Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 9135, 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644397

RESUMEN

Stone wool is widely used as an efficient thermal insulator within the construction industry; however, its performance can be significantly impacted by the presence of water vapor. By altering the material's characteristics and effective thermo-physical properties, water vapor can reduce overall efficacy in various environmental conditions. Therefore, understanding water adsorption on stone wool surfaces is crucial for optimizing insulation properties. Through the investigation of interaction between water molecules and calcium aluminosilicate (CAS) phase surfaces within stone wool using density functional theory (DFT), we can gain insight into underlying mechanisms governing water adsorption in these materials. This research aims to elucidate the molecular-level interaction between water molecules and CAS surfaces, which is essential for understanding fundamental properties that govern their adsorption process. Both dissociative and molecular adsorptions were investigated in this study. For molecular adsorption, the adsorption energy ranged from -  84 to -  113 kJ mol - 1 depending on surface orientation. A wider range of adsorption energy ( -  132 to -  236 kJ mol - 1 ) was observed for dissociative adsorption. Molecular adsorption was energetically favored on (010) surfaces while dissociative adsorption was most favorable on (111) surfaces. This DFT study provides valuable insights into the water adsorption behavior on low index surfaces of CAS phase in stone wool, which can be useful for designing effective strategies to manage moisture-related issues in construction materials. Based on these findings, additional research on the dynamics and kinetics of water adsorption and desorption processes of this thermal isolation material is suggested.

2.
J Phys Chem B ; 124(45): 10210-10218, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33119320

RESUMEN

The understanding of the formation of silicate oligomers in the initial stage of zeolite synthesis is important. The use of organic structure-directing agents (OSDAs) is known to be a key factor in the formation of different silicate species and the final zeolite structure. For example, tetraethylammonium ion (TEA+) is a commonly used organic template for zeolite synthesis. In this study, ab initio molecular dynamics (AIMD) simulation is used to provide an understanding of the role of TEA+ in the formation of various silicate oligomers, ranging from dimer to 4-ring. Calculated free-energy profiles of the reaction pathways show that the formation of a 4-ring structure has the highest energy barrier (97 kJ/mol). The formation of smaller oligomers such as dimer, trimer, and 3-ring has lower activation barriers. The TEA+ ion plays an important role in regulating the predominant species in solution via its coordination with silicate structures during the condensation process. The kinetics and thermodynamics of the oligomerization reaction indicate a more favorable formation of the 3-ring over the 4-ring structure. The results from AIMD simulations are in line with the experimental observation that TEA+ favors the 3-ring and double 3-ring in solution. The results of this study imply that the role of OSDAs is not only important for the host-guest interaction but also crucial for controlling the reactivity of different silicate oligomers during the initial stage of zeolite formation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA