Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 96(21): 8791-8799, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38742926

RESUMEN

MicroRNAs (miRNAs) are novel tumor biomarkers owing to their important physiological functions in cell communication and the progression of multiple diseases. Due to the small molecular weight, short sequence length, and low concentration levels of miRNA, miRNA detection presents substantial challenges, requiring the advancement of more refined and sensitive techniques. There is an urgent demand for the development of a rapid, user-friendly, and sensitive miRNA analysis method. Here, we developed an enhanced biotin-streptavidin dual-mode phase imaging surface plasmon resonance (PI-SPR) aptasensor for sensitive and rapid detection of miRNA. Initially, we evaluated the linear sensing range for miRNA detection across two distinct sensing modalities and investigated the physical factors that influence the sensing signal in the aptamer-miRNA interaction within the PI-SPR aptasensor. Then, an enhanced biotin-streptavidin amplification strategy was introduced in the PI-SPR aptasensor, which effectively reduced the nonspecific adsorption by 20% and improved the limit of detection by 548 times. Furthermore, we have produced three types of tumor marker chips, which utilize the rapid sensing mode (less than 2 min) of PI-SPR aptasensor to achieve simultaneous detection of multiple miRNA markers in the serum from clinical cancer patients. This work not only developed a new approach to detect miRNA in different application scenarios but also provided a new reference for the application of the biotin-streptavidin amplification system in the detection of other small biomolecules.


Asunto(s)
Aptámeros de Nucleótidos , Biotina , MicroARNs , Estreptavidina , Resonancia por Plasmón de Superficie , MicroARNs/análisis , MicroARNs/sangre , Biotina/química , Resonancia por Plasmón de Superficie/métodos , Estreptavidina/química , Humanos , Aptámeros de Nucleótidos/química , Límite de Detección , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/análisis , Técnicas Biosensibles/métodos
2.
Anal Bioanal Chem ; 415(23): 5735-5743, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37453938

RESUMEN

Wavelength interrogation surface plasmon resonance imaging (WSPRi) sensing has unique advantages in high-throughput imaging detection. The refractive index resolution (RIR) of WSPRi is limited to the order of 10-6 RIU. This paper demonstrates a novel WSPRi sensing system with a wavelength scanning device of an acousto-optic tunable filter (AOTF) and a low-cost speckle-free SPR excitation source of a halogen lamp. We developed a sensitive quasi-phase extraction method for data processing. The new technique achieved an RIR of 8.84×10-7 RIU, which is the first WSPRi system that has an RIR in the order of 10-7 RIU. Moreover, we performed a real-time recording of the formation of the coffee ring effect during brine evaporation and enhanced the biosensor performance of SPR for the first time. We believe the higher RIR and accuracy of the system will benefit more potential applications toward exploring the biomolecules' behaviors in biological and biochemistry studies.


Asunto(s)
Técnicas Biosensibles , Resonancia por Plasmón de Superficie , Resonancia por Plasmón de Superficie/métodos , Técnicas Biosensibles/métodos , Óptica y Fotónica , Refractometría , Diagnóstico por Imagen
3.
Anal Chem ; 93(2): 828-833, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33319993

RESUMEN

A variety of surface plasmon resonance (SPR) sensing devices have been extensively used in biochemical detection for their characteristics of label-free, highly sensitive, and faster detecting. Among them, the spectrum-based SPR sensing devices have offered us great advantages in high-throughput sensing due to their large dynamic range and the possibility of detection resolution similar to that offered by angle interrogation. This paper demonstrates a spectrum-based SPR imaging sensing system with fast wavelength scanning capability achieved by an acousto-optic tunable filter (AOTF) and a low-cost and speckle-free halogen lamp implemented as the SPR excitation source. Especially, we developed a novel four-parameter-based spectral curve readjusting (4-PSCR) method for data processing, which offered us a faster and more accurate spectral data curve fitting process than the traditional polynomial fitting method. With the configuration, we have also conducted an SPR high-throughput detection of the novel coronavirus (COVID-19) spike protein, proving its application possibility in the screening of COVID-19 with high accuracy. We believe that the higher sensitivity and accuracy of the system have made it readily used in biochemical imaging and detecting applications.


Asunto(s)
Glicoproteína de la Espiga del Coronavirus/análisis , Resonancia por Plasmón de Superficie/métodos , Algoritmos , COVID-19/diagnóstico , COVID-19/virología , Humanos , Límite de Detección , Óptica y Fotónica , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Resonancia por Plasmón de Superficie/instrumentación , Temperatura
4.
Opt Express ; 29(20): 31418-31425, 2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34615234

RESUMEN

Phase interrogation surface plasmon resonance (SPR) imaging is, in principle, suitable in multiple samples and high-throughput detection, but the refractive index difference of various samples can be largely varied, while the dynamic range of phase interrogation SPR is narrow. So it is difficult to perform multi-sample detection in phase interrogation mode. In this paper, we successfully designed a multi-channel phase interrogation detection SPR imaging sensing scheme based on a common optical interference path between p- and s-polarized light without using any mechanical moving components. The fixed optical path difference between p- and s-polarized light is introduced by a birefringence crystal to produce sinusoidal spectral interference fringes. We adopted a time-division-multiplexing peak-finding algorithm to track the resonance wavelength so that the detection range can cover every channel. The phase values which carry the high sensitivity signal of the corresponding samples are calculated by the iterative parameter scanning cross-correlation algorithm.

5.
Opt Lett ; 46(15): 3629-3632, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34329242

RESUMEN

Microfluidic techniques have emerged as promising strategies for a wide variety of synthetic or biological sorting. Unfortunately, there is still a lack of sorting with automatic and handy operation. In contrast to passively generated vortices, the thermocapillary vortices produced by temperature gradient have the advantages of flexible manipulation, stable strength, and simple integration. In this Letter, we present a device used for the pump-free separation of particles through vortices interaction without external fluidic control systems required for the majority of existing devices. Specifically, the device induces a different flow type upon the actuation of optical power, and the flow functions, such as simultaneous pumping and sorting, agree with stimulation results very well. More importantly, our developed sorting device can achieve separations by means of tunable cutoff diameter size. Therefore, this versatile device can be utilized to sort complex samples with the advantages of portability, user-friendly control, and automation.

6.
Chem Soc Rev ; 49(18): 6555-6567, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32766625

RESUMEN

Liquid-liquid droplet reactors have garnered significant interest in biochemical applications with the obvious benefits of reduced reagent consumption, well controlled droplet size and confinement of biochemical reactions away from external interference. This Tutorial Review provides a succinct overview of widely employed liquid-liquid droplet reactors, namely single emulsions, multiple emulsions and all-aqueous emulsions, under the scope of thermodynamics, with a particular emphasis on how their intrinsic interfacial properties may endow mass transport for a variety of demands. Beyond spatially compartmentalizing a thermodynamic system, the artificial interface of droplet reactors has shown initial promising for multi-step or complex reactions. Moving forward, the artificial interface shall be tailored further towards "functional" to imitate the "intelligent" interface surrounding natural vesicles or cells.


Asunto(s)
Termodinámica , Emulsiones/química , Tamaño de la Partícula , Propiedades de Superficie
7.
Opt Express ; 28(14): 20624-20633, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32680118

RESUMEN

Wavelength interrogation surface plasmon resonance imaging (λSPRi) has potential in detecting 2-dimensional (2D) sensor array sites, but the resonance wavelength imaging rate limits the application of detecting biomolecular binding process in real time. In this paper, we have successfully demonstrated an ultrafast λSPRi biosensor system. The key feature is a two-point tracking algorithm that drives the liquid crystal tunable filter (LCTF) to achieve fast-tracking of the resonance wavelength movement caused by the binding of target molecules with the probe molecules on the sensing surface. The resonance wavelength measurement time is within 0.25s. To date, this is the fastest speed ever reported in λSPRi. Experiment results show that the sensitivity and dynamic are 2.4 × 10-6 RIU and 4.6 × 10-2 RIU, respectively. In addition, we have also demonstrated that the system has the capability of performing fast high-throughput detection of biomolecular interactions, which confirms that this fast real-time detecting approach is most suitable for high-throughput and label-free biosensing applications.

8.
Opt Express ; 28(3): 3442-3450, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-32122012

RESUMEN

A phase surface plasmon resonance (SPR) sensing technology based on white light polarized interference in common-path geometry is reported. A halogen lamp is used as the excitation source of the SPR sensor. The fixed optical path difference (OPD) between p- and s-polarized light is introduced by a birefringence crystal to produce sinusoidal spectral interference fringes. The SPR phase is accurately extracted from the interference fringes using a novel iterative parameter-scanning cross-correlation algorithm. The dynamic detection range is expanded by tracking the best SPR wavelength, which is identified using a window Fourier algorithm. The experimental results show that the sensitivity of this SPR system was 1.3 × 10-7 RIU, and the dynamic detection range was 0.029 RIU. This sensor, not only simple to implement and cost efficient, requires no modulators.

9.
Opt Lett ; 45(7): 1998-2001, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32236052

RESUMEN

Optofluidic manipulation of droplets is critical in droplet-based microfluidic systems for chemistry, biology, and medicine. Here, we reported a thermocapillary microvortices-based manipulation platform for controlling oil-in-water droplets through integrating a photothermal waveguide into a microfluidic chip. The sizes and shapes of the droplets can be controlled by adjusting optical power or positions of the water-oil interface. Here, teardrop-shaped droplets, which can encapsulate and accumulate mesoscopic matters easily, were generated when the water-oil interface and the channel boundaries approached the photothermal waveguide center simultaneously. The results showed that the thermocapillary microvortices have good controllability of droplet positions, droplet volumes, and encapsulated-particle distribution and thus it will be a powerful droplet manipulation strategy for microreactors and microcapsules.

10.
Appl Opt ; 59(22): 6466-6475, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32749344

RESUMEN

Our simulations revealed that a highly localized optic-thermal transformation can lead to high temperatures in the fiber-based metallic Fabry-Perot cavity (FMFP) due to optical resonance. Both the transfer matrix method and finite difference time domain (FDTD) method are used for optical analysis of FMFP. Empirical formulas of maximum temperature were derived based on the superposition principle. Despite the fact that the derivation of the resonance condition for FMFP is usually discarded due to its complexity, we propose a simple resonance condition for a metallic Fabry-Perot cavity. In addition, suddenly tuning on the incident light will cause fast-decaying air pressure and velocity, which are also solved from nanosecond scale to equilibrium. This paper is useful for estimating the heat tolerance threshold of nanostructures on fiber end surfaces. Photothermal conversion in FMFP provides an excellent miniature heat source for applications that require high-efficiency photothermal conversion, and FMFP is particularly suitable for optofluidics.

11.
Molecules ; 25(8)2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32326005

RESUMEN

Possessing a large surface-to-volume ratio is significant to the sensitive gas detection of semiconductor nanostructures. Here, we propose a fast-response ammonia gas sensor based on porous nanostructured zinc oxide (ZnO) film, which is fabricated through physical vapor deposition and subsequent thermal annealing. In general, an extremely thin silver (Ag) layer (1, 3, 5 nm) and a 100 nm ZnO film are sequentially deposited on the SiO2/Si substrate by a magnetron sputtering method. The porous nanostructure of ZnO film is formed after thermal annealing contributed by the diffusion of Ag among ZnO crystal grains and the expansion of the ZnO film. Different thicknesses of the Ag layer help the formation of different sizes and quantities of hollows uniformly distributed in the ZnO film, which is demonstrated to hold superior gas sensing abilities than the compact ZnO film. The responses of the different porous ZnO films were also investigated in the ammonia concentration range of 10 to 300 ppm. Experimental results demonstrate that the ZnO/Ag(3 nm) sensor possesses a good electrical resistance variation of 85.74% after exposing the sample to 300 ppm ammonia gas for 310 s. Interestingly, a fast response of 61.18% in 60 s for 300 ppm ammonia gas has been achieved from the ZnO/Ag(5 nm) sensor, which costs only 6 s for the response increase to 10%. Therefore, this controllable, porous, nanostructured ZnO film maintaining a sensitive gas response, fabricated by the physical deposition approach, will be of great interest to the gas-sensing community.


Asunto(s)
Amoníaco/análisis , Técnicas Biosensibles , Gases/análisis , Nanoestructuras/química , Plata/química , Óxido de Zinc/química , Nanoestructuras/ultraestructura , Nanotecnología , Difracción de Rayos X
12.
Cell Physiol Biochem ; 53(1): 229-241, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31302949

RESUMEN

BACKGROUND/AIMS: Circulating or extracellular histones (EHs) in the bloodstream act as a damage-associated-molecular-pattern (DAMP) agent that plays a critical role in the pathogenesis of many diseases such as sepsis and sterile inflammation. To date, not much information is available to describe the mechanistic relationship between human erythrocytes and the cytotoxicity of EHs, the protein members from a highly conserved histone family across species. The present study explored this key question with a hypothesis that EHs induce eryptosis. METHODS: Freshly isolated human red blood cells (RBCs) from healthy donors were treated with EHs or agents for positive controls in a physiological buffer for 3 or 24 h. After treatments, flow cytometry was employed to quantify surface phosphatidylserine (PS) exposure from annexin-V-RFP binding, cell shrinkage from flow cytometric forward scatter (FSC) analysis, Ca2+ rise by fluo-4, reactive oxygen species (ROS) production by H2DCFDA, and caspase-3 activation by FAM-DEVD-FMK measurement. Hemolysis and membarne permeabilization were estimated respectively from hemoglobin release into supernatant and calcein leakage from RBC ghosts. RESULTS: With positive controls for validation, EHs in the pathophsyiological range were found to accumulate annexin-V binding on cell surface, decrease FSC, upregulate ROS production, elevate Ca2+ influx and increase caspase-3 activity in a 3-h incubation. Of note, no RBC hemolysis and no calcein release from ghosts were obtained after EHs treatment for 24 h. Interestingly, external Ca2+ was not a prerequisite for the EHs-mediated ROS production and PS externalization. Also, the eryptotic hallmarks in the apoptotic RBCs were partially blocked by heparin and antibody (Ab) against Toll-like receptor 2 (TLR2). CONCLUSION: EHs act as a DAMP agent in the human RBCs that induces eryptosis. The cytotoxic effect is rapid as the hallmarks of eryptosis such as cell shrinkage, surface PS exposure, [Ca2+]i rise, ROS production and caspase-3 activation can be seen 3 h after treatment in a dose-dependent manner. The EHs' cytotoxic effects could be blocked by heparin and the Ab against TLR2.


Asunto(s)
Eriptosis/efectos de los fármacos , Histonas/farmacología , Anticuerpos/inmunología , Anticuerpos/farmacología , Calcio/metabolismo , Caspasa 3/metabolismo , Células Cultivadas , Eritrocitos/citología , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Heparina/farmacología , Humanos , Especies Reactivas de Oxígeno/metabolismo , Receptor Toll-Like 2/inmunología
13.
Opt Lett ; 44(24): 6061-6064, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32628221

RESUMEN

We present herein a compact terahertz (THz) spectrometer in which transmission intensity distribution associated with dispersive interference effects in disordered random surfaces are used for reconstructing the frequency contents of an incoming THz beam. The device sweeps the frequency-dependent parameter of a roughened transmission plate through lateral displacement or electro-optic modulation. 2D transmission intensities are sequentially captured by a single detector for a range of modulation depths. With a calibration data set as the reference, one can reconstruct the spectra of the probe THz beam by solving a system of simultaneous linear equations. A smoothing Tikhonov regularization approach has been implemented to improve the accuracy of the spectral reconstruction. The reported compact, broadband, high-resolution THz spectrometer is well suited for portable THz spectroscopy applications.

14.
Opt Lett ; 44(13): 3226-3229, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31259927

RESUMEN

Based on the optical trapping force of an evanescent wave at a micro-ring resonator alongside a waveguide, we propose a tunable optofluidic sorting unit for micro-nanoparticles by localized thermal phase tuning. With the tuning of field build-up factor of resonator, the depth of trapping potential well and the size of trapped particle are adjustable. Furthermore, by considering the Brownian motion of trapped particles from a statistics perspective, we verify the critical trapping threshold of a potential well, which is usually assumed to be 1kBT. The threshold depends not only on the optical power and particle size, but also on the length of the coupling region. Compared with a wavelength tuning mechanism, localized thermal tuning enables large-scale integration of many independent tunable resonators. As a demonstration, we propose a set of operations with three resonators for nanoparticle manipulation, including sorting, storing, and mixing. Our proposed function units are of great importance for on-chip large-scale integration of optofluidic systems.

15.
Sensors (Basel) ; 19(6)2019 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-30871157

RESUMEN

The surface plasmon resonance (SPR) sensor is an important tool widely used for studying binding kinetics between biomolecular species. The SPR approach offers unique advantages in light of its real-time and label-free sensing capabilities. Until now, nearly all established SPR instrumentation schemes are based on single- or several-channel configurations. With the emergence of drug screening and investigation of biomolecular interactions on a massive scale these days for finding more effective treatments of diseases, there is a growing demand for the development of high-throughput 2-D SPR sensor arrays based on imaging. The so-called SPR imaging (SPRi) approach has been explored intensively in recent years. This review aims to provide an up-to-date and concise summary of recent advances in SPRi. The specific focuses are on practical instrumentation designs and their respective biosensing applications in relation to molecular sensing, healthcare testing, and environmental screening.

16.
Opt Express ; 26(19): 24627-24636, 2018 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-30469576

RESUMEN

This paper reports a digital micro-mirror device (DMD)-enabled real-time multi-channel biosensing system based on angular interrogation surface plasmon resonance (SPR). In the experiments, angular scanning is achieved by a DMD that facilitates SPR measurements using a single-point photodetector. In the four-channel measurement setup, real-time monitoring of bovine serum albumin (BSA) and anti-BSA binding interactions is performed at various concentration levels. The experimental results have verified that the system has a resolution of 3.54 × 10-6 RIU (refractive index unit); and a detection limit of 9 ng/mL. The new DMD-based SPR interrogation system presents a new design route for practical solid-state SPR biosensing with a user-selectable range of interrogation, enhanced signal-to-noise ratio, and fast data throughput.

17.
Opt Lett ; 43(7): 1602-1605, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29601040

RESUMEN

In this Letter, we report on a plasmonic nano-ellipse metasurface with the purpose of trapping and two-dimensional (2D) arbitrary transport of nanoparticles by means of rotating the polarization of an excitation beam. The locations of hot spots within a metasurface are polarization dependent, thus making it possible to turn on/off the adjacent hot spots and then convey the trapped target by rotating the incident polarization state. For the case of a metasurface with a unit cell of perpendicularly orientated nano-ellipses, the hot spots with higher intensities are located at both apexes of the nano-ellipse whose major axis is parallel to the direction of polarization. When the polarization gradually rotates to its counterpart direction, the trapped particle may move around the ellipse and transfer to the most adjacent ellipse, due to the unbalanced trap potentials around the nano-ellipse. Clockwise and counterclockwise rotation would guide the particle in a different direction, which makes it possible to convey the particle arbitrarily within the plasmonic metasurface by setting a time sequence of polarization rotation. As confirmed by the three-dimensional finite-difference time-domain analysis, our design offers a novel scheme of 2D arbitrary transport with nanometer accuracy, which could be used in many on-chip optofluidic applications.

18.
Anal Biochem ; 556: 112-118, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29966589

RESUMEN

Dengue is the most prevalent mosquito-borne viral disease in tropical and subtropical regions worldwide. Since its clinical symptoms are non-specific and easily mistaken as other kinds of infection, laboratory diagnosis is required to confirm dengue infections. In this study, ten peptides (E1-E10) from the envelope protein of dengue virus (DENV) were first identified using bioinformatic tool. The screened peptides were then synthesized for the peptide-based chemiluminescence enzyme immunoassay (CLEIA). Two peptides, E1 and E7, were found as the best candidate antigen and therefore used as downstream application in the development of low-cost peptide-based anti-DENV immunoglobulin M antibodies (IgM) indirect CLEIA. 176 serum samples were used to study the presence of anti-DENV IgM antibodies to evaluate the diagnostic ability of IgM-CLEIA. Receiver operating characteristic curve (ROC) was used to estimate the diagnostic cut-off value. The sensitivity and the specificity reached 82.5% and 94.6% respectively when peptide E1 was used, but declined to 79.2% and 92.9% respectively when peptide E7 was used. Therefore, the combination of E1 and E7 was used to improve the sensitivity and the specificity to 85.0% and 96.4% respectively in 1.5 h assay time, providing a potentially practical use for the diagnosis of DENV infections in patients' serum.


Asunto(s)
Anticuerpos Antivirales/sangre , Virus del Dengue/química , Dengue/sangre , Inmunoglobulina M/química , Mediciones Luminiscentes/métodos , Péptidos/química , Proteínas Virales/química , Ensayo de Inmunoadsorción Enzimática/métodos , Femenino , Humanos , Masculino
19.
Opt Lett ; 42(2): 259-262, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-28081087

RESUMEN

We report a nano-optical conveyor belt containing an array of gold plasmonic non-concentric nanorings (PNNRs) for the realization of trapping and unidirectional transportation of nanoparticles through rotating the polarization of an excitation beam. The location of hot spots within an asymmetric plasmonic nanostructure is polarization dependent, thus making it possible to manipulate a trapped target by rotating the incident polarization state. In the case of PNNR, the two poles have highly unbalanced trap potential. This greatly enhances the chance of transferring trapped particles between adjacent PNNRs in a given direction through rotating the polarization. As confirmed by three-dimensional finite-difference time-domain analysis, an array of PNNRs forms an unidirectional nano-optical conveyor belt, which delivers target nanoparticles or biomolecules over a long distance with nanometer accuracy. With the capacity to trap and to transfer, our design offers a versatile scheme for conducting mechanical sample manipulation in many on-chip optofluidic applications.

20.
Opt Lett ; 42(21): 4375-4378, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29088167

RESUMEN

In this Letter, a compact spectrometer based on upconversion and downconversion luminescence for operation in the infrared, visible, and ultraviolet bands is presented. The proposed spectrometer has three components that are used for dispersion, frequency conversion, and detection. The conversion component converts the incident signal beam into a spectral window appropriate for the detection component. The detection component images the speckle pattern generated by scattering or diffraction in the random structure of the dispersion component. With the two-dimensional intensity data captured from both the speckle pattern and a calibration measurement process, one can reconstruct the spectra of the signal beam by solving a matrix equation. A smoothing simulated annealing algorithm has been implemented to improve the accuracy of the spectral reconstruction. We have analyzed possible sources of error in the algorithm and the corresponding limits of operation. The reported broadband, compact, high-resolution, luminescence-based spectrometer is well suited for portable spectroscopy applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA