Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 181(2): 396-409.e26, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32220308

RESUMEN

Decades after the motor homunculus was first proposed, it is still unknown how different body parts are intermixed and interrelated in human motor cortical areas at single-neuron resolution. Using multi-unit recordings, we studied how face, head, arm, and leg movements are represented in the hand knob area of premotor cortex (precentral gyrus) in people with tetraplegia. Contrary to traditional expectations, we found strong representation of all movements and a partially "compositional" neural code that linked together all four limbs. The code consisted of (1) a limb-coding component representing the limb to be moved and (2) a movement-coding component where analogous movements from each limb (e.g., hand grasp and toe curl) were represented similarly. Compositional coding might facilitate skill transfer across limbs, and it provides a useful framework for thinking about how the motor system constructs movement. Finally, we leveraged these results to create a whole-body intracortical brain-computer interface that spreads targets across all limbs.


Asunto(s)
Lóbulo Frontal/fisiología , Corteza Motora/anatomía & histología , Corteza Motora/fisiología , Adulto , Mapeo Encefálico , Lóbulo Frontal/anatomía & histología , Cuerpo Humano , Humanos , Corteza Motora/metabolismo , Movimiento/fisiología
2.
Nature ; 620(7976): 1031-1036, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37612500

RESUMEN

Speech brain-computer interfaces (BCIs) have the potential to restore rapid communication to people with paralysis by decoding neural activity evoked by attempted speech into text1,2 or sound3,4. Early demonstrations, although promising, have not yet achieved accuracies sufficiently high for communication of unconstrained sentences from a large vocabulary1-7. Here we demonstrate a speech-to-text BCI that records spiking activity from intracortical microelectrode arrays. Enabled by these high-resolution recordings, our study participant-who can no longer speak intelligibly owing to amyotrophic lateral sclerosis-achieved a 9.1% word error rate on a 50-word vocabulary (2.7 times fewer errors than the previous state-of-the-art speech BCI2) and a 23.8% word error rate on a 125,000-word vocabulary (the first successful demonstration, to our knowledge, of large-vocabulary decoding). Our participant's attempted speech was decoded  at 62 words per minute, which is 3.4 times as fast as the previous record8 and begins to approach the speed of natural conversation (160 words per minute9). Finally, we highlight two aspects of the neural code for speech that are encouraging for speech BCIs: spatially intermixed tuning to speech articulators that makes accurate decoding possible from only a small region of cortex, and a detailed articulatory representation of phonemes that persists years after paralysis. These results show a feasible path forward for restoring rapid communication to people with paralysis who can no longer speak.


Asunto(s)
Interfaces Cerebro-Computador , Prótesis Neurales , Parálisis , Habla , Humanos , Esclerosis Amiotrófica Lateral/fisiopatología , Esclerosis Amiotrófica Lateral/rehabilitación , Corteza Cerebral/fisiología , Microelectrodos , Parálisis/fisiopatología , Parálisis/rehabilitación , Vocabulario
3.
Nature ; 593(7858): 249-254, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33981047

RESUMEN

Brain-computer interfaces (BCIs) can restore communication to people who have lost the ability to move or speak. So far, a major focus of BCI research has been on restoring gross motor skills, such as reaching and grasping1-5 or point-and-click typing with a computer cursor6,7. However, rapid sequences of highly dexterous behaviours, such as handwriting or touch typing, might enable faster rates of communication. Here we developed an intracortical BCI that decodes attempted handwriting movements from neural activity in the motor cortex and translates it to text in real time, using a recurrent neural network decoding approach. With this BCI, our study participant, whose hand was paralysed from spinal cord injury, achieved typing speeds of 90 characters per minute with 94.1% raw accuracy online, and greater than 99% accuracy offline with a general-purpose autocorrect. To our knowledge, these typing speeds exceed those reported for any other BCI, and are comparable to typical smartphone typing speeds of individuals in the age group of our participant (115 characters per minute)8. Finally, theoretical considerations explain why temporally complex movements, such as handwriting, may be fundamentally easier to decode than point-to-point movements. Our results open a new approach for BCIs and demonstrate the feasibility of accurately decoding rapid, dexterous movements years after paralysis.


Asunto(s)
Interfaces Cerebro-Computador , Encéfalo/fisiología , Comunicación , Escritura Manual , Humanos , Redes Neurales de la Computación , Traumatismos de la Médula Espinal , Factores de Tiempo
4.
Proc Natl Acad Sci U S A ; 121(1): e2312204121, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38157452

RESUMEN

How the human cortex integrates ("binds") information encoded by spatially distributed neurons remains largely unknown. One hypothesis suggests that synchronous bursts of high-frequency oscillations ("ripples") contribute to binding by facilitating integration of neuronal firing across different cortical locations. While studies have demonstrated that ripples modulate local activity in the cortex, it is not known whether their co-occurrence coordinates neural firing across larger distances. We tested this hypothesis using local field-potentials and single-unit firing from four 96-channel microelectrode arrays in the supragranular cortex of 3 patients. Neurons in co-rippling locations showed increased short-latency co-firing, prediction of each other's firing, and co-participation in neural assemblies. Effects were similar for putative pyramidal and interneurons, during non-rapid eye movement sleep and waking, in temporal and Rolandic cortices, and at distances up to 16 mm (the longest tested). Increased co-prediction during co-ripples was maintained when firing-rate changes were equated, indicating that it was not secondary to non-oscillatory activation. Co-rippling enhanced prediction was strongly modulated by ripple phase, supporting the most common posited mechanism for binding-by-synchrony. Co-ripple enhanced prediction is reciprocal, synergistic with local upstates, and further enhanced when multiple sites co-ripple, supporting re-entrant facilitation. Together, these results support the hypothesis that trans-cortical co-occurring ripples increase the integration of neuronal firing of neurons in different cortical locations and do so in part through phase-modulation rather than unstructured activation.


Asunto(s)
Interneuronas , Neuronas , Humanos , Hipocampo/fisiología
5.
Neurocrit Care ; 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38286946

RESUMEN

BACKGROUND: We developed a gap analysis that examines the role of brain-computer interfaces (BCI) in patients with disorders of consciousness (DoC), focusing on their assessment, establishment of communication, and engagement with their environment. METHODS: The Curing Coma Campaign convened a Coma Science work group that included 16 clinicians and neuroscientists with expertise in DoC. The work group met online biweekly and performed a gap analysis of the primary question. RESULTS: We outline a roadmap for assessing BCI readiness in patients with DoC and for advancing the use of BCI devices in patients with DoC. Additionally, we discuss preliminary studies that inform development of BCI solutions for communication and assessment of readiness for use of BCIs in DoC study participants. Special emphasis is placed on the challenges posed by the complex pathophysiologies caused by heterogeneous brain injuries and their impact on neuronal signaling. The differences between one-way and two-way communication are specifically considered. Possible implanted and noninvasive BCI solutions for acute and chronic DoC in adult and pediatric populations are also addressed. CONCLUSIONS: We identify clinical and technical gaps hindering the use of BCI in patients with DoC in each of these contexts and provide a roadmap for research aimed at improving communication for adults and children with DoC, spanning the clinical spectrum from intensive care unit to chronic care.

6.
J Neurosci ; 42(25): 5007-5020, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35589391

RESUMEN

Consolidation of memory is believed to involve offline replay of neural activity. While amply demonstrated in rodents, evidence for replay in humans, particularly regarding motor memory, is less compelling. To determine whether replay occurs after motor learning, we sought to record from motor cortex during a novel motor task and subsequent overnight sleep. A 36-year-old man with tetraplegia secondary to cervical spinal cord injury enrolled in the ongoing BrainGate brain-computer interface pilot clinical trial had two 96-channel intracortical microelectrode arrays placed chronically into left precentral gyrus. Single- and multi-unit activity was recorded while he played a color/sound sequence matching memory game. Intended movements were decoded from motor cortical neuronal activity by a real-time steady-state Kalman filter that allowed the participant to control a neurally driven cursor on the screen. Intracortical neural activity from precentral gyrus and 2-lead scalp EEG were recorded overnight as he slept. When decoded using the same steady-state Kalman filter parameters, intracortical neural signals recorded overnight replayed the target sequence from the memory game at intervals throughout at a frequency significantly greater than expected by chance. Replay events occurred at speeds ranging from 1 to 4 times as fast as initial task execution and were most frequently observed during slow-wave sleep. These results demonstrate that recent visuomotor skill acquisition in humans may be accompanied by replay of the corresponding motor cortex neural activity during sleep.SIGNIFICANCE STATEMENT Within cortex, the acquisition of information is often followed by the offline recapitulation of specific sequences of neural firing. Replay of recent activity is enriched during sleep and may support the consolidation of learning and memory. Using an intracortical brain-computer interface, we recorded and decoded activity from motor cortex as a human research participant performed a novel motor task. By decoding neural activity throughout subsequent sleep, we find that neural sequences underlying the recently practiced motor task are repeated throughout the night, providing direct evidence of replay in human motor cortex during sleep. This approach, using an optimized brain-computer interface decoder to characterize neural activity during sleep, provides a framework for future studies exploring replay, learning, and memory.


Asunto(s)
Aprendizaje/fisiología , Corteza Motora/fisiología , Sueño/fisiología , Adulto , Interfaces Cerebro-Computador , Vértebras Cervicales , Electroencefalografía/métodos , Humanos , Masculino , Proyectos Piloto , Cuadriplejía/etiología , Cuadriplejía/fisiopatología , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/fisiopatología
7.
Lancet ; 397(10284): 1545-1553, 2021 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-33894832

RESUMEN

BACKGROUND: Long-term loss of arm function after ischaemic stroke is common and might be improved by vagus nerve stimulation paired with rehabilitation. We aimed to determine whether this strategy is a safe and effective treatment for improving arm function after stroke. METHODS: In this pivotal, randomised, triple-blind, sham-controlled trial, done in 19 stroke rehabilitation services in the UK and the USA, participants with moderate-to-severe arm weakness, at least 9 months after ischaemic stroke, were randomly assigned (1:1) to either rehabilitation paired with active vagus nerve stimulation (VNS group) or rehabilitation paired with sham stimulation (control group). Randomisation was done by ResearchPoint Global (Austin, TX, USA) using SAS PROC PLAN (SAS Institute Software, Cary, NC, USA), with stratification by region (USA vs UK), age (≤30 years vs >30 years), and baseline Fugl-Meyer Assessment-Upper Extremity (FMA-UE) score (20-35 vs 36-50). Participants, outcomes assessors, and treating therapists were masked to group assignment. All participants were implanted with a vagus nerve stimulation device. The VNS group received 0·8 mA, 100 µs, 30 Hz stimulation pulses, lasting 0·5 s. The control group received 0 mA pulses. Participants received 6 weeks of in-clinic therapy (three times per week; total of 18 sessions) followed by a home exercise programme. The primary outcome was the change in impairment measured by the FMA-UE score on the first day after completion of in-clinic therapy. FMA-UE response rates were also assessed at 90 days after in-clinic therapy (secondary endpoint). All analyses were by intention to treat. This trial is registered at ClinicalTrials.gov, NCT03131960. FINDINGS: Between Oct 2, 2017, and Sept 12, 2019, 108 participants were randomly assigned to treatment (53 to the VNS group and 55 to the control group). 106 completed the study (one patient for each group did not complete the study). On the first day after completion of in-clinic therapy, the mean FMA-UE score increased by 5·0 points (SD 4·4) in the VNS group and by 2·4 points (3·8) in the control group (between group difference 2·6, 95% CI 1·0-4·2, p=0·0014). 90 days after in-clinic therapy, a clinically meaningful response on the FMA-UE score was achieved in 23 (47%) of 53 patients in the VNS group versus 13 (24%) of 55 patients in the control group (between group difference 24%, 6-41; p=0·0098). There was one serious adverse event related to surgery (vocal cord paresis) in the control group. INTERPRETATION: Vagus nerve stimulation paired with rehabilitation is a novel potential treatment option for people with long-term moderate-to-severe arm impairment after ischaemic stroke. FUNDING: MicroTransponder.


Asunto(s)
Neuroestimuladores Implantables/efectos adversos , Accidente Cerebrovascular Isquémico/complicaciones , Rehabilitación de Accidente Cerebrovascular/métodos , Extremidad Superior/fisiopatología , Estimulación del Nervio Vago/instrumentación , Anciano , Estudios de Casos y Controles , Terapia Combinada/métodos , Terapia por Ejercicio/métodos , Femenino , Humanos , Accidente Cerebrovascular Isquémico/rehabilitación , Masculino , Persona de Mediana Edad , Evaluación de Resultado en la Atención de Salud , Paresia/etiología , Recuperación de la Función/fisiología , Resultado del Tratamiento , Parálisis de los Pliegues Vocales/epidemiología
8.
Brain ; 144(11): 3291-3310, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34347037

RESUMEN

Neuroethical questions raised by recent advances in the diagnosis and treatment of disorders of consciousness are rapidly expanding, increasingly relevant and yet underexplored. The aim of this thematic review is to provide a clinically applicable framework for understanding the current taxonomy of disorders of consciousness and to propose an approach to identifying and critically evaluating actionable neuroethical issues that are frequently encountered in research and clinical care for this vulnerable population. Increased awareness of these issues and clarity about opportunities for optimizing ethically responsible care in this domain are especially timely given recent surges in critically ill patients with prolonged disorders of consciousness associated with coronavirus disease 2019 around the world. We begin with an overview of the field of neuroethics: what it is, its history and evolution in the context of biomedical ethics at large. We then explore nomenclature used in disorders of consciousness, covering categories proposed by the American Academy of Neurology, the American Congress of Rehabilitation Medicine and the National Institute on Disability, Independent Living and Rehabilitation Research, including definitions of terms such as coma, the vegetative state, unresponsive wakefulness syndrome, minimally conscious state, covert consciousness and the confusional state. We discuss why these definitions matter, and why there has been such evolution in this nosology over the years, from Jennett and Plum in 1972 to the Multi-Society Task Force in 1994, the Aspen Working Group in 2002 and the 2018 American and 2020 European Disorders of Consciousness guidelines. We then move to a discussion of clinical aspects of disorders of consciousness, the natural history of recovery and ethical issues that arise within the context of caring for people with disorders of consciousness. We conclude with a discussion of key challenges associated with assessing residual consciousness in disorders of consciousness, potential solutions and future directions, including integration of crucial disability rights perspectives.


Asunto(s)
Discusiones Bioéticas , Trastornos de la Conciencia/clasificación , Neurología/ética , COVID-19 , Trastornos de la Conciencia/diagnóstico , Humanos , SARS-CoV-2
9.
Nat Methods ; 15(10): 805-815, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30224673

RESUMEN

Neuroscience is experiencing a revolution in which simultaneous recording of thousands of neurons is revealing population dynamics that are not apparent from single-neuron responses. This structure is typically extracted from data averaged across many trials, but deeper understanding requires studying phenomena detected in single trials, which is challenging due to incomplete sampling of the neural population, trial-to-trial variability, and fluctuations in action potential timing. We introduce latent factor analysis via dynamical systems, a deep learning method to infer latent dynamics from single-trial neural spiking data. When applied to a variety of macaque and human motor cortical datasets, latent factor analysis via dynamical systems accurately predicts observed behavioral variables, extracts precise firing rate estimates of neural dynamics on single trials, infers perturbations to those dynamics that correlate with behavioral choices, and combines data from non-overlapping recording sessions spanning months to improve inference of underlying dynamics.


Asunto(s)
Potenciales de Acción , Algoritmos , Modelos Neurológicos , Corteza Motora/fisiología , Neuronas/fisiología , Animales , Humanos , Masculino , Persona de Mediana Edad , Dinámica Poblacional , Primates
10.
Ann Neurol ; 88(4): 851-854, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32613682

RESUMEN

Many patients with severe coronavirus disease 2019 (COVID-19) remain unresponsive after surviving critical illness. Although several structural brain abnormalities have been described, their impact on brain function and implications for prognosis are unknown. Functional neuroimaging, which has prognostic significance, has yet to be explored in this population. Here we describe a patient with severe COVID-19 who, despite prolonged unresponsiveness and structural brain abnormalities, demonstrated intact functional network connectivity, and weeks later recovered the ability to follow commands. When prognosticating for survivors of severe COVID-19, clinicians should consider that brain networks may remain functionally intact despite structural injury and prolonged unresponsiveness. ANN NEUROL 2020;88:851-854.


Asunto(s)
Encéfalo/diagnóstico por imagen , Coma/diagnóstico por imagen , Infecciones por Coronavirus/fisiopatología , Estado Vegetativo Persistente/diagnóstico por imagen , Neumonía Viral/fisiopatología , Recuperación de la Función , Betacoronavirus , Encéfalo/fisiopatología , COVID-19 , Coma/fisiopatología , Infecciones por Coronavirus/terapia , Electroencefalografía , Neuroimagen Funcional , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas , Pandemias , Estado Vegetativo Persistente/fisiopatología , Neumonía Viral/terapia , Pronóstico , Insuficiencia Renal/fisiopatología , Respiración Artificial , Síndrome de Dificultad Respiratoria/fisiopatología , Síndrome de Dificultad Respiratoria/terapia , SARS-CoV-2 , Choque/fisiopatología
11.
Semin Neurol ; 41(2): 206-216, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33742433

RESUMEN

Recent advances in brain-computer interface technology to restore and rehabilitate neurologic function aim to enable persons with disabling neurologic conditions to communicate, interact with the environment, and achieve other key activities of daily living and personal goals. Here we evaluate the principles, benefits, challenges, and future directions of brain-computer interfaces in the context of neurorehabilitation. We then explore the clinical translation of these technologies and propose an approach to facilitate implementation of brain-computer interfaces for persons with neurologic disease.


Asunto(s)
Interfaces Cerebro-Computador , Rehabilitación Neurológica , Actividades Cotidianas , Encéfalo , Humanos
12.
J Neurol Phys Ther ; 45(2): 70-78, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33707402

RESUMEN

BACKGROUND AND PURPOSE: Recovery of arm function poststroke is highly variable with some people experiencing rapid recovery but many experiencing slower or limited functional improvement. Current stroke prediction models provide some guidance for clinicians regarding expected motor outcomes poststroke but do not address recovery rates, complicating discharge planning. This study developed a novel approach to defining recovery groups based on arm motor recovery trajectories poststroke. In addition, between-group differences in baseline characteristics and therapy hours were explored. METHODS: A retrospective cohort analysis was conducted where 40 participants with arm weakness were assessed 1 week, 6 weeks, 3 months, and 6 months after an ischemic stroke. Arm recovery trajectory groups were defined on the basis of timing of changes in the Fugl-Meyer Assessment Upper Extremity (FMA-UE), at least the minimal clinically important difference (MCID), 1 week to 6 weeks or 6 weeks to 6 months. Three recovery trajectory groups were defined: Fast (n = 19), Extended (n = 12), and Limited (n = 9). Between-group differences in baseline characteristics and therapy hours were assessed. Associations between baseline characteristics and group membership were also determined. RESULTS: Three baseline characteristics were associated with trajectory group membership: FMA-UE, NIH Stroke Scale, and Barthel Index. The Fast Recovery group received the least therapy hours 6 weeks to 6 months. No differences in therapy hours were observed between Extended and Limited Recovery groups at any time points. DISCUSSION AND CONCLUSIONS: Three clinically relevant recovery trajectory groups were defined using the FMA-UE MCID. Baseline impairment, overall stroke severity, and dependence in activities of daily living were associated with group membership and therapy hours differed between groups. Stratifying individuals by recovery trajectory early poststroke could offer additional guidance to clinicians in discharge planning.(See Supplemental Digital Content 1 for Video Abstract, available at: http://links.lww.com/JNPT/A337.).


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Actividades Cotidianas , Brazo , Isquemia Encefálica/complicaciones , Humanos , Recuperación de la Función , Estudios Retrospectivos , Accidente Cerebrovascular/complicaciones , Extremidad Superior
13.
Augment Altern Commun ; 37(4): 261-273, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-35023431

RESUMEN

Nonvocal alert patients in the intensive care unit (ICU) setting often struggle to communicate due to inaccessible or unavailable tools for augmentative and alternative communication. Innovation of a hand-operated non-touchscreen communication system for nonvocal ICU patients was guided by design concepts including speech output, simplicity, and flexibility. A novel communication tool, the Manually Operated Communication System (MOCS), was developed for use in intensive care settings with patients unable to speak. MOCS is a speech-output technology designed for patients with manual dexterity impairments preventing legible writing. MOCS may have the potential to improve communication for nonvocal patients with limited manual dexterity.


Asunto(s)
Equipos de Comunicación para Personas con Discapacidad , Trastornos de la Comunicación , Comunicación , Humanos , Unidades de Cuidados Intensivos
14.
Neural Comput ; 32(5): 969-1017, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32187000

RESUMEN

The Kalman filter provides a simple and efficient algorithm to compute the posterior distribution for state-space models where both the latent state and measurement models are linear and gaussian. Extensions to the Kalman filter, including the extended and unscented Kalman filters, incorporate linearizations for models where the observation model p(observation|state) is nonlinear. We argue that in many cases, a model for p(state|observation) proves both easier to learn and more accurate for latent state estimation. Approximating p(state|observation) as gaussian leads to a new filtering algorithm, the discriminative Kalman filter (DKF), which can perform well even when p(observation|state) is highly nonlinear and/or nongaussian. The approximation, motivated by the Bernstein-von Mises theorem, improves as the dimensionality of the observations increases. The DKF has computational complexity similar to the Kalman filter, allowing it in some cases to perform much faster than particle filters with similar precision, while better accounting for nonlinear and nongaussian observation models than Kalman-based extensions. When the observation model must be learned from training data prior to filtering, off-the-shelf nonlinear and nonparametric regression techniques can provide a gaussian model for p(observation|state) that cleanly integrates with the DKF. As part of the BrainGate2 clinical trial, we successfully implemented gaussian process regression with the DKF framework in a brain-computer interface to provide real-time, closed-loop cursor control to a person with a complete spinal cord injury. In this letter, we explore the theory underlying the DKF, exhibit some illustrative examples, and outline potential extensions.


Asunto(s)
Algoritmos , Teorema de Bayes , Interfaces Cerebro-Computador , Dinámicas no Lineales , Humanos , Aprendizaje/fisiología , Modelos Biológicos
15.
Neurocrit Care ; 33(2): 364-375, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32794142

RESUMEN

There are currently no therapies proven to promote early recovery of consciousness in patients with severe brain injuries in the intensive care unit (ICU). For patients whose families face time-sensitive, life-or-death decisions, treatments that promote recovery of consciousness are needed to reduce the likelihood of premature withdrawal of life-sustaining therapy, facilitate autonomous self-expression, and increase access to rehabilitative care. Here, we present the Connectome-based Clinical Trial Platform (CCTP), a new paradigm for developing and testing targeted therapies that promote early recovery of consciousness in the ICU. We report the protocol for STIMPACT (Stimulant Therapy Targeted to Individualized Connectivity Maps to Promote ReACTivation of Consciousness), a CCTP-based trial in which intravenous methylphenidate will be used for targeted stimulation of dopaminergic circuits within the subcortical ascending arousal network (ClinicalTrials.gov NCT03814356). The scientific premise of the CCTP and the STIMPACT trial is that personalized brain network mapping in the ICU can identify patients whose connectomes are amenable to neuromodulation. Phase 1 of the STIMPACT trial is an open-label, safety and dose-finding study in 22 patients with disorders of consciousness caused by acute severe traumatic brain injury. Patients in Phase 1 will receive escalating daily doses (0.5-2.0 mg/kg) of intravenous methylphenidate over a 4-day period and will undergo resting-state functional magnetic resonance imaging and electroencephalography to evaluate the drug's pharmacodynamic properties. The primary outcome measure for Phase 1 relates to safety: the number of drug-related adverse events at each dose. Secondary outcome measures pertain to pharmacokinetics and pharmacodynamics: (1) time to maximal serum concentration; (2) serum half-life; (3) effect of the highest tolerated dose on resting-state functional MRI biomarkers of connectivity; and (4) effect of each dose on EEG biomarkers of cerebral cortical function. Predetermined safety and pharmacodynamic criteria must be fulfilled in Phase 1 to proceed to Phase 2A. Pharmacokinetic data from Phase 1 will also inform the study design of Phase 2A, where we will test the hypothesis that personalized connectome maps predict therapeutic responses to intravenous methylphenidate. Likewise, findings from Phase 2A will inform the design of Phase 2B, where we plan to enroll patients based on their personalized connectome maps. By selecting patients for clinical trials based on a principled, mechanistic assessment of their neuroanatomic potential for a therapeutic response, the CCTP paradigm and the STIMPACT trial have the potential to transform the therapeutic landscape in the ICU and improve outcomes for patients with severe brain injuries.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Conectoma , Estado de Conciencia , Humanos , Unidades de Cuidados Intensivos , Resultado del Tratamiento
16.
Stroke ; 50(12): 3569-3577, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31648631

RESUMEN

Background and Purpose- Injury to the corticospinal tract (CST) has been shown to have a major effect on upper extremity motor recovery after stroke. This study aimed to examine how well CST injury, measured from neuroimaging acquired during the acute stroke workup, predicts upper extremity motor recovery. Methods- Patients with upper extremity weakness after ischemic stroke were assessed using the upper extremity Fugl-Meyer during the acute stroke hospitalization and again at 3-month follow-up. CST injury was quantified and compared, using 4 different methods, from images obtained as part of the stroke standard-of-care workup. Logistic and linear regression were performed using CST injury to predict ΔFugl-Meyer. Injury to primary motor and premotor cortices were included as potential modifiers of the effect of CST injury on recovery. Results- N=48 patients were enrolled 4.2±2.7 days poststroke and completed 3-month follow-up (median 90-day modified Rankin Scale score, 3; interquartile range, 1.5). CST injury distinguished patients who reached their recovery potential (as predicted from initial impairment) from those who did not, with area under the curve values ranging from 0.70 to 0.8. In addition, CST injury explained ≈20% of the variance in the magnitude of upper extremity recovery, even after controlling for the severity of initial impairment. Results were consistent when comparing 4 different methods of measuring CST injury. Extent of injury to primary motor and premotor cortices did not significantly influence the predictive value that CST injury had for recovery. Conclusions- Structural injury to the CST, as estimated from standard-of-care imaging available during the acute stroke hospitalization, is a robust way to distinguish patients who achieve their predicted recovery potential and explains a significant amount of the variance in poststroke upper extremity motor recovery.


Asunto(s)
Corteza Motora/diagnóstico por imagen , Tractos Piramidales/diagnóstico por imagen , Recuperación de la Función , Accidente Cerebrovascular/diagnóstico por imagen , Anciano , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Modelos Lineales , Modelos Logísticos , Masculino , Persona de Mediana Edad , Corteza Motora/patología , Tractos Piramidales/patología , Accidente Cerebrovascular/fisiopatología , Extremidad Superior/fisiopatología
17.
J Neurophysiol ; 121(4): 1428-1450, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30785814

RESUMEN

Intracortical brain-computer interfaces (BCIs) can enable individuals to control effectors, such as a computer cursor, by directly decoding the user's movement intentions from action potentials and local field potentials (LFPs) recorded within the motor cortex. However, the accuracy and complexity of effector control achieved with such "biomimetic" BCIs will depend on the degree to which the intended movements used to elicit control modulate the neural activity. In particular, channels that do not record distinguishable action potentials and only record LFP modulations may be of limited use for BCI control. In contrast, a biofeedback approach may surpass these limitations by letting the participants generate new control signals and learn strategies that improve the volitional control of signals used for effector control. Here, we show that, by using a biofeedback paradigm, three individuals with tetraplegia achieved volitional control of gamma LFPs (40-400 Hz) recorded by a single microelectrode implanted in the precentral gyrus. Control was improved over a pair of consecutive sessions up to 3 days apart. In all but one session, the channel used to achieve control lacked distinguishable action potentials. Our results indicate that biofeedback LFP-based BCIs may potentially contribute to the neural modulation necessary to obtain reliable and useful control of effectors. NEW & NOTEWORTHY Our study demonstrates that people with tetraplegia can volitionally control individual high-gamma local-field potential (LFP) channels recorded from the motor cortex, and that this control can be improved using biofeedback. Motor cortical LFP signals are thought to be both informative and stable intracortical signals and, thus, of importance for future brain-computer interfaces.


Asunto(s)
Interfaces Cerebro-Computador , Ritmo Gamma , Corteza Motora/fisiopatología , Cuadriplejía/fisiopatología , Adulto , Electrodos Implantados/efectos adversos , Electrodos Implantados/normas , Retroalimentación Fisiológica , Humanos , Movimiento , Cuadriplejía/rehabilitación
18.
N Engl J Med ; 385(3): 278-279, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34260841

Asunto(s)
Libertad , Habla , Humanos
19.
J Neurophysiol ; 120(1): 343-360, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29694279

RESUMEN

Restoring communication for people with locked-in syndrome remains a challenging clinical problem without a reliable solution. Recent studies have shown that people with paralysis can use brain-computer interfaces (BCIs) based on intracortical spiking activity to efficiently type messages. However, due to neuronal signal instability, most intracortical BCIs have required frequent calibration and continuous assistance of skilled engineers to maintain performance. Here, an individual with locked-in syndrome due to brain stem stroke and an individual with tetraplegia secondary to amyotrophic lateral sclerosis (ALS) used a simple communication BCI based on intracortical local field potentials (LFPs) for 76 and 138 days, respectively, without recalibration and without significant loss of performance. BCI spelling rates of 3.07 and 6.88 correct characters/minute allowed the participants to type messages and write emails. Our results indicate that people with locked-in syndrome could soon use a slow but reliable LFP-based BCI for everyday communication without ongoing intervention from a technician or caregiver. NEW & NOTEWORTHY This study demonstrates, for the first time, stable repeated use of an intracortical brain-computer interface by people with tetraplegia over up to four and a half months. The approach uses local field potentials (LFPs), signals that may be more stable than neuronal action potentials, to decode participants' commands. Throughout the several months of evaluation, the decoder remained unchanged; thus no technical interventions were required to maintain consistent brain-computer interface operation.


Asunto(s)
Esclerosis Amiotrófica Lateral/rehabilitación , Interfaces Cerebro-Computador , Comunicación , Cuadriplejía/rehabilitación , Rehabilitación de Accidente Cerebrovascular/métodos , Accidente Cerebrovascular/fisiopatología , Esclerosis Amiotrófica Lateral/complicaciones , Esclerosis Amiotrófica Lateral/fisiopatología , Tronco Encefálico/fisiopatología , Potenciales Evocados , Humanos , Cuadriplejía/fisiopatología , Accidente Cerebrovascular/etiología , Rehabilitación de Accidente Cerebrovascular/instrumentación
20.
Lancet ; 389(10081): 1821-1830, 2017 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-28363483

RESUMEN

BACKGROUND: People with chronic tetraplegia, due to high-cervical spinal cord injury, can regain limb movements through coordinated electrical stimulation of peripheral muscles and nerves, known as functional electrical stimulation (FES). Users typically command FES systems through other preserved, but unrelated and limited in number, volitional movements (eg, facial muscle activity, head movements, shoulder shrugs). We report the findings of an individual with traumatic high-cervical spinal cord injury who coordinated reaching and grasping movements using his own paralysed arm and hand, reanimated through implanted FES, and commanded using his own cortical signals through an intracortical brain-computer interface (iBCI). METHODS: We recruited a participant into the BrainGate2 clinical trial, an ongoing study that obtains safety information regarding an intracortical neural interface device, and investigates the feasibility of people with tetraplegia controlling assistive devices using their cortical signals. Surgical procedures were performed at University Hospitals Cleveland Medical Center (Cleveland, OH, USA). Study procedures and data analyses were performed at Case Western Reserve University (Cleveland, OH, USA) and the US Department of Veterans Affairs, Louis Stokes Cleveland Veterans Affairs Medical Center (Cleveland, OH, USA). The study participant was a 53-year-old man with a spinal cord injury (cervical level 4, American Spinal Injury Association Impairment Scale category A). He received two intracortical microelectrode arrays in the hand area of his motor cortex, and 4 months and 9 months later received a total of 36 implanted percutaneous electrodes in his right upper and lower arm to electrically stimulate his hand, elbow, and shoulder muscles. The participant used a motorised mobile arm support for gravitational assistance and to provide humeral abduction and adduction under cortical control. We assessed the participant's ability to cortically command his paralysed arm to perform simple single-joint arm and hand movements and functionally meaningful multi-joint movements. We compared iBCI control of his paralysed arm with that of a virtual three-dimensional arm. This study is registered with ClinicalTrials.gov, number NCT00912041. FINDINGS: The intracortical implant occurred on Dec 1, 2014, and we are continuing to study the participant. The last session included in this report was Nov 7, 2016. The point-to-point target acquisition sessions began on Oct 8, 2015 (311 days after implant). The participant successfully cortically commanded single-joint and coordinated multi-joint arm movements for point-to-point target acquisitions (80-100% accuracy), using first a virtual arm and second his own arm animated by FES. Using his paralysed arm, the participant volitionally performed self-paced reaches to drink a mug of coffee (successfully completing 11 of 12 attempts within a single session 463 days after implant) and feed himself (717 days after implant). INTERPRETATION: To our knowledge, this is the first report of a combined implanted FES+iBCI neuroprosthesis for restoring both reaching and grasping movements to people with chronic tetraplegia due to spinal cord injury, and represents a major advance, with a clear translational path, for clinically viable neuroprostheses for restoration of reaching and grasping after paralysis. FUNDING: National Institutes of Health, Department of Veterans Affairs.


Asunto(s)
Interfaces Cerebro-Computador/estadística & datos numéricos , Encéfalo/fisiopatología , Fuerza de la Mano/fisiología , Músculo Esquelético/fisiopatología , Cuadriplejía/diagnóstico , Traumatismos de la Médula Espinal/fisiopatología , Encéfalo/cirugía , Terapia por Estimulación Eléctrica/métodos , Electrodos Implantados/normas , Estudios de Factibilidad , Mano/fisiología , Humanos , Masculino , Microelectrodos/efectos adversos , Persona de Mediana Edad , Corteza Motora/fisiopatología , Movimiento/fisiología , Cuadriplejía/fisiopatología , Cuadriplejía/cirugía , Dispositivos de Autoayuda/estadística & datos numéricos , Traumatismos de la Médula Espinal/terapia , Estados Unidos , United States Department of Veterans Affairs , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA