Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(28): e2403442121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968107

RESUMEN

Plasmodium falciparum causes severe malaria and assembles a protein translocon (PTEX) complex at the parasitophorous vacuole membrane (PVM) of infected erythrocytes, through which several hundred proteins are exported to facilitate growth. The preceding liver stage of infection involves growth in a hepatocyte-derived PVM; however, the importance of protein export during P. falciparum liver infection remains unexplored. Here, we use the FlpL/FRT system to conditionally excise genes in P. falciparum sporozoites for functional liver-stage studies. Disruption of PTEX members ptex150 and exp2 did not affect sporozoite development in mosquitoes or infectivity for hepatocytes but attenuated liver-stage growth in humanized mice. While PTEX150 deficiency reduced fitness on day 6 postinfection by 40%, EXP2 deficiency caused 100% loss of liver parasites, demonstrating that PTEX components are required for growth in hepatocytes to differing degrees. To characterize PTEX loss-of-function mutations, we localized four liver-stage Plasmodium export element (PEXEL) proteins. P. falciparum liver specific protein 2 (LISP2), liver-stage antigen 3 (LSA3), circumsporozoite protein (CSP), and a Plasmodium berghei LISP2 reporter all localized to the periphery of P. falciparum liver stages but were not exported beyond the PVM. Expression of LISP2 and CSP but not LSA3 was reduced in ptex150-FRT and exp2-FRT liver stages, suggesting that expression of some PEXEL proteins is affected directly or indirectly by PTEX disruption. These results show that PTEX150 and EXP2 are important for P. falciparum development in hepatocytes and emphasize the emerging complexity of PEXEL protein trafficking.


Asunto(s)
Hepatocitos , Hígado , Malaria Falciparum , Plasmodium falciparum , Proteínas Protozoarias , Esporozoítos , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Animales , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Esporozoítos/metabolismo , Esporozoítos/crecimiento & desarrollo , Ratones , Hígado/parasitología , Hígado/metabolismo , Humanos , Hepatocitos/parasitología , Hepatocitos/metabolismo , Malaria Falciparum/parasitología
2.
Nature ; 565(7737): 118-121, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30542156

RESUMEN

Plasmodium falciparum causes the severe form of malaria that has high levels of mortality in humans. Blood-stage merozoites of P. falciparum invade erythrocytes, and this requires interactions between multiple ligands from the parasite and receptors in hosts. These interactions include the binding of the Rh5-CyRPA-Ripr complex with the erythrocyte receptor basigin1,2, which is an essential step for entry into human erythrocytes. Here we show that the Rh5-CyRPA-Ripr complex binds the erythrocyte cell line JK-1 significantly better than does Rh5 alone, and that this binding occurs through the insertion of Rh5 and Ripr into host membranes as a complex with high molecular weight. We report a cryo-electron microscopy structure of the Rh5-CyRPA-Ripr complex at subnanometre resolution, which reveals the organization of this essential invasion complex and the mode of interactions between members of the complex, and shows that CyRPA is a critical mediator of complex assembly. Our structure identifies blades 4-6 of the ß-propeller of CyRPA as contact sites for Rh5 and Ripr. The limited contacts between Rh5-CyRPA and CyRPA-Ripr are consistent with the dissociation of Rh5 and Ripr from CyRPA for membrane insertion. A comparision of the crystal structure of Rh5-basigin with the cryo-electron microscopy structure of Rh5-CyRPA-Ripr suggests that Rh5 and Ripr are positioned parallel to the erythrocyte membrane before membrane insertion. This provides information on the function of this complex, and thereby provides insights into invasion by P. falciparum.


Asunto(s)
Antígenos de Protozoos/ultraestructura , Proteínas Portadoras/ultraestructura , Microscopía por Crioelectrón , Complejos Multiproteicos/química , Complejos Multiproteicos/ultraestructura , Plasmodium falciparum , Proteínas Protozoarias/ultraestructura , Animales , Antígenos de Protozoos/química , Antígenos de Protozoos/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Drosophila , Membrana Eritrocítica/metabolismo , Membrana Eritrocítica/parasitología , Humanos , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Plasmodium falciparum/química , Plasmodium falciparum/patogenicidad , Plasmodium falciparum/ultraestructura , Unión Proteica , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo
3.
Infect Immun ; 86(8)2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29784862

RESUMEN

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) mediates parasite sequestration to the cerebral microvasculature via binding of DBLß domains to intercellular adhesion molecule 1 (ICAM1) and is associated with severe cerebral malaria. In a cohort of 187 young children from Papua New Guinea (PNG), we examined baseline levels of antibody to the ICAM1-binding PfEMP1 domain, DBLß3PF11_0521, in comparison to four control antigens, including NTS-DBLα and CIDR1 domains from another group A variant and a group B/C variant. Antibody levels for the group A antigens were strongly associated with age and exposure. Antibody responses to DBLß3PF11_0521 were associated with a 37% reduced risk of high-density clinical malaria in the follow-up period (adjusted incidence risk ratio [aIRR] = 0.63 [95% confidence interval {CI}, 0.45 to 0.88; P = 0.007]) and a 25% reduction in risk of low-density clinical malaria (aIRR = 0.75 [95% CI, 0.55 to 1.01; P = 0.06]), while there was no such association for other variants. Children who experienced severe malaria also had significantly lower levels of antibody to DBLß3PF11_0521 and the other group A domains than those that experienced nonsevere malaria. Furthermore, a subset of PNG DBLß sequences had ICAM1-binding motifs, formed a distinct phylogenetic cluster, and were similar to sequences from other areas of endemicity. PfEMP1 variants associated with these DBLß domains were enriched for DC4 and DC13 head structures implicated in endothelial protein C receptor (EPCR) binding and severe malaria, suggesting conservation of dual binding specificities. These results provide further support for the development of specific classes of PfEMP1 as vaccine candidates and as biomarkers for protective immunity against clinical P. falciparum malaria.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Antígenos de Protozoos/inmunología , Biomarcadores/sangre , Malaria Falciparum/inmunología , Proteínas Protozoarias/inmunología , Antígenos de Protozoos/genética , Preescolar , Receptor de Proteína C Endotelial/metabolismo , Femenino , Estudios de Seguimiento , Variación Genética , Humanos , Incidencia , Lactante , Molécula 1 de Adhesión Intercelular/metabolismo , Malaria Falciparum/epidemiología , Malaria Falciparum/patología , Masculino , Papúa Nueva Guinea/epidemiología , Filogenia , Unión Proteica , Dominios Proteicos/inmunología , Proteínas Protozoarias/genética , Medición de Riesgo
4.
PLoS Biol ; 12(7): e1001897, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24983235

RESUMEN

The malaria parasite Plasmodium falciparum exports several hundred proteins into the infected erythrocyte that are involved in cellular remodeling and severe virulence. The export mechanism involves the Plasmodium export element (PEXEL), which is a cleavage site for the parasite protease, Plasmepsin V (PMV). The PMV gene is refractory to deletion, suggesting it is essential, but definitive proof is lacking. Here, we generated a PEXEL-mimetic inhibitor that potently blocks the activity of PMV isolated from P. falciparum and Plasmodium vivax. Assessment of PMV activity in P. falciparum revealed PEXEL cleavage occurs cotranslationaly, similar to signal peptidase. Treatment of P. falciparum-infected erythrocytes with the inhibitor caused dose-dependent inhibition of PEXEL processing as well as protein export, including impaired display of the major virulence adhesin, PfEMP1, on the erythrocyte surface, and cytoadherence. The inhibitor killed parasites at the trophozoite stage and knockdown of PMV enhanced sensitivity to the inhibitor, while overexpression of PMV increased resistance. This provides the first direct evidence that PMV activity is essential for protein export in Plasmodium spp. and for parasite survival in human erythrocytes and validates PMV as an antimalarial drug target.


Asunto(s)
Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Proteasas de Ácido Aspártico/antagonistas & inhibidores , Oligopéptidos/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Sulfonamidas/farmacología , Retículo Endoplásmico/metabolismo , Eritrocitos/parasitología , Humanos , Transporte de Proteínas/efectos de los fármacos , Proteínas Protozoarias/metabolismo
5.
BMC Med ; 14(1): 144, 2016 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-27658419

RESUMEN

BACKGROUND: The polymorphic nature of many malaria vaccine candidates presents major challenges to achieving highly efficacious vaccines. Presently, there is very little knowledge on the prevalence and patterns of functional immune responses to polymorphic vaccine candidates in populations to guide vaccine design. A leading polymorphic vaccine candidate against blood-stage Plasmodium falciparum is apical membrane antigen 1 (AMA1), which is essential for erythrocyte invasion. The importance of AMA1 as a target of acquired human inhibitory antibodies, their allele specificity and prevalence in populations is unknown, but crucial for vaccine design. METHODS: P. falciparum lines expressing different AMA1 alleles were genetically engineered and used to quantify functional antibodies from two malaria-exposed populations of adults and children. The acquisition of AMA1 antibodies was also detected using enzyme-linked immunosorbent assay (ELISA) and competition ELISA (using different AMA1 alleles) from the same populations. RESULTS: We found that AMA1 was a major target of naturally acquired invasion-inhibitory antibodies that were highly prevalent in malaria-endemic populations and showed a high degree of allele specificity. Significantly, the prevalence of inhibitory antibodies to different alleles varied substantially within populations and between geographic locations. Inhibitory antibodies to three specific alleles were highly prevalent (FVO and W2mef in Papua New Guinea; FVO and XIE in Kenya), identifying them for potential vaccine inclusion. Measurement of antibodies by standard or competition ELISA was not strongly predictive of allele-specific inhibitory antibodies. The patterns of allele-specific functional antibody responses detected with our novel assays may indicate that acquired immunity is elicited towards serotypes that are prevalent in each geographic location. CONCLUSIONS: These findings provide new insights into the nature and acquisition of functional immunity to a polymorphic vaccine candidate and strategies to quantify functional immunity in populations to guide rational vaccine design.

6.
Bioorg Med Chem ; 24(9): 1993-2010, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-27021426

RESUMEN

The use of arginine isosteres is a known strategy to overcome poor membrane permeability commonly associated with peptides or peptidomimetics that possess this highly polar amino acid. Here, we apply this strategy to peptidomimetics that are potent inhibitors of the malarial protease, plasmepsin V, with the aim of enhancing their activity against Plasmodium parasites, and exploring the structure-activity relationship of the P3 arginine within the S3 pocket of plasmepsin V. Of the arginine isosteres trialled in the P3 position, we discovered that canavanine was the ideal and that this peptidomimetic potently inhibits plasmepsin V, efficiently blocks protein export and inhibits parasite growth. Structure studies of the peptidomimetics bound to plasmepsin V provided insight into the structural basis for the enzyme activity observed in vitro and provides further evidence why plasmepsin V is highly sensitive to substrate modification.


Asunto(s)
Ácido Aspártico Endopeptidasas/metabolismo , Peptidomiméticos/química , Plasmodium vivax/enzimología , Animales , Espectroscopía de Resonancia Magnética , Espectrometría de Masa por Ionización de Electrospray
7.
Nature ; 463(7281): 627-31, 2010 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-20130643

RESUMEN

Plasmodium falciparum causes the virulent form of malaria and disease manifestations are linked to growth inside infected erythrocytes. To survive and evade host responses the parasite remodels the erythrocyte by exporting several hundred effector proteins beyond the surrounding parasitophorous vacuole membrane. A feature of exported proteins is a pentameric motif (RxLxE/Q/D) that is a substrate for an unknown protease. Here we show that the protein responsible for cleavage of this motif is plasmepsin V (PMV), an aspartic acid protease located in the endoplasmic reticulum. PMV cleavage reveals the export signal (xE/Q/D) at the amino terminus of cargo proteins. Expression of an identical mature protein with xQ at the N terminus generated by signal peptidase was not exported, demonstrating that PMV activity is essential and linked with other key export events. Identification of the protease responsible for export into erythrocytes provides a novel target for therapeutic intervention against this devastating disease.


Asunto(s)
Ácido Aspártico Endopeptidasas/metabolismo , Eritrocitos/metabolismo , Malaria Falciparum/sangre , Malaria Falciparum/parasitología , Plasmodium falciparum/metabolismo , Señales de Clasificación de Proteína , Proteínas Protozoarias/metabolismo , Secuencias de Aminoácidos , Animales , Antimaláricos/farmacología , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/aislamiento & purificación , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/metabolismo , Eritrocitos/citología , Eritrocitos/parasitología , Inhibidores de la Proteasa del VIH/farmacología , Humanos , Malaria Falciparum/metabolismo , Malaria Falciparum/patología , Plasmodium falciparum/enzimología , Plasmodium falciparum/genética , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transporte de Proteínas , Proteínas Protozoarias/química
8.
J Infect Dis ; 212(3): 406-15, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25646353

RESUMEN

Increasing evidence suggests that antibodies against merozoite surface proteins (MSPs) play an important role in clinical immunity to malaria. Two unusual members of the MSP-3 family, merozoite surface protein duffy binding-like (MSPDBL)1 and MSPDBL2, have been shown to be extrinsically associated to MSP-1 on the parasite surface. In addition to a secreted polymorphic antigen associated with merozoite (SPAM) domain characteristic of MSP-3 family members, they also contain Duffy binding-like (DBL) domain and were found to bind to erythrocytes, suggesting that they play a role in parasite invasion. Antibody responses to these proteins were investigated in a treatment-reinfection study conducted in an endemic area of Papua New Guinea to determine their contribution to naturally acquired immunity. Antibodies to the SPAM domains of MSPDBL1 and MSPDBL2 as well as the DBL domain of MSPDBL1 were found to be associated with protection from Plasmodium falciparum clinical episodes. Moreover, affinity-purified anti-MSPDBL1 and MSPDBL2 were found to inhibit in vitro parasite growth and had strong merozoite opsonizing capacity, suggesting that protection targeting these antigens results from ≥2 distinct effector mechanisms. Together these results indicate that MSPDBL1 and MSPDBL2 are important targets of naturally acquired immunity and might constitute potential vaccine candidates.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Malaria Falciparum/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Adolescente , Anticuerpos Antiprotozoarios/sangre , Niño , Preescolar , Estudios de Cohortes , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Incidencia , Estimación de Kaplan-Meier , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Proteínas de la Membrana/inmunología , Papúa Nueva Guinea/epidemiología , Proteínas Recombinantes
9.
Traffic ; 14(5): 532-50, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23387285

RESUMEN

Plasmodium falciparum exports several hundred effector proteins that remodel the host erythrocyte and enable parasites to acquire nutrients, sequester in the circulation and evade immune responses. The majority of exported proteins contain the Plasmodium export element (PEXEL; RxLxE/Q/D) in their N-terminus, which is proteolytically cleaved in the parasite endoplasmic reticulum by Plasmepsin V, and is necessary for export. Several exported proteins lack a PEXEL or contain noncanonical motifs. Here, we assessed whether Plasmepsin V could process the N-termini of diverse protein families in P. falciparum. We show that Plasmepsin V cleaves N-terminal sequences from RIFIN, STEVOR and RESA multigene families, the latter of which contain a relaxed PEXEL (RxLxxE). However, Plasmepsin V does not cleave the N-terminal sequence of the major exported virulence factor erythrocyte membrane protein 1 (PfEMP1) or the PEXEL-negative exported proteins SBP-1 or REX-2. We probed the substrate specificity of Plasmepsin V and determined that lysine at the PEXEL P3 position, which is present in PfEMP1 and other putatively exported proteins, blocks Plasmepsin V activity. Furthermore, isoleucine at position P1 also blocked Plasmepsin V activity. The specificity of Plasmepsin V is therefore exquisitely confined and we have used this novel information to redefine the predicted P. falciparum PEXEL exportome.


Asunto(s)
Ácido Aspártico Endopeptidasas/metabolismo , Eritrocitos/parasitología , Proteínas de la Membrana/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Secuencias de Aminoácidos , Antígenos de Protozoos/metabolismo , Proteínas Portadoras/metabolismo , Cromatografía Líquida de Alta Presión , Biología Computacional , Retículo Endoplásmico/metabolismo , Eritrocitos/citología , Humanos , Estructura Terciaria de Proteína , Programas Informáticos , Fracciones Subcelulares , Factores de Virulencia/metabolismo
10.
J Biol Chem ; 289(37): 25655-69, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25074930

RESUMEN

Plasmodium falciparum is the causative agent of the most severe form of malaria in humans. The merozoite, an extracellular stage of the parasite lifecycle, invades erythrocytes in which they develop. The most abundant protein on the surface of merozoites is merozoite surface protein 1 (MSP1), which consists of four processed fragments. Studies indicate that MSP1 interacts with other peripheral merozoite surface proteins to form a large complex. Successful invasion of merozoites into host erythrocytes is dependent on this protein complex; however, the identity of all components and its function remain largely unknown. We have shown that the peripheral merozoite surface proteins MSPDBL1 and MSPDBL2 are part of the large MSP1 complex. Using surface plasmon resonance, we determined the binding affinities of MSPDBL1 and MSPDBL2 to MSP1 to be in the range of 2-4 × 10(-7) m. Both proteins bound to three of the four proteolytically cleaved fragments of MSP1 (p42, p38, and p83). In addition, MSPDBL1 and MSPDBL2, but not MSP1, bound directly to human erythrocytes. This demonstrates that the MSP1 complex acts as a platform for display of MSPDBL1 and MSPDBL2 on the merozoite surface for binding to receptors on the erythrocyte and invasion.


Asunto(s)
Malaria/metabolismo , Proteína 1 de Superficie de Merozoito/metabolismo , Merozoítos/química , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Animales , Eritrocitos/química , Eritrocitos/parasitología , Humanos , Malaria/parasitología , Malaria/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteína 1 de Superficie de Merozoito/química , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Plasmodium falciparum/patogenicidad , Unión Proteica
11.
Biochim Biophys Acta ; 1840(9): 2765-75, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24769454

RESUMEN

BACKGROUND: Plasmodium falciparum serine repeat antigen 5 (PfSERA5) is an abundant blood stage protein that plays an essential role in merozoite egress and invasion. The native protein undergoes extensive proteolytic cleavage that appears to be tightly regulated. PfSERA5 N-terminal fragment is being developed as vaccine candidate antigen. Although PfSERA5 belongs to papain-like cysteine protease family, its catalytic domain has a serine in place of cysteine at the active site. METHODS: In the present study, we synthesized a number of peptides from the N- and C-terminal regions of PfSERA5 active domain and evaluated their inhibitory potential. RESULTS: The final proteolytic step of PfSERA5 involves removal of a C-terminal ~6kDa fragment that results in the generation of a catalytically active ~50kDa enzyme. In the present study, we demonstrate that two of the peptides derived from the C-terminal ~6kDa region inhibit the parasite growth and also cause a delay in the parasite development. These peptides reduced the enzyme activity of the recombinant protein and co-localized with the PfSERA5 protein within the parasite, thereby indicating the specific inhibition of PfSERA5 activity. Molecular docking studies revealed that the inhibitory peptides interact with the active site of the protein. Interestingly, the peptides did not have an effect on the processing of PfSERA5. CONCLUSIONS: Our observations indicate the temporal regulation of the final proteolytic cleavage step that occurs just prior to egress. GENERAL SIGNIFICANCE: These results reinforce the role of PfSERA5 for the intra-erythrocytic development of malaria parasite and show the role of carboxy terminal ~6kDa fragments in the regulation of PfSERA5 activity. The results also suggest that final cleavage step of PfSERA5 can be targeted for the development of new anti-malarials.


Asunto(s)
Antígenos de Protozoos/metabolismo , Eritrocitos/parasitología , Malaria Falciparum/enzimología , Plasmodium falciparum/enzimología , Proteolisis , Antígenos de Protozoos/genética , Eritrocitos/metabolismo , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/genética , Péptidos/química , Péptidos/farmacología , Plasmodium falciparum/genética , Estructura Terciaria de Proteína
12.
J Immunol ; 191(2): 795-809, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23776179

RESUMEN

The development of effective malaria vaccines and immune biomarkers of malaria is a high priority for malaria control and elimination. Ags expressed by merozoites of Plasmodium falciparum are likely to be important targets of human immunity and are promising vaccine candidates, but very few Ags have been studied. We developed an approach to assess Ab responses to a comprehensive repertoire of merozoite proteins and investigate whether they are targets of protective Abs. We expressed 91 recombinant proteins, located on the merozoite surface or within invasion organelles, and screened them for quality and reactivity to human Abs. Subsequently, Abs to 46 proteins were studied in a longitudinal cohort of 206 Papua New Guinean children to define Ab acquisition and associations with protective immunity. Ab responses were higher among older children and those with active parasitemia. High-level Ab responses to rhoptry and microneme proteins that function in erythrocyte invasion were identified as being most strongly associated with protective immunity compared with other Ags. Additionally, Abs to new or understudied Ags were more strongly associated with protection than were Abs to current vaccine candidates that have progressed to phase 1 or 2 vaccine trials. Combinations of Ab responses were identified that were more strongly associated with protective immunity than responses to their single-Ag components. This study identifies Ags that are likely to be key targets of protective human immunity and facilitates the prioritization of Ags for further evaluation as vaccine candidates and/or for use as biomarkers of immunity in malaria surveillance and control.


Asunto(s)
Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Merozoítos/inmunología , Plasmodium falciparum/inmunología , Adolescente , Antígenos de Protozoos/inmunología , Biomarcadores/sangre , Niño , Preescolar , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Masculino , Parasitemia/inmunología , Proteínas Protozoarias/inmunología
13.
Infect Immun ; 82(3): 924-36, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24218484

RESUMEN

Plasmodium falciparum causes malaria disease during the asexual blood stages of infection when merozoites invade erythrocytes and replicate. Merozoite surface proteins (MSPs) are proposed to play a role in the initial binding of merozoites to erythrocytes, but precise roles remain undefined. Based on electron microscopy studies of invading Plasmodium merozoites, it is proposed that the majority of MSPs are cleaved and shed from the surface during invasion, perhaps to release receptor-ligand interactions. In this study, we demonstrate that there is not universal cleavage of MSPs during invasion. Instead, there is sequential and coordinated cleavage and shedding of proteins, indicating a diversity of roles for surface proteins during and after invasion. While MSP1 and peripheral surface proteins such as MSP3, MSP7, serine repeat antigen 4 (SERA4), and SERA5 are cleaved and shed at the tight junction between the invading merozoite and erythrocyte, the glycosylphosphatidylinositol (GPI)-anchored proteins MSP2 and MSP4 are carried into the erythrocyte without detectable processing. Following invasion, MSP2 rapidly degrades within 10 min, whereas MSP4 is maintained for hours. This suggests that while some proteins that are shed upon invasion may have roles in initial contact steps, others function during invasion and are then rapidly degraded, whereas others are internalized for roles during intraerythrocytic development. Interestingly, anti-MSP2 antibodies did not inhibit invasion and instead were carried into erythrocytes and maintained for approximately 20 h without inhibiting parasite development. These findings provide new insights into the mechanisms of invasion and knowledge to advance the development of new drugs and vaccines against malaria.


Asunto(s)
Eritrocitos/metabolismo , Malaria Falciparum/metabolismo , Proteínas de la Membrana/metabolismo , Merozoítos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Anticuerpos Antiprotozoarios/metabolismo , Antígenos de Protozoos/metabolismo , Eritrocitos/parasitología , Malaria Falciparum/parasitología
14.
BMC Med ; 12: 183, 2014 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-25319190

RESUMEN

BACKGROUND: Polymorphism in antigens is a common mechanism for immune evasion used by many important pathogens, and presents major challenges in vaccine development. In malaria, many key immune targets and vaccine candidates show substantial polymorphism. However, knowledge on antigenic diversity of key antigens, the impact of polymorphism on potential vaccine escape, and how sequence polymorphism relates to antigenic differences is very limited, yet crucial for vaccine development. Plasmodium falciparum apical membrane antigen 1 (AMA1) is an important target of naturally-acquired antibodies in malaria immunity and a leading vaccine candidate. However, AMA1 has extensive allelic diversity with more than 60 polymorphic amino acid residues and more than 200 haplotypes in a single population. Therefore, AMA1 serves as an excellent model to assess antigenic diversity in malaria vaccine antigens and the feasibility of multi-allele vaccine approaches. While most previous research has focused on sequence diversity and antibody responses in laboratory animals, little has been done on the cross-reactivity of human antibodies. METHODS: We aimed to determine the extent of antigenic diversity of AMA1, defined by reactivity with human antibodies, and to aid the identification of specific alleles for potential inclusion in a multi-allele vaccine. We developed an approach using a multiple-antigen-competition enzyme-linked immunosorbent assay (ELISA) to examine cross-reactivity of naturally-acquired antibodies in Papua New Guinea and Kenya, and related this to differences in AMA1 sequence. RESULTS: We found that adults had greater cross-reactivity of antibodies than children, although the patterns of cross-reactivity to alleles were the same. Patterns of antibody cross-reactivity were very similar between populations (Papua New Guinea and Kenya), and over time. Further, our results show that antigenic diversity of AMA1 alleles is surprisingly restricted, despite extensive sequence polymorphism. Our findings suggest that a combination of three different alleles, if selected appropriately, may be sufficient to cover the majority of antigenic diversity in polymorphic AMA1 antigens. Antigenic properties were not strongly related to existing haplotype groupings based on sequence analysis. CONCLUSIONS: Antigenic diversity of AMA1 is limited and a vaccine including a small number of alleles might be sufficient for coverage against naturally-circulating strains, supporting a multi-allele approach for developing polymorphic antigens as malaria vaccines.


Asunto(s)
Antígenos de Protozoos/inmunología , Vacunas contra la Malaria/inmunología , Malaria Falciparum/prevención & control , Proteínas de la Membrana/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Adolescente , Adulto , Alelos , Anticuerpos Antiprotozoarios/inmunología , Variación Antigénica , Niño , Preescolar , Ensayo de Inmunoadsorción Enzimática , Humanos , Kenia , Vacunas contra la Malaria/genética , Persona de Mediana Edad , Papúa Nueva Guinea , Plasmodium falciparum/genética , Polimorfismo Genético
15.
J Biol Chem ; 287(39): 32922-39, 2012 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-22843685

RESUMEN

Invasion of human red blood cells by Plasmodium falciparum involves interaction of the merozoite form through proteins on the surface coat. The erythrocyte binding-like protein family functions after initial merozoite interaction by binding via the Duffy binding-like (DBL) domain to receptors on the host red blood cell. The merozoite surface proteins DBL1 and -2 (PfMSPDBL1 and PfMSPDBL2) (PF10_0348 and PF10_0355) are extrinsically associated with the merozoite, and both have a DBL domain in each protein. We expressed and refolded recombinant DBL domains for PfMSPDBL1 and -2 and show they are functional. The red cell binding characteristics of these domains were shown to be similar to full-length forms of these proteins isolated from parasite cultures. Futhermore, metal cofactors were found to enhance the binding of both the DBL domains and the parasite-derived full-length proteins to erythrocytes, which has implications for receptor binding of other DBL-containing proteins in Plasmodium spp. We solved the structure of the erythrocyte-binding DBL domain of PfMSPDBL2 to 2.09 Å resolution and modeled that of PfMSPDBL1, revealing a canonical DBL fold consisting of a boomerang shaped α-helical core formed from three subdomains. PfMSPDBL2 is highly polymorphic, and mapping of these mutations shows they are on the surface, predominantly in the first two domains. For both PfMSPDBL proteins, polymorphic variation spares the cleft separating domains 1 and 2 from domain 3, and the groove between the two major helices of domain 3 extends beyond the cleft, indicating these regions are functionally important and are likely to be associated with the binding of a receptor on the red blood cell.


Asunto(s)
Modelos Moleculares , Plasmodium falciparum/química , Proteínas Protozoarias/química , Cristalografía por Rayos X , Sistema del Grupo Sanguíneo Duffy/química , Sistema del Grupo Sanguíneo Duffy/metabolismo , Humanos , Plasmodium falciparum/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Protozoarias/metabolismo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo
16.
PLoS Pathog ; 7(6): e1002075, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21698217

RESUMEN

Plasmodium falciparum, the causative agent of the most severe form of malaria in humans invades erythrocytes using multiple ligand-receptor interactions. The P. falciparum reticulocyte binding-like homologue proteins (PfRh or PfRBL) are important for entry of the invasive merozoite form of the parasite into red blood cells. We have analysed two members of this protein family, PfRh2a and PfRh2b, and show they undergo a complex series of proteolytic cleavage events before and during merozoite invasion. We show that PfRh2a undergoes a cleavage event in the transmembrane region during invasion consistent with activity of the membrane associated PfROM4 protease that would result in release of the ectodomain into the supernatant. We also show that PfRh2a and PfRh2b bind to red blood cells and have defined the erythrocyte-binding domain to a 15 kDa region at the N-terminus of each protein. Antibodies to this receptor-binding region block merozoite invasion demonstrating the important function of this domain. This region of PfRh2a and PfRh2b has potential in a combination vaccine with other erythrocyte binding ligands for induction of antibodies that would block a broad range of invasion pathways for P. falciparum into human erythrocytes.


Asunto(s)
Anticuerpos Antiprotozoarios/farmacología , Merozoítos/inmunología , Plasmodium falciparum/inmunología , Dominios y Motivos de Interacción de Proteínas/inmunología , Proteínas Protozoarias/inmunología , Animales , Anticuerpos Antiprotozoarios/inmunología , Células Cultivadas , Endocitosis/efectos de los fármacos , Eritrocitos/metabolismo , Eritrocitos/parasitología , Humanos , Merozoítos/efectos de los fármacos , Merozoítos/metabolismo , Merozoítos/fisiología , Ratones , Datos de Secuencia Molecular , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/fisiología , Unión Proteica/efectos de los fármacos , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Conejos
17.
ChemMedChem ; 17(18): e202200306, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-35906744

RESUMEN

Plasmepsin X (PMX) is an aspartyl protease that processes proteins essential for Plasmodium parasites to invade and egress from host erythrocytes during the symptomatic asexual stage of malaria. PMX substrates possess a conserved cleavage region denoted by the consensus motif, SFhE (h=hydrophobic amino acid). Peptidomimetics reflecting the P3 -P1 positions of the consensus motif were designed and showed potent and selective inhibition of PMX. It was established that PMX prefers Phe in the P1 position, di-substitution at the ß-carbon of the P2 moiety and a hydrophobic P3 group which was supported by modelling of the peptidomimetics in complex with PMX. The peptidomimetics were shown to arrest asexual P. falciparum parasites at the schizont stage by impairing PMX substrate processing. Overall, the peptidomimetics described will assist in further understanding PMX substrate specificity and have the potential to act as a template for future antimalarial design.


Asunto(s)
Antimaláricos , Antagonistas del Ácido Fólico , Malaria Falciparum , Peptidomiméticos , Aminoácidos , Antimaláricos/química , Antimaláricos/farmacología , Ácido Aspártico Endopeptidasas , Carbono , Humanos , Malaria Falciparum/tratamiento farmacológico , Peptidomiméticos/química , Peptidomiméticos/farmacología , Plasmodium falciparum/metabolismo , Inhibidores de Proteasas/química , Proteínas Protozoarias
18.
Structure ; 30(7): 947-961.e6, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35460613

RESUMEN

Plasmepsins IX (PMIX) and X (PMX) are essential aspartyl proteases for Plasmodium spp. egress, invasion, and development. WM4 and WM382 inhibit PMIX and PMX in Plasmodium falciparum and P. vivax. WM4 inhibits PMX, while WM382 is a dual inhibitor of PMIX and PMX. To understand their function, we identified protein substrates. Enzyme kinetic and structural analyses identified interactions responsible for drug specificity. PMIX and PMX have similar substrate specificity; however, there are distinct differences for peptide and protein substrates. Differences in WM4 and WM382 binding for PMIX and PMX map to variations in the S' region and engagement of the active site S3 pocket. Structures of PMX reveal interactions and mechanistic detail of drug binding important for development of clinical candidates against these targets.


Asunto(s)
Ácido Aspártico Endopeptidasas , Plasmodium falciparum , Ácido Aspártico Endopeptidasas/química , Cinética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Especificidad por Sustrato
19.
Mol Microbiol ; 71(1): 48-65, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19007413

RESUMEN

Virulence of Plasmodium falciparum, the most lethal parasitic disease in humans, results in part from adhesiveness and increased rigidity of infected erythrocytes. Pf332 is trafficked to the parasite-infected erythrocyte via Maurer's clefts, structures for protein sorting and export in the host erythrocyte. This protein has a domain similar to the Duffy-binding-like (DBL) domain, which functions by binding to receptors for adherence and invasion. To address structure of the Pf332 DBL domain, we expressed this region, and validated its fold on the basis of the disulphide bond pattern, which conformed to the generic pattern for DBL domains. The modelled structure for Pf332 DBL had differences compared with the erythrocyte-binding region of the alphaDBL domain of Plasmodium knowlesi Duffy-binding protein (Pk alpha-DBL). We addressed the function of Pf332 by constructing parasites that either lack expression of the protein or express an altered form. We found no evidence that Pf332 is involved in cytoadhesion or merozoite invasion. Truncation of Pf332 had a significant effect on deformability of the P. falciparum-infected erythrocyte, while loss of the full protein deletion did not. Our data suggest that Pf332 may contribute to the overall deformability of the P. falciparum-infected erythrocyte by anchoring and scaffolding.


Asunto(s)
Antígenos de Protozoos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Animales , Anticuerpos Antiprotozoarios/inmunología , Anticuerpos Antiprotozoarios/metabolismo , Antígenos de Protozoos/fisiología , Sitios de Unión , Eritrocitos/parasitología , Eliminación de Gen , Humanos , Merozoítos/fisiología , Modelos Moleculares , Mapeo Peptídico , Plasmodium falciparum/fisiología , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas Protozoarias/fisiología , Relación Estructura-Actividad
20.
Protein Sci ; 29(11): 2245-2258, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32955133

RESUMEN

PfSERA5, a significantly abundant protein present within the parasitophorous vacuole (PV) and essential for normal growth during the blood-stage life cycle of the malaria parasite Plasmodium falciparum, displays structural similarity to many other cysteine proteases. However, PfSERA5 does not exhibit any detectable protease activity and therefore the role of the PfSERA5 papain-like domain (PfSERA5E), thought to remain bound to its cognate prodomain, remains unknown. In this study, we present a revised structure of the central PfSERA5E domain at a resolution of 1.2 Å, and the first structure of the "zymogen" of this papain-like domain including its cognate prodomain (PfSERA5PE) to 2.2 Å resolution. PfSERA5PE is somewhat structurally similar to that of other known proenzymes, retaining the conserved overall folding and orientation of the prodomain through, and occluding, the archetypal papain-like catalytic triad "active-site" cleft, in the same reverse direction as conventional prodomains. Our findings are congruent with previously identified structures of PfSERA5E and of similar "zymogens" and provide a foundation for further investigation into the function of PfSERA5.


Asunto(s)
Antígenos de Protozoos/química , Precursores Enzimáticos/química , Plasmodium falciparum/química , Antígenos de Protozoos/genética , Cristalografía por Rayos X , Precursores Enzimáticos/genética , Plasmodium falciparum/genética , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA