accompanied by a transient increase in plasticity. This was followed by the adoption of distinct transcriptional programs that enable rapid expansion and, ultimately, clonal sweep of stable subclones capable of metastasizing. Finally, tumors develop through stereotypical evolutionary trajectories, and perturbing additional tumor suppressors accelerates progression by creating novel trajectories. Our study elucidates the hierarchical nature of tumor evolution and, more broadly, enables in-depth studies of tumor progression.
Asunto(s)
Neoplasias , Animales , Genes ras , Ratones , Neoplasias/genética , Filogenia , Secuenciación del ExomaRESUMEN
Fingerprints are of long-standing practical and cultural interest, but little is known about the mechanisms that underlie their variation. Using genome-wide scans in Han Chinese cohorts, we identified 18 loci associated with fingerprint type across the digits, including a genetic basis for the long-recognized "pattern-block" correlations among the middle three digits. In particular, we identified a variant near EVI1 that alters regulatory activity and established a role for EVI1 in dermatoglyph patterning in mice. Dynamic EVI1 expression during human development supports its role in shaping the limbs and digits, rather than influencing skin patterning directly. Trans-ethnic meta-analysis identified 43 fingerprint-associated loci, with nearby genes being strongly enriched for general limb development pathways. We also found that fingerprint patterns were genetically correlated with hand proportions. Taken together, these findings support the key role of limb development genes in influencing the outcome of fingerprint patterning.
Asunto(s)
Dermatoglifia , Dedos/crecimiento & desarrollo , Organogénesis/genética , Polimorfismo de Nucleótido Simple , Dedos del Pie/crecimiento & desarrollo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Pueblo Asiatico/genética , Tipificación del Cuerpo/genética , Niño , Estudios de Cohortes , Femenino , Miembro Anterior/crecimiento & desarrollo , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Proteína del Locus del Complejo MDS1 y EV11/genética , Masculino , Ratones , Persona de Mediana Edad , Adulto JovenRESUMEN
Metastatic progression is the main cause of death in cancer patients, whereas the underlying genomic mechanisms driving metastasis remain largely unknown. Here, we assembled MSK-MET, a pan-cancer cohort of over 25,000 patients with metastatic diseases. By analyzing genomic and clinical data from this cohort, we identified associations between genomic alterations and patterns of metastatic dissemination across 50 tumor types. We found that chromosomal instability is strongly correlated with metastatic burden in some tumor types, including prostate adenocarcinoma, lung adenocarcinoma, and HR+/HER2+ breast ductal carcinoma, but not in others, including colorectal cancer and high-grade serous ovarian cancer, where copy-number alteration patterns may be established early in tumor development. We also identified somatic alterations associated with metastatic burden and specific target organs. Our data offer a valuable resource for the investigation of the biological basis for metastatic spread and highlight the complex role of chromosomal instability in cancer progression.
Asunto(s)
Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Estudios de Cohortes , Femenino , Humanos , Masculino , Especificidad de Órganos/genética , Estudios ProspectivosRESUMEN
Fully understanding autism spectrum disorder (ASD) genetics requires whole-genome sequencing (WGS). We present the latest release of the Autism Speaks MSSNG resource, which includes WGS data from 5,100 individuals with ASD and 6,212 non-ASD parents and siblings (total n = 11,312). Examining a wide variety of genetic variants in MSSNG and the Simons Simplex Collection (SSC; n = 9,205), we identified ASD-associated rare variants in 718/5,100 individuals with ASD from MSSNG (14.1%) and 350/2,419 from SSC (14.5%). Considering genomic architecture, 52% were nuclear sequence-level variants, 46% were nuclear structural variants (including copy-number variants, inversions, large insertions, uniparental isodisomies, and tandem repeat expansions), and 2% were mitochondrial variants. Our study provides a guidebook for exploring genotype-phenotype correlations in families who carry ASD-associated rare variants and serves as an entry point to the expanded studies required to dissect the etiology in the â¼85% of the ASD population that remain idiopathic.