Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Lett ; 43(21): 5202-5205, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30382966

RESUMEN

We show that it is possible to confine light in a volume of order 10-3 cubic wavelengths using only dielectric material. Low-index (air) cavities are simulated in high-index rod-connected diamond photonic crystals. These cavities show long storage times (Q-factors >106) even at the lowest volumes. Fabrication of such structures could open a new field of photon-level interactions.

2.
Opt Lett ; 42(8): 1584-1587, 2017 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-28409804

RESUMEN

We propose a method to directly visualize the photonic band-structure of micrometer-sized photonic crystals using wide-angle spectroscopy. By extending Fourier imaging spectroscopy sensitivity into the infrared range, we have obtained accurate measurements of the band structures along the high-symmetry directions (X-W-K-L-U) of polymeric three-dimensional, rod-connected diamond photonic crystals. Our implementation also allows us to record single-wavelength reflectance far-field patterns showing very good agreement with simulations of the same designs. This technique is suitable for the characterization of photonic structures working in the infrared and, in particular, to obtain band-structure information of complete photonic band gap materials.

3.
Opt Express ; 23(20): 26565-75, 2015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26480169

RESUMEN

We present the simulation, fabrication, and optical characterization of low-index polymeric rod-connected diamond (RCD) structures. Such complex three-dimensional photonic crystal structures are created via direct laser writing by two-photon polymerization. To our knowledge, this is the first measurement at near-infrared wavelengths, showing partial photonic bandgaps for this structure. We characterize structures in transmission and reflection using angular resolved Fourier image spectroscopy to visualize the band structure. Comparison of the numerical simulations of such structures with the experimentally measured data show good agreement for both P- and S-polarizations.

4.
Nat Commun ; 10(1): 1215, 2019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30872572

RESUMEN

Optical tweezers are a highly versatile tool for exploration of the mesoscopic world, permitting non-contact manipulation of nanoscale objects. However, direct illumination with intense lasers restricts their use with live biological specimens, and limits the types of materials that can be trapped. Here we demonstrate an indirect optical trapping platform which circumvents these limitations by using hydrodynamic forces to exert nanoscale-precision control over aqueous particles, without directly illuminating them. Our concept is based on optically actuated micro-robotics: closed-loop control enables highly localised flow-fields to be sculpted by precisely piloting the motion of optically-trapped micro-rotors. We demonstrate 2D trapping of absorbing particles which cannot be directly optically trapped, stabilise the position and orientation of yeast cells, and demonstrate independent control over multiple objects simultaneously. Our work expands the capabilities of optical tweezers platforms, and represents a new paradigm for manipulation of aqueous mesoscopic systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA