Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brain Behav Immun ; 117: 70-79, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38169244

RESUMEN

BACKGROUND: Choroid plexus (ChP) enlargement exists in first-episode and chronic psychosis, but whether enlargement occurs before psychosis onset is unknown. This study investigated whether ChP volume is enlarged in individuals with clinical high-risk (CHR) for psychosis and whether these changes are related to clinical, neuroanatomical, and plasma analytes. METHODS: Clinical and neuroimaging data from the North American Prodrome Longitudinal Study 2 (NAPLS2) was used for analysis. 509 participants (169 controls, 340 CHR) were recruited. Conversion status was determined after 2-years of follow-up, with 36 psychosis converters. The lateral ventricle ChP was manually segmented from baseline scans. A subsample of 31 controls and 53 CHR had plasma analyte and neuroimaging data. RESULTS: Compared to controls, CHR (d = 0.23, p = 0.017) and non-converters (d = 0.22, p = 0.03) demonstrated higher ChP volumes, but not in converters. In CHR, greater ChP volume correlated with lower cortical (r = -0.22, p < 0.001), subcortical gray matter (r = -0.21, p < 0.001), and total white matter volume (r = -0.28,p < 0.001), as well as larger lateral ventricle volume (r = 0.63,p < 0.001). Greater ChP volume correlated with makers functionally associated with the lateral ventricle ChP in CHR [CCL1 (r = -0.30, p = 0.035), ICAM1 (r = 0.33, p = 0.02)], converters [IL1ß (r = 0.66, p = 0.004)], and non-converters [BMP6 (r = -0.96, p < 0.001), CALB1 (r = -0.98, p < 0.001), ICAM1 (r = 0.80, p = 0.003), SELE (r = 0.59, p = 0.026), SHBG (r = 0.99, p < 0.001), TNFRSF10C (r = 0.78, p = 0.001)]. CONCLUSIONS: CHR and non-converters demonstrated significantly larger ChP volumes compared to controls. Enlarged ChP was associated with neuroanatomical alterations and analyte markers functionally associated with the ChP. These findings suggest that the ChP may be a key an important biomarker in CHR.


Asunto(s)
Plexo Coroideo , Trastornos Psicóticos , Humanos , Plexo Coroideo/diagnóstico por imagen , Estudios Longitudinales , Fenotipo , Trastornos Psicóticos/diagnóstico por imagen , Neuroimagen
2.
Inorg Chem ; 63(26): 12370-12376, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38897587

RESUMEN

Rising energy needs and environmental issues have prompted the creation of effective and affordable photocatalysts for converting biomass. Utilizing abundant biomass, oxidation of 5-hydroxymethylfurfural (HMF) emerges as a method for generating high-value chemicals from biomass, offering an alternative to fossil fuels. We synthesized defect-engineered metal oxides (ZnO and WO3) by calcination with NaBH4 as a reducing agent. Atomic-level analyses identified oxygen vacancy defects induced by the reduction of metal ions within the metal oxide nanoparticles. Further analysis showed an unchanged band gap but an up to 4-fold increase in current density. This enhancement is attributed to the trapping of electrons in defect sites created during the calcination process. The formation of new electron donor states hindered photogenerated electron-hole recombination, enhancing the photocatalytic efficiency of the metal oxide. The photocatalytic degradation yield of HMF was over 95%, and the selective organic products 2,5-diformylfuran (DFF) and 2,5-furandicarboxylic acid (FDCA) were obtained without byproducts. Kinetic studies demonstrated that the photocatalytic conversion reaction rates were accelerated by up to 3.5-fold. Improved photocatalytic activity for HMF oxidation was achieved by introducing oxygen vacancy defects upon the reduction of metal ions within the metal oxides. Our results provide a promising approach for designing efficient photocatalysts.

3.
Inorg Chem ; 63(26): 12054-12062, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38870407

RESUMEN

The synthesis, enhancement, and maintenance of magnetite-based catalyst nanoparticles (NPs) are important for photocatalytic activity and recovery rates. We used a sodium borohydride (NaBH4) calcination method to modify MnFe2O4 nanoparticles to optimize their performance in the photocatalytic oxidation of 2,5-hydroxymethylfurfural. The results indicated a 94% increase in photocatalytic efficiency, while magnetic assessments performed using a vibrating sample magnetometer showed an 8.9% improvement in magnetic properties without degradation. These findings show the dual benefits of increased photocatalytic performance with strong magnetic properties, which are important for the application and reusability of photocatalysts. The recycling of these photocatalysts reduces secondary pollution and increases the process cost-effectiveness. These results contribute to the solution of problems with the use of photocatalytic materials.

4.
Brain Behav Immun ; 114: 3-15, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37506949

RESUMEN

INTRODUCTION: High-inflammation subgroups of patients with psychosis demonstrate cognitive deficits and neuroanatomical alterations. Systemic inflammation assessed using IL-6 and C-reactive protein may alter functional connectivity within and between resting-state networks, but the cognitive and clinical implications of these alterations remain unknown. We aim to determine the relationships of elevated peripheral inflammation subgroups with resting-state functional networks and cognition in psychosis spectrum disorders. METHODS: Serum and resting-state fMRI were collected from psychosis probands (schizophrenia, schizoaffective, psychotic bipolar disorder) and healthy controls (HC) from the B-SNIP1 (Chicago site) study who were stratified into inflammatory subgroups based on factor and cluster analyses of 13 cytokines (HC Low n = 32, Proband Low n = 65, Proband High n = 29). Nine resting-state networks derived from independent component analysis were used to assess functional and multilayer connectivity. Inter-network connectivity was measured using Fisher z-transformation of correlation coefficients. Network organization was assessed by investigating networks of positive and negative connections separately, as well as investigating multilayer networks using both positive and negative connections. Cognition was assessed using the Brief Assessment of Cognition in Schizophrenia. Linear regressions, Spearman correlations, permutations tests and multiple comparison corrections were used for analyses in R. RESULTS: Anterior default mode network (DMNa) connectivity was significantly reduced in the Proband High compared to Proband Low (Cohen's d = -0.74, p = 0.002) and HC Low (d = -0.85, p = 0.0008) groups. Inter-network connectivity between the DMNa and the right-frontoparietal networks was lower in Proband High compared to Proband Low (d = -0.66, p = 0.004) group. Compared to Proband Low, the Proband High group had lower negative (d = 0.54, p = 0.021) and positive network (d = 0.49, p = 0.042) clustering coefficient, and lower multiplex network participation coefficient (d = -0.57, p = 0.014). Network findings in high inflammation subgroups correlate with worse verbal fluency, verbal memory, symbol coding, and overall cognition. CONCLUSION: These results expand on our understanding of the potential effects of peripheral inflammatory signatures and/or subgroups on network dysfunction in psychosis and how they relate to worse cognitive performance. Additionally, the novel multiplex approach taken in this study demonstrated how inflammation may disrupt the brain's ability to maintain healthy co-activation patterns between the resting-state networks while inhibiting certain connections between them.


Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Humanos , Red en Modo Predeterminado , Trastornos Psicóticos/psicología , Cognición , Imagen por Resonancia Magnética , Inflamación , Encéfalo , Mapeo Encefálico
5.
Inorg Chem ; 62(32): 12913-12919, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37530612

RESUMEN

This study focuses on the synthesis and investigation of ZnIn2S4 nanoparticle (NP) photocatalysts treated with different sulfur sources, thioacetamide (TAA), or thiourea (TU), to explore their wavelength-dependent photocatalytic activity. The research aims to understand the impact of Zn vacancies present on the surface of ZnIn2S4 NPs. The investigation involves electron spin resonance and in situ X-ray photoelectron spectroscopy to study the photocatalytic activity of ZnIn2S4-TU and ZnIn2S4-TAA NPs, following the characterization of surface morphology and electronic properties using high-resolution transmission electron microscopy and X-ray diffraction. Additionally, the study delves into the wavelength-dependent photocatalytic degradation (PCD) activity of the ZnIn2S4 NPs using 2,5-hydroxymethylfurfural (HMF) across a wide range. Notably, the selective oxidation of HMF using ZnIn2S4-TU NPs resulted in the formation of 2,5-furandicarboxylic acid (FDCA) via 2,5-diformylfuran, with an efficiency exceeding 40% over the broad wavelength range. The research demonstrates that the irradiation wavelength for PCD is influenced by the number of defect structures introduced into the ZnIn2S4 NPs through the sulfur source.

6.
J Neurophysiol ; 128(1): 253-262, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35642851

RESUMEN

Intracerebral hemorrhage (ICH) is classified as a subtype of stroke and calcium (Ca2+) overload is a catalyst for ICH. This study explored the mechanisms of Stat1 (signal transducer and activator of transcription 1) in the neuronal Ca2+ overload after ICH. ICH mouse models and in vitro cell models were established. Stat1 and transient receptor potential melastatin 7 (Trpm7) were detected upregulated in ICH models. Afterward, the mice were infected with the lentivirus containing sh-Stat1, and HT22 cells were treated with si-Stat1 and the lentivirus containing pcDNA3.1-Trpm7. The neurological functional impairment, histopathological damage, and Nissl bodies in mice were all measured. HT22 cell viability and apoptosis were identified. The levels of Ca2+, Trpm7 mRNA, H3K27 acetylation (H3K27ac), CaMKII-α, and p-Stat1 protein in the tissues and cells were determined. We found that silencing Stat1 alleviated ICH damage and repressed the neuronal Ca2+ overload after ICH. H3K27ac enrichment in the Trpm7 promoter region was examined and we found that p-Stat1 accelerated Trpm7 transcription via promoting H3K27ac in the Trpm7 promoter region. Besides, Trpm7 overexpression increased Ca2+ overload and aggravated ICH. Overall, p-Stat1 promoted Trpm7 transcription and further aggravated the Ca2+ overload after ICH.NEW & NOTEWORTHY We found Stat1 promotes Trpm7 transcription by promoting H3K27 acetylation and thus promotes calcium overload of neurons after intracerebral hemorrhage.


Asunto(s)
Calcio , Hemorragia Cerebral , Factor de Transcripción STAT1 , Canales Catiónicos TRPM , Acetilación , Animales , Calcio/metabolismo , Histonas/metabolismo , Ratones , Neuronas/metabolismo , Factor de Transcripción STAT1/metabolismo , Canales Catiónicos TRPM/metabolismo
7.
Brain Behav Immun ; 100: 297-308, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34875344

RESUMEN

BACKGROUND: Peripheral inflammation is implicated in schizophrenia, however, not all individuals demonstrate inflammatory alterations. Recent studies identified inflammatory subtypes in chronic psychosis with high inflammation having worse cognitive performance and displaying neuroanatomical enlargement compared to low inflammation subtypes. It is unclear if inflammatory subtypes exist earlier in the disease course, thus, we aim to identify inflammatory subtypes in antipsychotic naïve First-Episode Schizophrenia (FES). METHODS: 12 peripheral inflammatory markers, clinical, cognitive, and neuroanatomical measures were collected from a naturalistic study of antipsychotic-naïve FES patients. A combination of unsupervised principal component analysis and hierarchical clustering was used to categorize inflammatory subtypes from their cytokine data (17 FES High, 30 FES Low, and 33 healthy controls (HCs)). Linear regression analysis was used to assess subtype differences. Neuroanatomical correlations with clinical and cognitive measures were performed using partial Spearman correlations. Graph theoretical analyses were performed to assess global and local network properties across inflammatory subtypes. RESULTS: The FES High group made up 36% of the FES group and demonstrated significantly greater levels of IL1ß, IL6, IL8, and TNFα compared to FES Low, and higher levels of IL1ß and IL8 compared to HCs. FES High had greater right parahippocampal, caudal anterior cingulate, and bank superior sulcus thicknesses compared to FES Low. Compared to HCs, FES Low showed smaller bilateral amygdala volumes and widespread cortical thickness. FES High and FES Low groups demonstrated less efficient topological organization compared to HCs. Individual cytokines and/or inflammatory signatures were positively associated with cognition and symptom measures. CONCLUSIONS: Inflammatory subtypes are present in antipsychotic-naïve FES and are associated with inflammation-mediated cortical expansion. These findings support our previous findings in chronic psychosis and point towards a connection between inflammation and blood-brain barrier disruption. Thus, identifying inflammatory subtypes may provide a novel therapeutic avenue for biomarker-guided treatment involving anti-inflammatory medications.


Asunto(s)
Antipsicóticos , Trastornos Psicóticos , Esquizofrenia , Antipsicóticos/uso terapéutico , Giro del Cíngulo , Humanos , Imagen por Resonancia Magnética , Esquizofrenia/tratamiento farmacológico
8.
Environ Res ; 204(Pt B): 112095, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34560059

RESUMEN

Microbial fuel cells (MFCs) have emerged as a promising technology for energy-efficient wastewater treatment. The feasibility of integrating biological nitrogen removal into MFC systems has been reported. However, better pollutant removal efficiency and power production need to be achieved at a lower cost for a sustainable wastewater treatment system. The objective of this paper is to critically review the nitrogen removal process in various MFC configurations, factors that influence this process, and challenges that should be overcome in future studies. Based on the results of the review, shortcut nitrification-autotrophic denitrification in an MFC is an option as it minimizes the aeration energy and C/N ratio requirement; however, it is necessary to evaluate the N2O emission further. Another attractive option is the heterotrophic anodic denitrification process as it demonstrates the potential for free-buffer MFCs, but the nitrogen removal efficiency at low C/N ratios needs improvement. Bacteria population in MFC system also plays an essential role in both contaminant removal and electricity generation. It can be concluded that MFCs can be a low cost, sustainable solution for the treatment of wastewater and removal of nitrogen. Moreover, selection of MFC configuration will depend on the nature of the wastewater.


Asunto(s)
Fuentes de Energía Bioeléctrica , Desnitrificación , Nitrificación , Nitrógeno , Aguas Residuales
9.
J Environ Manage ; 284: 112007, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33549948

RESUMEN

This study examines the effects of income inequality and innovation on environmental quality, conditional on the level of each factor. We apply system generalized method of moments to a panel dataset of 91 countries from 1971 to 2015. The estimation results consistently reveal that although income inequality and innovation significantly contribute to better environmental quality, the effect of one factor largely depends on the evolution of the other. Specifically, the beneficial impact of income equality on environmental quality can only be achieved at a high level of innovation. In the same way, innovation is only an effective tool for a nation to reduce environmental degradation when income is fairly distributed among its citizens. This means that more equitable income distribution and higher innovative capacities are two interrelated prerequisites that must both be in place for a country to actualize their beneficial environmental impacts. Overall, our findings shed new light on the relationship between income inequality, innovation, and environmental quality, and they provide relevant implications for policymakers with regard to tackling the dual tasks of reducing inequality and pollution.


Asunto(s)
Dióxido de Carbono , Desarrollo Económico , Dióxido de Carbono/análisis , Contaminación Ambiental/análisis , Renta , Factores Socioeconómicos
10.
Langmuir ; 36(33): 9967-9976, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32787053

RESUMEN

In this work, we present the optical birefringence properties of the optical fiber cladding that exists as an evanescent field where the refractive index (RI) of the analysis solution is applied for optical sensor aspiration. To enhance the performance of the sensor, we have investigated the sensor with different thicknesses of TiO2 coating and bimetallic (Ag-Al) film alloy combinations by thermal evaporation coating. We described a special balanced homodyne detection method for the intensity difference change between the p- and s-polarization lights in the surface plasmon resonance sensing systems, which is strongly determined by the RI of the test medium. The plasmonic optical fiber can measure a very small change of the RI of a glycerol solution, which is a resolution of 4.37 × 10-8 RI unit (RIU). This method has great advantages of a small-sized optical setup, high stability, high selectivity, easy chemical modification, and low cost. Furthermore, because of the experiment results, we observe that our approach can also eliminate the surrounding noise in the Mach-Zehnder interferometer, which shows the feasibility of this proposed technique. We demonstrate the fluorescence enhancement in detecting the C-reactive protein antibody conjugated with fluorescein isothiocyanate by means of near-field coupling between surface plasmons and fluorophores at spectral channels of emission. This technique can also be extended for application in a biomedical assay and in biochemical science, including molecular diagnostics relying on multichannels that require a small volume of the analyte at each channel which would suffer from the weakness of fluorescence if it were not for the enhancement technology.

11.
Appl Opt ; 59(19): 5845-5850, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32609712

RESUMEN

The transparent-conducting performance is estimated through figure-of-merit (FOM) value. To improve poor FOM value of pure ZnO thin films, boron (B) as a donor impurity was doped into the films. Direct-current magnetron sputtering was used to prepare B-doped ZnO (BZO) thin films from sintered ZnO targets with variable B2O3 content changing from 0 to 2 wt. %. The x ray diffraction analysis confirmed the preferably c-axis-oriented structure of hexagonal wurtzite ZnO host. The results also showed variation in the film structure versus the B2O3 content through calculations of crystal size and residual stress. Depending on the B2O3 content, a competition of interstitial and substitutional B3+ ions induced more stress or relaxation in lattice structure of the films. At 1% B2O3, the BZO thin film had the best crystalline characterization with the lowest stress and large crystal size. In consequence, the BZO 1% film obtained the lowest resistivity of 2.7×10-3Ωcm, average transmittance of 82.1%, and the best FOM value of 18.8×102Ω-1cm-1. The transparent-conducting performance of the ZnO thin films deposited by direct-current (DC) magnetron sputtering was significantly enhanced through B doping. The good-performance BZO film at 1% B2O3 is believed to be of use as electrodes in thin-film solar cells.

12.
Biodegradation ; 31(4-6): 303-317, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32914250

RESUMEN

This study examined the biodegradation of natural rubber (NR) and deproteinized natural rubber (DPNR) by bacterial consortia enriched from a rubber-processing factory's waste in Vietnam. The results reveal the degradation in both NR and DPNR, and the DPNR was degraded easier than NR. The highest weight loss of 48.37% was obtained in the fourth enrichment consortium with DPNR, while 35.39% was obtained in the fifth enrichment consortium with NR after 14 days of incubation. Nitrogen content and fatty acid content determined by Kjeldahl method and fourier transform infrared spectroscopy (FTIR), respectively, were decreased significantly after being incubated with the consortia. Structure of degraded rubber film analyzed by nuclear magnetic resonance spectroscopy showed the presence of aldehyde group, a sign of rubber degradation. Bacterial cells tightly adhering and embedding into NR and DPNR films were observed by scanning electron microscopy. There were differences in the bacterial composition of the consortia with NR and DPNR, which were determined by metagenomic analysis using 16S rRNA gene sequencing. The phyla Bacteroidetes and Proteobacteria may play a role in the degradation of non-isoprene compounds such as protein or lipid, while the phylum Actinobacteria plays a crucial role in the degradation of rubber hydrocarbon in all consortia.


Asunto(s)
Bacterias , Goma , Bacterias/genética , Biodegradación Ambiental , ARN Ribosómico 16S/genética , Espectroscopía Infrarroja por Transformada de Fourier
13.
Molecules ; 25(8)2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32316243

RESUMEN

Two new lindenane sesquiterpenes were obtained from the roots of Lindera myrrha. These compounds were structurally elucidated by HRMS data, extensive NMR analyses, and comparison between experimental and theoretical 13C-NMR data. Myrrhalindenane A is the first monomeric seco-d lindenane displaying a non-rearranged, cyclohexanic C-ring. Myrrhalindenane B is the second occurrence of an angular lindenane-sesquiterpene related to a C6-C7 lactonization.


Asunto(s)
Lindera/química , Sesquiterpenos/aislamiento & purificación , Teoría Funcional de la Densidad , Espectroscopía de Resonancia Magnética , Estructura Molecular , Raíces de Plantas/química , Sesquiterpenos/química
14.
Microcirculation ; 26(1): e12512, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30383330

RESUMEN

OBJECTIVE: Using primary LMCs in vitro, we sought to characterize the impact of LMC remodeling on their functional and molecular response to mechanical loading and culture conditions. METHODS: Primary "wounded leg" LMCs were derived from the hindlimb of three sheep who underwent lymphatic injury 6 weeks prior, while "control leg" LMCs were derived from the contralateral, unwounded, limb. Function of the LMCs was characterized in response to media of variable levels of serum (10% vs 0.2%) and glucose (4.5 vs 1 g/L). Functional and proteomic data were evaluated in LMCs exposed to cyclic stretch (0.1 Hz, 7.5% elongation) for 1 week. RESULTS: LMCs were sensitive to changes in serum levels, significantly reducing overall activity and collagen synthesis under low serum conditions. LMCs from the remodeled vessel had higher baseline levels of metabolic activity but not collagen synthesis. Cyclic loading induced cellular alignment perpendicular to the axis of stretch and alterations in signaling pathways associated with metabolism. Remodeled LMCs had consistently higher levels of metabolic activity and were more resistant to strain-induced apoptosis. CONCLUSIONS: LMCs exist on a functional spectrum, becoming more active in response to stretching and maintaining phenotypic remodeling in response to local lymphatic/tissue damage.


Asunto(s)
Sistema Linfático/citología , Células Musculares/fisiología , Remodelación Vascular , Animales , Fenómenos Biomecánicos , Células Cultivadas , Glucosa/farmacología , Extremidad Inferior , Células Musculares/metabolismo , Proteómica , Suero , Ovinos , Cicatrización de Heridas
15.
Molecules ; 24(15)2019 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-31357670

RESUMEN

Plants abound with active ingredients. Among these natural constituents, allelochemicals and signaling chemicals that are released into the environments play important roles in regulating the interactions between plants and other organisms. Allelochemicals participate in the defense of plants against microbial attack, herbivore predation, and/or competition with other plants, most notably in allelopathy, which affects the establishment of competing plants. Allelochemicals could be leads for new pesticide discovery efforts. Signaling chemicals are involved in plant neighbor detection or pest identification, and they induce the production and release of plant defensive metabolites. Through the signaling chemicals, plants can either detect or identify competitors, herbivores, or pathogens, and respond by increasing defensive metabolites levels, providing an advantage for their own growth. The plant-organism interactions that are mediated by allelochemicals and signaling chemicals take place both aboveground and belowground. In the case of aboveground interactions, mediated air-borne chemicals are well established. Belowground interactions, particularly in the context of soil-borne chemicals driving signaling interactions, are largely unknown, due to the complexity of plant-soil interactions. The lack of effective and reliable methods of identification and clarification their mode of actions is one of the greatest challenges with soil-borne allelochemicals and signaling chemicals. Recent developments in methodological strategies aim at the quality, quantity, and spatiotemporal dynamics of soil-borne chemicals. This review outlines recent research regarding plant-derived allelochemicals and signaling chemicals, as well as their roles in agricultural pest management. The effort represents a mechanistically exhaustive view of plant-organism interactions that are mediated by allelochemicals and signaling chemicals and provides more realistic insights into potential implications and applications in sustainable agriculture.


Asunto(s)
Alelopatía , Feromonas/química , Fenómenos Fisiológicos de las Plantas , Plantas/química , Productos Agrícolas/química , Herbivoria , Control de Plagas , Feromonas/farmacología , Fitoquímicos/química , Fitoquímicos/farmacología , Fitomejoramiento
16.
Molecules ; 24(10)2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31096694

RESUMEN

In this study, we evaluated antioxidant, antihyperuricemic, and herbicidal activities of essential oils (EOs) from Piper cubeba Bojer and Piper nigrum L.; two pepper species widely distributed in tropics, and examined their chemical compositions. Dried berries of P. cubeba and P. nigrum were hydro-distilled to yield essential oil (EO) of 1.23 and 1.11% dry weight, respectively. In the antioxidant assay, the radical scavenging capacities of P. cubeba EO against DPPH and ABTS free radicals were 28.69 and 24.13% greater than P. nigrum, respectively. In the antihyperuricemic activity, P. cubeba EO also exhibited stronger inhibitory effects on xanthine oxidase (IC50 = 54.87 µg/mL) than P. nigrum EO (IC50 = 77.11 µg/mL). In the herbicidal activity, P. cubeba EO showed greater inhibition on germination and growth of Bidens pilosa and Echinochloa crus-galli than P. nigrum EO. Besides, P. cubeba EO decreased 15.98-73.00% of photosynthesis pigments of B. pilosa and E. crus-galli, while electrolyte leakages, lipid peroxidations, prolines, phenolics, and flavonoids contents were increased 10.82-80.82% at 1.93 mg/mL dose. Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) analyses revealed that P. nigrum and P. cubeba EOs principally possessed complex mixtures of monoterpenes and sesquiterpenes. Terpinen-4-ol (42.41%), α-copaene (20.04%), and γ-elemene (17.68%) were the major components of P. cubeba EO, whereas ß-caryophyllene (51.12%) and ß-thujene (20.58%) were the dominant components of P. nigrum EO. Findings of this study suggest both P. cubeba and P. nigrum EOs were potential to treat antioxidative stress and antihyperuricemic related diseases. In addition, the EOs of the two plants may be useful to control B. pilosa and E. crus-galli, the two invasive and problematic weeds in agriculture practice.


Asunto(s)
Aceites Volátiles/química , Aceites Volátiles/farmacología , Fitoquímicos/química , Fitoquímicos/farmacología , Piper nigrum/química , Piper/química , Antioxidantes/química , Antioxidantes/farmacología , Relación Dosis-Respuesta a Droga , Flavonoides/química , Flavonoides/farmacología , Peroxidación de Lípido/efectos de los fármacos , Fenol/química , Fenol/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Prolina/química , Prolina/farmacología , Xantina Oxidasa/antagonistas & inhibidores , Xantina Oxidasa/química
17.
Molecules ; 24(24)2019 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-31817276

RESUMEN

Clausena indica fruits are routinely used for the culinary purpose as natural spices, whereas leaves and roots are folk medicine with various health benefits in southern China, South and Southeast Asia. In this study, the bioassay-guided fractionation by column chromatography yielded three pure compounds including dentatin, nordentatin, and clausine K and five active fractions (Re1-5) from C. indica roots. These known anticancer compounds were confirmed by X-ray diffraction, 1H-, 13C-nuclear magnetic resonance (NMR), and electrospray ionization tandem mass spectrometric (ESI-MS-MS) analyses. Meanwhile, the phytochemical constituents from fractions were identified by gas chromatography-mass spectrometry (GC-MS). The isolates, fractions' components and their biological activities were first time investigated on C. indica. By in vitro DPPH and ABTS scavenging assays, nordentatin (IC50 = 49.2 and 69.9 µg/mL, respectively) and the fraction Re4 (32.4 and 38.5 µg/mL, respectively) showed the strongest antiradical activities, whereas clausine K presented a moderate and dentatin had negligible antioxidant activity, respectively. The anti-α-amylase activity of C. indica root extracts was mainly attributed to the fraction Re2 which inactivated the enzymatic assay with IC50 of 573.8 µg/mL. Among tested samples, only nordentatin and clausine K were effective in the pancreatic elastase inhibition, however, their influences were trivial. Markedly, clausine K and Re4 performed the most remarkable tyrosinase inhibition with IC50 values of 179.5 and 243.8 µg/mL, respectively, which were in turn 4 and 3 times stronger than myricetin (IC50 = 735.6 µg/mL), a well-known tyrosinase inhibitor. This is the first report affirming clausine K to be a new strong tyrosinase inhibitor. Isolated compounds from C. indica roots were quantified by high-performance liquid chromatography (HPLC), of which, dentatin, nordentatin, and clausine K accounted for 14.74, 6.14, and 1.28 mg/g dry weight. The findings suggest that bioactive constituents from C. indica roots may be potentially employed for the development of antidiabetic, antiaging and cosmetic agents.


Asunto(s)
Clausena/química , Fitoquímicos/aislamiento & purificación , Raíces de Plantas/química , Antioxidantes/farmacología , Inhibidores Enzimáticos/farmacología , Conformación Molecular , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química
18.
Molecules ; 24(16)2019 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-31405038

RESUMEN

There is currently much interest in finding new phytochemicals among plants and fungi as nature-based alternatives to replace problematic herbicides such as glyphosate, which are preferentially used in agricultural production n. We discovered striking herbicidal potency in Cordyceps militaris (L.) and identified cordycepin as its principal plant growth inhibitor. Cordycepin obtained as an ethyl acetate extract was subjected to column chromatography and evaluated for its bioassay-guided phytotoxic capacity against Raphanus sativus (radish), showing a maximum inhibition on germination and growth of radish (IC50 = 0.052-0.078 mg/mL). Gas chromatography-mass spectrometry (GC-MS) (m/z: 251.2) and liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) ([M + Na]+ m/z: 274.1; [M + H]+ m/z: 252.1) analyses confirmed cordycepin as the major component of the tested column fraction (55.38%). At 0.04 mg/mL, cordycepin showed 3.8-5.9- and 3.3-3.7-fold greater inhibition of the germination and growth of radish than benzoic acid (BA) and glyphosate, respectively. Compared with BA, isolated cordycepin reduced plant chlorophyll and carotenoid contents (2.0-9.5 -fold), while proline, total phenolic and total flavonoid contents were increased 1.2-1.8-fold. Finally, cordycepin promoted electrolyte leakage and malondialdehyde accumulation in radish aerial parts. Thus, cordycepin successfully isolated from Cordyceps militaris is a highly potent plant growth inhibitor with pending worldwide patent and may become a potential plant-based novel alternative to the disputed glyphosate.


Asunto(s)
Cordyceps/química , Desoxiadenosinas , Herbicidas , Raphanus/crecimiento & desarrollo , Desoxiadenosinas/química , Desoxiadenosinas/aislamiento & purificación , Desoxiadenosinas/farmacología , Glicina/análogos & derivados , Herbicidas/química , Herbicidas/aislamiento & purificación , Herbicidas/farmacología , Glifosato
19.
Molecules ; 24(3)2019 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-30717326

RESUMEN

Although many investigations on phytochemicals in rice plant parts and root exudates have been conducted, information on the chemical profile of essential oil (EO) and potent biological activities has been limited. In this study, chemical compositions of rice leaf EO and in vitro biological activities were investigated. From 1.5 kg of fresh rice leaves, an amount of 20 mg EO was obtained by distillation and analyzed by gas chromatography-mass spectrometry (GC-MS), electrospray ionization (ESI), and atmospheric pressure chemical ionization (APCI) to reveal the presence of twelve volatile constituents, of which methyl ricinoleate (27.86%) was the principal compound, followed by palmitic acid (17.34%), and linolenic acid (11.16%), while 2-pentadecanone was the least (2.13%). Two phytoalexin momilactones A and B were first time identified in EO using ultra-performance liquid chromatography coupled with electrospray mass spectrometry (UPLC/ESI-MS) (9.80 and 4.93 ng/g fresh weight, respectively), which accounted for 7.35% and 3.70% of the EO, respectively. The assays of DPPH (IC50 = 73.1 µg/mL), ABTS (IC50 = 198.3 µg/mL), FRAP (IC50 = 700.8 µg/mL) and ß-carotene oxidation (LPI = 79%) revealed that EO possessed an excellent antioxidant activity. The xanthine oxidase assay indicated that the anti-hyperuricemia potential was in a moderate level (IC50 = 526 µg/mL) as compared with the standard allopurinol. The EO exerted potent inhibition on growth of Raphanus sativus, Lactuca sativa, and two noxious weeds Echinochloa crus-galli, and Bidens pilosa, but in contrast, the growth of rice seedlings was promoted. Among the examined plants, the growth of the E. crus-galli root was the most inhibited, proposing that constituents found in EO may have potential for the control of the problematic paddy weed E. crus-galli. It was found that the EO of rice leaves contained rich phytochemicals, which were potent in antioxidants and gout treatment, as well as weed management. Findings of this study highlighted the potential value of rice leaves, which may provide extra benefits for rice farmers.


Asunto(s)
Antioxidantes/química , Aceites Volátiles/química , Oryza/química , Fitoquímicos/química , Cromatografía de Gases y Espectrometría de Masas , Lactuca/efectos de los fármacos , Fitoquímicos/farmacología , Hojas de la Planta/química , Raíces de Plantas/química , Raphanus/efectos de los fármacos , Ácidos Ricinoleicos/química , Plantones/efectos de los fármacos , Espectrometría de Masa por Ionización de Electrospray , Xantina Oxidasa/química , Ácido alfa-Linolénico/química
20.
Molecules ; 24(3)2019 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-30700006

RESUMEN

Momilactones A (MA) and B (MB) are the active phytoalexins and allelochemicals in rice. In this study, MA and MB were purified from rice husk of Oryza sativa cv. Koshihikari by column chromatography, and purification was confirmed by high-performance liquid chromatography, thin-layer chromatography, gas chromatography-mass spectrometry, liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS), and ¹H and 13C nuclear magnetic resonance analyses. By in vitro assays, both MA and MB exerted potent inhibition on α-amylase and α-glucosidase activities. The inhibitory effect of MB on these two key enzymes was greater than that of MA. Both MA and MB exerted greater α-glucosidase suppression as compared to that of the commercial diabetic inhibitor acarbose. Quantities of MA and MB in rice grain were 2.07 ± 0.01 and 1.06 ± 0.01 µg/dry weight (DW), respectively. This study was the first to confirm the presence of MA and MB in refined rice grain and reported the α-amylase and α-glucosidase inhibitory activity of the two compounds. The improved protocol of LC-ESI-MS in this research was simple and effective to detect and isolate MA and MB in rice organs.


Asunto(s)
Diterpenos/farmacología , Inhibidores de Glicósido Hidrolasas/química , Lactonas/farmacología , Oryza/química , alfa-Amilasas/antagonistas & inhibidores , Amilasas/antagonistas & inhibidores , alfa-Glucosidasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA