Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neuroeng Rehabil ; 19(1): 33, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35321725

RESUMEN

BACKGROUND: Individuals with unilateral transfemoral amputation are prone to developing health conditions such as knee osteoarthritis, caused by additional loading on the intact limb. Such individuals who can run again may be at higher risk due to higher ground reaction forces (GRFs) as well as asymmetric gait patterns. The two aims of this study were to investigate manipulating step frequency as a method to reduce GRFs and its effect on asymmetric gait patterns in individuals with unilateral transfemoral amputation while running. METHODS: This is a cross-sectional study. Nine experienced track and field athletes with unilateral transfemoral amputation were recruited for this study. After calculation of each participant's preferred step frequency, each individual ran on an instrumented treadmill for 20 s at nine different metronome frequencies ranging from - 20% to + 20% of the preferred frequency in increments of 5% with the help of a metronome. From the data collected, spatiotemporal parameters, three components of peak GRFs, and the components of GRF impulses were computed. The asymmetry ratio of all parameters was also calculated. Statistical analyses of all data were conducted with appropriate tools based on normality analysis to investigate the main effects of step frequency. For parameters with significant main effects, linear regression analyses were further conducted for each limb. RESULTS: Significant main effects of step frequency were found in multiple parameters (P < 0.01). Both peak GRF and GRF impulse parameters that demonstrated significant main effects tended towards decreasing magnitude with increasing step frequency. Peak vertical GRF in particular demonstrated the most symmetric values between the limbs from - 5% to 0% metronome frequency. All parameters that demonstrated significant effects in asymmetry ratio became more asymmetric with increasing step frequency. CONCLUSIONS: For runners with a unilateral transfemoral amputation, increasing step frequency is a viable method to decrease the magnitude of GRFs. However, with the increase of step frequency, further asymmetry in gait is observed. The relationships between step frequency, GRFs, and the asymmetry ratio in gait may provide insight into the training of runners with unilateral transfemoral amputation for the prevention of injury.


Asunto(s)
Amputados , Miembros Artificiales , Carrera , Amputación Quirúrgica , Fenómenos Biomecánicos , Estudios Transversales , Marcha , Humanos
2.
Eur J Appl Physiol ; 119(1): 85-90, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30298456

RESUMEN

PURPOSE: Although sprinters with unilateral (UTF) and bilateral transfemoral (BTF) amputations and functional impairments (FIs) without amputation were allocated into different classifications because of the recent revision of the International Paralympic Committee Athletics Rules and Regulations, it is unclear whether running mechanics differ among the three groups. The aim of this study was to investigate the differences in the spatiotemporal parameters of the three groups during 100-m sprint in official competitions. METHODS: Using publicly available Internet broadcasts, we analyzed 11 elite-level sprinters with UTF amputation, 4 sprinters with BTF amputation, and 5 sprinters with FI without amputation. The best personal times for nearly all individuals were included. For each sprinter's race, the average speed, step frequency, and step length were calculated using the number of steps in conjunction with the official race time. RESULTS: Although there were no significant differences in the average speed among the UTF, BTF, and FI groups (7.95 ± 0.22, 7.90 ± 0.42, and 7.93 ± 0.14 m/s, respectively, p = 0.87), those with BTF amputation showed significantly lower step frequency (UTF: 4.20 ± 0.20 Hz, BTF: 3.71 ± 0.32 Hz, FI: 4.20 ± 0.10 Hz, p < 0.05) and longer step length (UTF: 1.90 ± 0.08 m, BTF: 2.14 ± 0.02 m, FI: 1.89 ± 0.06 m, p < 0.05) than the other two groups. CONCLUSION: These results suggest that the step characteristics during sprinting are not the same among sprinters with UTF amputation, BTF amputations, or FI without amputations.


Asunto(s)
Amputados/clasificación , Rendimiento Atlético , Carrera , Miembros Artificiales , Atletas , Fenómenos Biomecánicos , Humanos , Grabación en Video
3.
Int J Sports Med ; 39(9): 661-667, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29925106

RESUMEN

Jump distance per step in bounding exercises from the standing position increases with increasing number of steps. We examined the hypothesis that the joint kinetic variables of the stance leg would also increase accordingly. Eleven male athletes (sprinters and jumpers) performed bounding exercise, starting from the double-leg standing posture, and covered the longest distance possible by performing a series of seven forward alternating single-leg jumps. Kinematic and kinetic data were calculated using the data by a motion capture system and force platforms. Hip extension joint work were decreased at third step (1st: 1.07±0.22, 3rd: 0.45±0.15, 5th: 0.47±0.14 J•kg-1; partial η2: 0.86), and hip abduction joint power were increased (1st: 7.53±3.29, 3rd: 13.50±4.44, 5th: 21.37±9.93 W•kg-1; partial η2: 0.58); the knee extension joint power were increased until the third step (1st: 14.43±4.94, 3rd: 17.13±3.59, 5th: 14.28±2.86 W•kg-1; partial η2: 0.29), and ankle plantar flexion joint power increased (1st: 34.14±5.33, 3rd: 37.46±4.45, 5th: 40.11±5.66 W•kg-1; partial η2: 0.53). These results contrast with our hypothesis, and indicate that increasing the jump distance during bounding exercises is not necessarily accompanied by increases in joint kinetics of stance leg. Moreover, changes in joint kinetics vary at different joints and anatomical axes.


Asunto(s)
Articulación del Tobillo/fisiología , Articulación de la Cadera/fisiología , Articulación de la Rodilla/fisiología , Ejercicio Pliométrico , Fenómenos Biomecánicos , Humanos , Cinética , Masculino , Movimiento , Postura/fisiología , Estudios de Tiempo y Movimiento , Grabación en Video , Adulto Joven
4.
J Appl Biomech ; 34(6): 509-513, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29989464

RESUMEN

To understand the step characteristics during sprinting in lower-extremity amputees using running-specific prosthesis, each athlete should be investigated individually. Theoretically, sprint performance in a 100-m sprint is determined by both step frequency and step length. The aim of the present study was to investigate how step frequency and step length correlate with sprinting performance in elite unilateral transtibial amputees. By using publicly-available Internet broadcasts, the authors analyzed 88 races from 7 unilateral transtibial amputees. For each sprinter's run, the average step frequency and step length were calculated using the number of steps and official race time. Based on Pearson's correlation coefficients between step frequency, step length, and official race time for each individual, the authors classified each individual into 3 groups: step-frequency reliant, step-length reliant, and hybrid. It was found that 2, 2, and 3 sprinters were classified into step-frequency reliant, step-length reliant, and hybrid, respectively. These results suggest that the step frequency or step length reliance during a 100-m sprint is an individual occurrence in elite unilateral transtibial amputees using running-specific prosthesis.


Asunto(s)
Amputados , Miembros Artificiales , Rendimiento Atlético/fisiología , Extremidad Inferior , Carrera/fisiología , Adulto , Fenómenos Biomecánicos/fisiología , Humanos , Masculino
5.
Int J Sports Med ; 38(12): 921-927, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28965338

RESUMEN

Different types of running shoes may have different influence on the negative work of each lower extremity joint. Clarifying this influence can reduce the potential risk of muscle injury. The present study examined the difference in the negative work and associated kinetic and kinematic parameters of the lower extremity joints between training shoes and racing flats during the contact phase of running. Participants were asked to run on a runway at a speed of 3.0 m·s-1 for both training shoes and racing flats. The negative work and associated kinetic and kinematic parameters of each lower extremity joint were calculated. No difference was found in the negative work of the hip and ankle joints between the two types of running shoes. Meanwhile, the negative work of the knee joint was significantly greater for training shoes than for racing flats. This aspect was related to a longer duration of the negative power of the knee joint with the invariant amplitude of the negative power, moment, and angular velocity. These results suggest a higher potential risk of muscle injury around the knee joint for training shoes than for racing flats.


Asunto(s)
Extremidad Inferior/fisiología , Músculo Esquelético/fisiología , Carrera/fisiología , Zapatos , Adulto , Articulación del Tobillo/fisiología , Fenómenos Biomecánicos , Diseño de Equipo , Articulación de la Cadera/fisiología , Humanos , Cinética , Articulación de la Rodilla/fisiología , Extremidad Inferior/lesiones , Masculino , Músculo Esquelético/lesiones , Factores de Riesgo , Carrera/lesiones , Adulto Joven
6.
J Appl Biomech ; 33(1): 39-47, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27705055

RESUMEN

This study assessed the agreement between Kvert calculated from 4 different methods of estimating vertical displacement of the center of mass (COM) during single-leg hopping. Healthy participants (N = 38) completed a 10-s single-leg hopping effort on a force plate, with 3D motion of the lower limb, pelvis, and trunk captured. Derived variables were calculated for a total of 753 hop cycles using 4 methods, including: double integration of the vertical ground reaction force, law of falling bodies, a marker cluster on the sacrum, and a segmental analysis method. Bland-Altman plots demonstrated that Kvert calculated using segmental analysis and double integration methods have a relatively small bias (0.93 kN⋅m-1) and 95% limits of agreement (-1.89 to 3.75 kN⋅m-1). In contrast, a greater bias was revealed between sacral marker cluster and segmental analysis (-2.32 kN⋅m-1), sacral marker cluster and double integration (-3.25 kN⋅m-1), and the law of falling bodies compared with all methods (17.26-20.52 kN⋅m-1). These findings suggest the segmental analysis and double integration methods can be used interchangeably for the calculation of Kvert during single-leg hopping. The authors propose the segmental analysis method to be considered the gold standard for the calculation of Kvert during single-leg, on-the-spot hopping.


Asunto(s)
Módulo de Elasticidad/fisiología , Marcha/fisiología , Pierna/fisiología , Locomoción/fisiología , Modelos Biológicos , Análisis y Desempeño de Tareas , Adulto , Algoritmos , Simulación por Computador , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
7.
J Appl Biomech ; 33(6): 406-409, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28605277

RESUMEN

Understanding the characteristics of ground reaction forces (GRFs) on both limbs during sprinting in unilateral amputees wearing running-specific prostheses would provide important information that could be utilized in the evaluation of athletic performance and development of training methods in this population. The purpose of this study was to compare GRFs between intact and prosthetic limbs during sprinting in unilateral transfemoral amputees wearing running-specific prostheses. Nine sprinters with unilateral transfemoral amputation wearing the same type of prosthesis performed maximal sprinting on a 40-m runway. GRFs were recorded from 7 force plates placed in the center of the runway. Peak forces and impulses of the GRFs in each direction were compared between limbs. Peak forces in vertical, braking, propulsive, and medial directions were significantly greater in intact limbs than those in prosthetic limbs, whereas there were no significant differences in peak lateral force between limbs. Further, significantly less braking impulses were observed in prosthetic limbs than in intact limbs; however, the other measured impulses were not different between limbs. Therefore, the results of the present study suggest that limb-specific rehabilitation and training strategies should be developed for transfemoral amputees wearing running-specific prostheses.


Asunto(s)
Amputados , Miembros Artificiales , Pierna/fisiología , Carrera/fisiología , Adulto , Fenómenos Biomecánicos , Femenino , Humanos , Pierna/cirugía , Masculino
8.
J Appl Biomech ; 32(1): 93-6, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26251966

RESUMEN

The aim of this study was to develop a normative sample of step frequency and step length during maximal sprinting in amputee sprinters. We analyzed elite-level 100-m races of 255 amputees and 93 able-bodied sprinters, both men and women, from publicly-available Internet broadcasts. For each sprinter's run, the average forward velocity, step frequency, and step length over the 100-m distance were analyzed by using the official record and number of steps in each race. The average forward velocity was greatest in able-bodied sprinters (10.04 ± 0.17 m/s), followed by bilateral transtibial (8.77 ± 0.27 m/s), unilateral transtibial (8.65 ± 0.30 m/s), and transfemoral amputee sprinters (7.65 ± 0.38 m/s) in men. Differences in velocity among 4 groups were associated with step length (able-bodied vs transtibial amputees) or both step frequency and step length (able-bodied vs transfemoral amputees). Although we also found that the velocity was greatest in able-bodied sprinters (9.10 ± 0.14 m/s), followed by unilateral transtibial (7.08 ± 0.26 m/s), bilateral transtibial (7.06 ± 0.48 m/s), and transfemoral amputee sprinters (5.92 ± 0.33 m/s) in women, the differences in the velocity among the groups were associated with both step frequency and step length. Current results suggest that spatiotemporal parameters during a 100-m race of amputee sprinters is varied by amputation levels and sex.


Asunto(s)
Amputados , Miembros Artificiales , Rendimiento Atlético/fisiología , Diseño de Prótesis , Carrera/fisiología , Adulto , Fenómenos Biomecánicos/fisiología , Femenino , Humanos , Masculino
9.
J Appl Biomech ; 32(3): 287-94, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26957365

RESUMEN

Individuals with lower extremity amputation must adapt the mechanical interactions between the feet and ground to account for musculoskeletal function loss. However, it is currently unknown how individuals with amputation modulate three-dimensional ground reaction forces (GRFs) when running. This study aimed to understand how running with running-specific prostheses influences three-dimensional support forces from the ground. Eight individuals with unilateral transtibial amputations and 8 control subjects ran overground at 2.5, 3.0, and 3.5 m/s. Ten force plates measured GRFs at 1000 Hz. Peak and average GRFs and impulses in each plane were compared between limbs and groups. Prosthetic limbs generated reduced vertical impulses, braking forces and impulses, and mediolateral forces while generating similar propulsive impulses compared with intact and control limbs. Intact limbs generated greater peak and average vertical forces and average braking forces than control subjects' limbs. These data indicate that the nonamputated limb experiences elevated mechanical loading compared with prosthetic and control limbs. This may place individuals with amputation at greater risk of acute injury or joint degeneration in their intact limb. Individuals with amputation adapted to running-specific prosthesis force production limitations by generating longer periods of positive impulse thus producing propulsive impulses equivalent to intact and control limbs.


Asunto(s)
Amputados , Miembros Artificiales , Carrera/fisiología , Adulto , Fenómenos Biomecánicos , Estudios de Casos y Controles , Humanos , Pierna/cirugía , Locomoción , Masculino
10.
J Appl Biomech ; 30(1): 154-9, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24676522

RESUMEN

Despite the presence of several different calculations of leg stiffness during hopping, little is known about how the methodologies produce differences in the leg stiffness. The purpose of this study was to directly compare Kleg during hopping as calculated from three previously published computation methods. Ten male subjects hopped in place on two legs, at four frequencies (2.2, 2.6, 3.0, and 3.4 Hz). In this article, leg stiffness was calculated from the natural frequency of oscillation (method A), the ratio of maximal ground reaction force (GRF) to peak center of mass displacement at the middle of the stance phase (method B), and an approximation based on sine-wave GRF modeling (method C). We found that leg stiffness in all methods increased with an increase in hopping frequency, but Kleg values using methods A and B were significantly higher than when using method C at all hopping frequencies. Therefore, care should be taken when comparing leg stiffness obtained by method C with those calculated by other methods.


Asunto(s)
Aceleración , Algoritmos , Relojes Biológicos/fisiología , Marcha/fisiología , Pierna/fisiología , Modelos Biológicos , Oscilometría/métodos , Adulto , Simulación por Computador , Módulo de Elasticidad/fisiología , Humanos , Masculino , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Resistencia a la Tracción/fisiología
11.
Gait Posture ; 108: 50-55, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37984028

RESUMEN

BACKGROUND: Knee osteoarthritis (OA) often occurs in older women. Walking assistance such as knee brace is used to reduce mechanical stress on the knee, preventing OA onset. Dynamic joint stiffness (DJS) quantifies the resistance of an assistive device, providing a foundation for an objective bending stiffness prescription model. DJS may show sex differences among older adults. RESEARCH QUESTION: This study aimed to investigate sex differences in lower limb DJS in the sagittal plane during walking in older adults. METHODS: A total of 132 healthy older adults, aged 65 years or older (71 men and 61 women), were extracted from a public dataset. DJS of the hip, knee, and ankle joints in the sagittal plane was determined during the power absorption phase of the stance. DJS, joint angular excursion, and Δ joint moment were compared between older men and women using the Mann-Whitney U test. In addition, the r-value was calculated to represent the effect size of the differences in amplitude. RESULTS: Ankle DJS in older women was significantly lower with a reduced Δ ankle plantar flexion moment compared with that into men (p < 0.001 and p = 0.001; r = 0.35 and 0.42, respectively). Additionally, knee DJS was lower in older women (p = 0.007). However, since the joint angular excursion and ΔMoment showed no differences (p = 0.624 and 0.222, respectively), the effect size was small (r = 0.24). Hip DJS showed no significant sex differences (p = 0.703). SIGNIFICANCE: These results suggest that the decrease in ankle DJS in older women was caused by the reduced ankle plantarflexion moment. Thus, support for ankle DJS is necessary for healthy older women. Nonetheless, knee DJS does not elucidate the cause of knee OA in the older women.


Asunto(s)
Marcha , Osteoartritis de la Rodilla , Humanos , Femenino , Masculino , Anciano , Caracteres Sexuales , Caminata , Articulación de la Rodilla , Articulación del Tobillo , Fenómenos Biomecánicos
12.
Artículo en Inglés | MEDLINE | ID: mdl-38517721

RESUMEN

The primary goal of rehabilitation for individuals with lower limb amputation, particularly those with unilateral transfemoral amputation (uTFA), is to restore their ability to walk independently. Effective control of the center of pressure (COP) during gait is vital for maintaining balance and stability, yet it poses a significant challenge for individuals with uTFA. This study aims to study the COP during gait in individuals with uTFA and elucidate their unique compensatory strategies. This study involved 12 uTFA participants and age-matched non-disabled controls, with gait and COP trajectory data collected using an instrumented treadmill. Gait and COP parameters between the control limb (CL), prosthetic limb (PL), and intact limb (IL) were compared. Notably, the mediolateral displacement of COP in PL exhibited significant lateral displacement compared to the CL from 30% to 60% of the stance. In 20% to 45% of the stance, the COP forward speed of PL was significantly higher than that of the IL. Furthermore, during the initial 20% of the stance, the vertical ground reaction force of PL was significantly lower than that of IL. Additionally, individuals with uTFA exhibited a distinct gait pattern with altered duration of loading response, single limb support, pre-swing and swing phases, and step time. These findings indicate the adaptability of individuals with uTFA in weight transfer, balance control, and pressure distribution on gait stability. In conclusion, this study provides valuable insights into the unique gait dynamics and balance strategies of uTFA patients, highlighting the importance of optimizing prosthetic design, alignment procedures, and rehabilitation programs to enhance gait patterns and reduce the risk of injuries due to compensatory movements.


Asunto(s)
Amputados , Miembros Artificiales , Humanos , Amputados/rehabilitación , Fenómenos Biomecánicos , Marcha/fisiología , Caminata/fisiología , Amputación Quirúrgica
13.
R Soc Open Sci ; 11(3): 231854, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38545618

RESUMEN

This study aimed to compare the ground reaction forces (GRFs) and spatio-temporal parameters as well as their asymmetry ratios in gait between individuals wearing a transfemoral prosthetic simulator (TFSim) and individuals with unilateral transfemoral amputation (TFAmp) across a range of walking speeds (2.0-5.5 km h-1). The study recruited 10 non-disabled individuals using TFSim and 10 individuals with unilateral TFAmp using a transfemoral prosthesis. Data were collected using an instrumented treadmill with built-in force plates, and subsequently, the GRFs and spatio-temporal parameters, as well as their asymmetry ratios, were analysed. When comparing the TFSim and TFAmp groups, no significant differences were found among the gait parameters and asymmetry ratios of all tested metrics except the vertical GRFs. The TFSim may not realistically reproduce the vertical GRFs during the weight acceptance and push-off phases. The structural and functional variations in prosthetic limbs and components between the TFSim and TFAmp groups may be primary contributors to the difference in the vertical GRFs. These results suggest that TFSim might be able to emulate the gait of individuals with TFAmp regarding the majority of spatio-temporal and GRF parameters. However, the vertical GRFs of TFSim should be interpreted with caution.

14.
Gait Posture ; 109: 240-258, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367456

RESUMEN

BACKGROUND: Foot orthoses (FOs) are often prescribed by clinicians to treat foot and ankle conditions, prevent running injuries, and enhance performance. However, the lack of higher-order synthesis of clinical trials makes it challenging for clinicians to adopt an evidence-based approach to FOs' prescriptions. RESEARCH QUESTION: Do FOs with different modifications alter lower extremity running kinematics and kinetics? METHODS: A systematic search of seven databases was conducted from inception to February 2023. The analysis was restricted to healthy adults without foot musculoskeletal impairments and studies that compared the FOs effects with the controls. The methodological quality of the 35 studies that met the eligibility criteria was evaluated using the modified Downs and Black checklist. The random effects model estimated the standardized mean difference (SMD) with 95% confidence intervals and effect sizes. Sub-group analyses based on FOs type were performed to assess the potential effects of the intervention. RESULTS: Our findings indicated that both custom and off-the-shelf arch-support FOs reduced peak plantar pressure at the medial heel (SMD=-0.35, and SMD=-1.03), lateral heel (SMD=-0.50, and SMD=-0.53), and medial forefoot (SMD=-0.20, and SMD=-0.27), but increased plantar pressure at the mid-foot (SMD=0.30, and SMD=0.56). Compared with the controls, significant increases (SMD=0.36) in perceived comfort were found with custom FOs. A reduction (SMD=-0.58) in initial ankle inversion was found when a raised heel cup was integrated with arch-support FOs. A medial post integrated with arch support exhibited a reduced ankle (SMD=-1.66) and tibial (SMD=-0.63) range of motion. Custom FOs, however, unfavorably affected the running economy (SMD=-0.25) and perceived exertion (SMD=0.20). SIGNIFICANCE: Although FOs have been reported to have some positive biomechanical effects in healthy populations without musculoskeletal impairments or running-related issues, they need to be optimized and generalized to achieve better running performance and prevent injury.


Asunto(s)
Ortesis del Pié , Carrera , Humanos , Carrera/fisiología , Fenómenos Biomecánicos , Pie/fisiología , Cinética
15.
J Appl Biomech ; 29(1): 55-60, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23462443

RESUMEN

Understanding the degree of leg stiffness during human movement would provide important information that may be used for injury prevention. In the current study, we investigated bilateral differences in leg stiffness during one-legged hopping. Ten male participants performed one-legged hopping in place, matching metronome beats at 1.5, 2.2, and 3.0 Hz. Based on a spring-mass model, we calculated leg stiffness, which is defined as the ratio of maximal ground reaction force to maximum center of mass displacement at the middle of the stance phase, measured from vertical ground reaction force. In all hopping frequency settings, there was no significant difference in leg stiffness between legs. Although not statistically significant, asymmetry was the greatest at 1.5 Hz, followed by 2.2 and 3.0 Hz for all dependent variables. Furthermore, the number of subjects with an asymmetry greater than the 10% criterion was larger at 1.5 Hz than those at 2.2 and 3.0 Hz. These results will assist in the formulation of treatment-specific training regimes and rehabilitation programs for lower extremity injuries.


Asunto(s)
Peso Corporal/fisiología , Pierna/fisiología , Modelos Biológicos , Movimiento/fisiología , Esfuerzo Físico/fisiología , Rango del Movimiento Articular/fisiología , Análisis y Desempeño de Tareas , Adulto , Simulación por Computador , Módulo de Elasticidad/fisiología , Humanos , Masculino , Estrés Mecánico
16.
J Appl Biomech ; 29(6): 785-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23271206

RESUMEN

Although many athletic activities and plyometric training methods involve both unilateral and bilateral movement, little is known about differences in the leg stiffness (K(leg)) experienced during one-legged hopping (OLH) and two-legged hopping (TLH) in place. The purpose of this study was to investigate the effect of hopping frequencies on differences in K(leg) during OLH and TLH. Using a spring-mass model and data collected from 17 participants during OLH and TLH at frequencies of 2.0, 2.5, and 3.0 Hz, K(leg) was calculated as the ratio of maximal ground reaction force (F(peak)) to the maximum center of mass displacement (ΔCOM) at the middle of the stance phase measured from vertical ground reaction force. Both K(leg) and F(peak) were found to be significantly greater during TLH than OLH at all frequencies, but type of hopping was not found to have a significant effect on ΔCOM. These results suggest that K(leg) is different between OLH and TLH at a given hopping frequency and differences in K(leg) during OLH and TLH are mainly associated with differences in F(peak) but not ΔCOM.


Asunto(s)
Aceleración , Relojes Biológicos/fisiología , Transferencia de Energía/fisiología , Marcha/fisiología , Pierna/fisiología , Modelos Biológicos , Adulto , Simulación por Computador , Módulo de Elasticidad/fisiología , Femenino , Humanos , Masculino , Oscilometría/métodos , Estrés Mecánico
17.
Sci Rep ; 13(1): 7823, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37188732

RESUMEN

The mediolateral ground reaction force (M-L GRF) profile that realizes a symmetrical mediolateral ground reaction impulse (M-L GRI) between both limbs is essential for maintaining a straight movement path. We aimed to examine the M-L GRF production across different running speeds in unilateral transfemoral amputees (TFA) to identify strategies for maintaining straight running. The average medial and lateral GRF, contact time (tc), M-L GRI, step width, and center of pressure angle (COPANG) were analyzed. Nine TFAs performed running trials at 100% speed on an instrumented treadmill. Trials were set at 30-80% speed with an increment of 10%. Seven steps from the unaffected and affected limbs were analyzed. Overall, the unaffected limbs exhibited a higher average medial GRF than the affected limbs. The M-L GRI were similar between both limbs at all speeds, implying that the participants were able to maintain a straight running path. The affected limb exhibited a longer tc and a lower M-L GRF profile than the unaffected limb. The results showed that unilateral TFAs adopted limb-specific strategies to maintain a straight running path, and that these limb-specific strategies were consistent across different running speeds.


Asunto(s)
Amputados , Miembros Artificiales , Carrera , Humanos , Fenómenos Biomecánicos , Pierna , Marcha
18.
R Soc Open Sci ; 10(3): 221198, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36908994

RESUMEN

Understanding the sprinting patterns of individuals with unilateral transfemoral amputation (uTFA) is important for designing improved running-specific prostheses and for prosthetic gait rehabilitation. Continuous relative phase (CRP) analysis acquires clues from movement kinematics and obtains insights into the sprinting coordination of individuals with uTFA. Seven individuals with uTFA sprinted on a 40 m runway. The spatio-temporal parameters, joint and segment angles of the lower limbs were obtained, and CRP analysis was performed on thigh-shank and shank-foot couplings. Subsequently, the asymmetry ratios of the parameters were calculated. Statistical analyses were performed between the lower limbs. Significant differences in the stance time, stance phase percentage, ankle joint angles and CRP of the shank-foot coupling (p < 0.05) were observed between the lower limbs. The primary contributor to these differences could be the structural differences between the lower limbs. Despite the presence of different coordination features in the stance and swing phases between the lower limbs, no significant difference in the coordination patterns of the thigh-shank coupling was observed. This may be a compensation strategy for achieving coordination patterns with improved symmetry between the lower limbs. The results of this study provide novel insights into the sprinting movement patterns of individuals with uTFA.

19.
Front Bioeng Biotechnol ; 11: 1130353, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937747

RESUMEN

Adaptive locomotion is an essential behavior for animals to survive. The central pattern generator in the spinal cord is responsible for the basic rhythm of locomotion through sensory feedback coordination, resulting in energy-efficient locomotor patterns. Individuals with symmetrical body proportions exhibit an energy-efficient symmetrical gait on flat ground. In contrast, individuals with lower limb amputation, who have morphologically asymmetrical body proportions, exhibit asymmetrical gait patterns. However, it remains unclear how the nervous system adjusts the control of the lower limbs. Thus, in this study, we investigated how individuals with unilateral transtibial amputation control their left and right lower limbs during locomotion using a two-dimensional neuromusculoskeletal model. The model included a musculoskeletal model with 7 segments and 18 muscles, as well as a neural model with a central pattern generator and sensory feedback systems. Specifically, we examined whether individuals with unilateral transtibial amputation acquire prosthetic gait through a symmetric or asymmetric feedback control for the left and right lower limbs. After acquiring locomotion, the metabolic costs of transport and the symmetry of the spatiotemporal gait factors were evaluated. Regarding the metabolic costs of transportation, the symmetric control model showed values approximately twice those of the asymmetric control model, whereas both scenarios showed asymmetry of spatiotemporal gait patterns. Our results suggest that individuals with unilateral transtibial amputation can reacquire locomotion by modifying sensory feedback parameters. In particular, the model reacquired reasonable locomotion for activities of daily living by re-searching asymmetric feedback parameters for each lower limb. These results could provide insight into effective gait assessment and rehabilitation methods to reacquire locomotion in individuals with unilateral transtibial amputation.

20.
Artículo en Inglés | MEDLINE | ID: mdl-37721878

RESUMEN

Understanding the lower-limb coordination of individuals with unilateral transfemoral amputation (uTFA) while walking is essential to understand their gait mechanisms. Continuous relative phase (CRP) analysis provides insights into gait coordination patterns of the neuromusculoskeletal system based on movement kinematics. Fourteen individuals with uTFA and their age-matched non-disabled individuals participated in this study. Kinematic data of the lower limbs of the participants were collected during walking. The joint angles, segment angles, and CRP values of the thigh-shank and shank-foot couplings were investigated. The curves among the lower limbs of the participants were compared using a statistical parametric mapping test. Compensatory strategies were found in the lower limbs from coordination patterns. In thigh-shank coupling, although distinct coordination traits in stance and swing phases among the lower limbs were found, the lower limbs in both groups were discovered to remain in a similar coordination pattern during gait. For individuals with uTFA, in shank-foot coupling, intact limbs demonstrated a short period of foot-leading pattern which was significantly different from that of the other limbs during mid-stance to compensate for the weaker force generation by prosthetic limbs. The findings offer normative coordination patterns on the walking of individuals with uTFA, which could benefit prosthetic gait rehabilitation and development.


Asunto(s)
Miembros Artificiales , Muslo , Humanos , Marcha , Extremidad Inferior , Caminata , Amputación Quirúrgica , Fenómenos Biomecánicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA