RESUMEN
Over the last 10,000 y, humans have manipulated fallow deer populations with varying outcomes. Persian fallow deer (Dama mesopotamica) are now endangered. European fallow deer (Dama dama) are globally widespread and are simultaneously considered wild, domestic, endangered, invasive and are even the national animal of Barbuda and Antigua. Despite their close association with people, there is no consensus regarding their natural ranges or the timing and circumstances of their human-mediated translocations and extirpations. Our mitochondrial analyses of modern and archaeological specimens revealed two distinct clades of European fallow deer present in Anatolia and the Balkans. Zooarchaeological evidence suggests these regions were their sole glacial refugia. By combining biomolecular analyses with archaeological and textual evidence, we chart the declining distribution of Persian fallow deer and demonstrate that humans repeatedly translocated European fallow deer, sourced from the most geographically distant populations. Deer taken to Neolithic Chios and Rhodes derived not from nearby Anatolia, but from the Balkans. Though fallow deer were translocated throughout the Mediterranean as part of their association with the Greco-Roman goddesses Artemis and Diana, deer taken to Roman Mallorca were not locally available Dama dama, but Dama mesopotamica. Romans also initially introduced fallow deer to Northern Europe but the species became extinct and was reintroduced in the medieval period, this time from Anatolia. European colonial powers then transported deer populations across the globe. The biocultural histories of fallow deer challenge preconceptions about the divisions between wild and domestic species and provide information that should underpin modern management strategies.
Asunto(s)
Ciervos , Animales , Humanos , Peninsula BalcánicaRESUMEN
The ancestors of marine mammals once roamed the land and independently committed to an aquatic lifestyle. These macroevolutionary transitions have intrigued scientists for centuries. Here, we generated high-quality genome assemblies of 17 marine mammals (11 cetaceans and six pinnipeds), including eight assemblies at the chromosome level. Incorporating previously published data, we reconstructed the marine mammal phylogeny and population histories and identified numerous idiosyncratic and convergent genomic variations that possibly contributed to the transition from land to water in marine mammal lineages. Genes associated with the formation of blubber (NFIA), vascular development (SEMA3E), and heat production by brown adipose tissue (UCP1) had unique changes that may contribute to marine mammal thermoregulation. We also observed many lineage-specific changes in the marine mammals, including genes associated with deep diving and navigation. Our study advances understanding of the timing, pattern, and molecular changes associated with the evolution of mammalian lineages adapting to aquatic life.
Asunto(s)
Adaptación Fisiológica , Evolución Molecular , Genoma , Genómica , Mamíferos/fisiología , Filogenia , Termogénesis/genética , Animales , Factores de Transcripción NFI/genética , Factores de Transcripción NFI/metabolismo , Selección Genética , Semaforinas/genética , Semaforinas/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismoRESUMEN
In oceanic ecosystems, the nature of barriers to gene flow and the processes by which populations may become isolated are different from the terrestrial environment, and less well understood. In this study we investigate a highly mobile species (the sperm whale, Physeter macrocephalus) that is genetically differentiated between an open North Atlantic population and the populations in the Mediterranean Sea. We apply high-resolution single nucleotide polymorphism (SNP) analysis to study the nature of barriers to gene flow in this system, assessing the putative boundary into the Mediterranean (Strait of Gibraltar and Alboran Sea region), and including novel analyses on structuring among sperm whale populations within the Mediterranean basin. Our data support a recent founding of the Mediterranean population, around the time of the last glacial maximum, and show concerted historical demographic profiles in both the Atlantic and the Mediterranean. In each region there is evidence for a population decline around the time of the founder event. The largest decline was seen within the Mediterranean Sea where effective population size is substantially lower (especially in the eastern basin). While differentiation is strongest at the Atlantic/Mediterranean boundary, there is also weaker but significant differentiation between the eastern and western basins of the Mediterranean Sea. We propose, however, that the mechanisms are different. While post-founding gene flow was reduced between the Mediterranean and Atlantic populations, within the Mediterranean an important factor differentiating the basins is probably a greater degree of admixture between the western basin and the North Atlantic and some level of isolation between the western and eastern Mediterranean basins. Subdivision within the Mediterranean Sea exacerbates conservation concerns and will require consideration of what distinct impacts may affect populations in the two basins.
Asunto(s)
Ecosistema , Cachalote , Animales , Cachalote/genética , Mar Mediterráneo , Genómica , Densidad de Población , Variación Genética/genéticaRESUMEN
Global warming is affecting the population dynamics and trophic interactions across a wide range of ecosystems and habitats. Translating these real-time effects into their long-term consequences remains a challenge. The rapid and extreme warming period that occurred after the Last Glacial Maximum (LGM) during the Pleistocene-Holocene transition (7-12 thousand years ago) provides an opportunity to gain insights into the long-term responses of natural populations to periods with global warming. The effects of this post-LGM warming period have been assessed in many terrestrial taxa, whereas insights into the impacts of rapid global warming on marine taxa remain limited, especially for megafauna. In order to understand how large-scale climate fluctuations during the post-LGM affected baleen whales and their prey, we conducted an extensive, large-scale analysis of the long-term effects of the post-LGM warming on abundance and inter-ocean connectivity in eight baleen whale and seven prey (fish and invertebrates) species across the Southern and the North Atlantic Ocean; two ocean basins that differ in key oceanographic features. The analysis was based upon 7032 mitochondrial DNA sequences as well as genome-wide DNA sequence variation in 100 individuals. The estimated temporal changes in genetic diversity during the last 30,000 years indicated that most baleen whale populations underwent post-LGM expansions in both ocean basins. The increase in baleen whale abundance during the Holocene was associated with simultaneous changes in their prey and climate. Highly correlated, synchronized and exponential increases in abundance in both baleen whales and their prey in the Southern Ocean were indicative of a dramatic increase in ocean productivity. In contrast, the demographic fluctuations observed in baleen whales and their prey in the North Atlantic Ocean were subtle, varying across taxa and time. Perhaps most important was the observation that the ocean-wide expansions and decreases in abundance that were initiated by the post-LGM global warming, continued for millennia after global temperatures stabilized, reflecting persistent, long-lasting impacts of global warming on marine fauna.
Asunto(s)
Ecosistema , Calentamiento Global , Animales , Océano Atlántico , Dinámica Poblacional , Ballenas/fisiologíaRESUMEN
Founder populations are of special interest to both evolutionary and conservation biologists, but the detection of genetic signals of selection in these populations is challenging due to their demographic history. Geographically separated founder populations likely to have been subjected to similar selection pressures provide an ideal but rare opportunity to overcome these challenges. Here we take advantage of such a situation generated when small, isolated founder populations of reindeer were established on the island of South Georgia, and using this system we look for empirical evidence of selection overcoming strong genetic drift. We generated a 70 k ddRADseq single nucleotide polymorphism database for the two parallel reindeer founder populations and screened for signatures of soft sweeps. We find evidence for a genomic region under selection shared among the two populations, and support our findings with Wright-Fisher model simulations to assess the power and specificity of interpopulation selection scans-namely Bayescan, OutFLANK, PCadapt and a newly developed scan called Genome Wide Differentiation Scan (GWDS)-in the context of pairwise source-founder comparisons. Our simulations indicate that loci under selection in small founder populations are most probably detected by GWDS, and strengthen the hypothesis that the outlier region represents a true locus under selection. We explore possible, relevant functional roles for genes in linkage with the detected outlier loci.
Asunto(s)
Genética de Población , Reno , Animales , Flujo Genético , Islas , Polimorfismo de Nucleótido Simple , Reno/genética , Selección GenéticaRESUMEN
Understanding the genomic basis of adaptation is critical for understanding evolutionary processes and predicting how species will respond to environmental change. Spinner dolphins in the eastern tropical Pacific (ETP) present a unique system for studying adaptation. Within this large geographical region are four spinner dolphin ecotypes with weak neutral genetic divergence and no obvious barriers to gene flow, but strong spatial variation in morphology, behaviour and habitat. These ecotypes have large population sizes, which could reduce the effects of drift and facilitate selection. To identify genomic regions putatively under divergent selective pressures between ecotypes, we used genome scans with 8994 RADseq single nucleotide polymorphisms (SNPs) to identify population differentiation outliers and genotype-environment association outliers. Gene ontology enrichment analyses indicated that outlier SNPs from both types of analyses were associated with multiple genes involved in social behaviour and hippocampus development, including 15 genes associated with the human social disorder autism. Evidence for divergent selection on social behaviour is supported by previous evidence that these spinner dolphin ecotypes differ in mating systems and associated social behaviours. In particular, three of the ETP ecotypes probably have a polygynous mating system characterized by strong premating competition among males, whereas the fourth ecotype probably has a polygynandrous mating system characterized by strong postmating competition such as sperm competition. Our results provide evidence that selection for social behaviour may be an evolutionary force driving diversification of spinner dolphins in the ETP, potentially as a result of divergent sexual selection associated with different mating systems. Future studies should further investigate the potential adaptive role of the candidate genes identified here, and could probably find further signatures of selection using whole genome sequence data.
Asunto(s)
Ecotipo , Stenella , Animales , Flujo Génico , Genética de Población , Genómica , Polimorfismo de Nucleótido Simple , Selección Genética , Conducta SocialRESUMEN
Many marine species exhibit fine-scale population structure despite high mobility and a lack of physical barriers to dispersal, but the evolutionary drivers of differentiation in these systems are generally poorly understood. Here we investigate the potential role of habitat transitions and seasonal prey distributions on the evolution of population structure in the Indo-Pacific bottlenose dolphin, Tursiops aduncus, off South Africa's coast, using double-digest restriction-site associated DNA sequencing. Population structure was identified between the eastern and southern coasts and correlated with the habitat transition between the temperate Agulhas (southern) and subtropical Natal (eastern) Bioregions, suggesting differentiation driven by resource specializations. Differentiation along the Natal coast was comparatively weak, but was evident in some analyses and varied depending on whether the samples were collected during or outside the seasonal sardine (Sardinops sagax) run. This local abundance of prey could influence the ranging patterns and apparent genetic structure of T. aduncus. These findings have significant and transferable management implications, most importantly in terms of differentiating populations inhabiting distinct bioregions and seasonal structural patterns within a region associated with the movement of prey resources.
Asunto(s)
Delfín Mular , Animales , Delfín Mular/genética , Ecosistema , Estaciones del Año , Análisis de Secuencia de ADN , SudáfricaRESUMEN
We use genomics to identify the natal origin of a grey whale found in the South Atlantic, at least 20 000 km from the species core range (halfway around the world). The data indicate an origin in the North Pacific, possibly from the endangered western North Pacific population, thought to include only approximately 200 individuals. This contributes to our understanding of Atlantic sightings of this species known primarily from the North Pacific, and could have conservation implications if grey whales have the potential for essentially global dispersion. More broadly, documenting and understanding rare extreme migration events have potential implications for the understanding of how a species may be able to respond to global change.
Asunto(s)
Agua , Ballenas , AnimalesRESUMEN
The impact of inbreeding on fitness has been widely studied and provides consequential inference about adaptive potential and the impact on survival for reduced and fragmented natural populations. Correlations between heterozygosity and fitness are common in the literature, but they rarely inform about the likely mechanisms. Here, we investigate a pathology with a clear impact on health in striped dolphin hosts (a nematode infection that compromises lung function). Dolphins varied with respect to their parasite burden of this highly pathogenic lung nematode (Skrjabinalius guevarai). Genetic diversity revealed by high-resolution restriction-associated DNA (43 018 RADseq single nucleotide polymorphisms) analyses showed a clear association between heterozygosity and pathogen load, but only for female dolphins, for which the more heterozygous individuals had lower Sk. guevarai burden. One locus identified by RADseq was a strong outlier in association with parasite load (heterozygous in all uninfected females, homozygous for 94% of infected females), found in an intron of the citron rho-interacting serine/threonine kinase locus (associated with milk production in mammals). Allelic variation at the Class II major histocompatability complex DQB locus was also assessed and found to be associated with both regional variation and with pathogen load. Both sex specificity and the identification of associating functional loci provide insight into the mechanisms by which more inbred individuals may be more susceptible to the infection of this parasite. This provides important insight towards our understanding of the impact of inbreeding in natural populations, relevant to both evolutionary and practical conservation considerations.
Asunto(s)
Stenella/parasitología , Animales , Evolución Biológica , Femenino , Aptitud Genética , Heterocigoto , Antígenos de Histocompatibilidad Clase II , Endogamia/estadística & datos numéricos , Masculino , Infecciones por Nematodos/veterinaria , Selección Genética , Stenella/fisiologíaRESUMEN
Species that evolved in temperate regions during the Pleistocene experienced periods of extreme climatic transitions. Consequent population fragmentation and dynamics had the potential to generate small, isolated populations where the influence of genetic drift would be expected to be strong. We use comparative genomics to assess the evolutionary influence of historical demographics and natural selection through a series of transitions associated with the formation of the genus Capreolus, speciation within this genus during the Quaternary and during divergence among European roe deer (C. capreolus) populations. Our analyses were facilitated by the generation of a new high-coverage reference genome for the Siberian roe deer (C. pygargus). We find progressive reductions in effective population size (Ne ), despite very large census sizes in modern C. capreolus populations and show that low Ne has impacted the C. capreolus genome, reducing diversity and increasing linkage disequilibrium. Even so, we find evidence for natural selection shared among C. capreolus populations, including a historically documented founder population that has been through a severe bottleneck. During each phylogenetic transition there is evidence for selection (from dN/dS and nucleotide diversity tests), including at loci associated with diapause (delayed embryonic development), a phenotype restricted to this genus among the even-toed ungulates. Together these data allow us to assess expectations for the origin and diversification of a mammalian genus during a period of extreme environmental change.
Asunto(s)
Ciervos , Animales , Ciervos/genética , Demografía , Femenino , Flujo Genético , Filogenia , Embarazo , Selección GenéticaRESUMEN
Phylogeographic inference has provided extensive insight into the relative roles of geographical isolation and ecological processes during evolutionary radiations. However, the importance of cross-lineage admixture in facilitating adaptive radiations is increasingly being recognised, and suggested as a main cause of phylogenetic uncertainty. In this study, we used a double digest RADseq protocol to provide a high resolution (~4 Million bp) nuclear phylogeny of the Delphininae. Phylogenetic resolution of this group has been especially intractable, likely because it has experienced a recent species radiation. We carried out cross-lineage reticulation analyses, and tested for several sources of potential bias in determining phylogenies from genome sampling data. We assessed the divergence time and historical demography of T. truncatus and T. aduncus by sequencing the T. aduncus genome and comparing it with the T. truncatus reference genome. Our results suggest monophyly for the genus Tursiops, with the recently proposed T. australis species falling within the T. aduncus lineage. We also show the presence of extensive cross-lineage gene flow between pelagic and European coastal ecotypes of T. truncatus, as well as in the early stages of diversification between spotted (Stenella frontalis; Stenella attenuata), spinner (Stenella longirostris), striped (Stenella coeruleoalba), common (Delphinus delphis), and Fraser's (Lagenodelphis hosei) dolphins. Our study suggests that cross-lineage gene flow in this group has been more extensive and complex than previously thought. In the context of biogeography and local habitat dependence, these results improve our understanding of the evolutionary processes determining the history of this lineage.
Asunto(s)
Delfines/clasificación , Animales , Evolución Biológica , Núcleo Celular/genética , Delfines/genética , Ecosistema , Flujo Génico , Genómica , Filogenia , Filogeografía , Stenella/clasificaciónRESUMEN
Here we consider the role of depth as a driver of evolution in a genus of deep-sea fishes. We provide a phylogeny for the genus Coryphaenoides (Gadiformes: Macrouridae) that represents the breadth of habitat use and distributions for these species. In our consensus phylogeny species found at abyssal depths (>4000m) form a well-supported lineage, which interestingly also includes two non-abyssal species, C. striaturus and C. murrayi, diverging from the basal node of that lineage. Biogeographic analyses suggest the genus may have originated in the Southern and Pacific Oceans where contemporary species diversity is highest. The abyssal lineage seems to have arisen secondarily and likely originated in the Southern/Pacific Oceans but diversification of this lineage occurred in the Northern Atlantic Ocean. All abyssal species are found in the North Atlantic with the exception of C. yaquinae in the North Pacific and C. filicauda in the Southern Ocean. Abyssal species tend to have broad depth ranges and wide distributions, indicating that the stability of the deep oceans and the ability to live across wide depths may promote population connectivity and facilitate large ranges. We also confirm that morphologically defined subgenera do not agree with our phylogeny and that the Giant grenadier (formerly Albatrossia pectoralis) belongs to Coryphaenoides, indicating that a taxonomic revision of the genus is needed. We discuss the implications of our findings for understanding the radiation and diversification of this genus, and the likely role of adaptation to the abyss.
Asunto(s)
Gadiformes/clasificación , Adaptación Fisiológica , Animales , Océano Atlántico , Citocromos c/clasificación , Citocromos c/genética , Citocromos c/metabolismo , ADN/química , ADN/aislamiento & purificación , ADN/metabolismo , Ecosistema , Gadiformes/genética , Proteínas de Homeodominio/clasificación , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Océanos y Mares , Océano Pacífico , Filogenia , Filogeografía , ARN Ribosómico/clasificación , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADNRESUMEN
The tendency of many species to abandon migration remains a poorly understood aspect of evolutionary biology that may play an important role in promoting species radiation by both allopatric and sympatric mechanisms. Anadromy inherently offers an opportunity for the colonization of freshwater environments, and the shift from an anadromous to a wholly freshwater life history has occurred in many families of fishes. Freshwater-resident forms have arisen repeatedly among lampreys (within the Petromyzontidae and Mordaciidae), and there has been much debate as to whether anadromous lampreys, and their derived freshwater-resident analogues, constitute distinct species or are divergent ecotypes of polymorphic species. Samples of 543 European river lamprey Lampetra fluviatilis (mostly from anadromous populations) and freshwater European brook lamprey Lampetra planeri from across 18 sites, primarily in the British Isles, were investigated for 13 polymorphic microsatellite DNA loci, and 108 samples from six of these sites were sequenced for 829 bp of mitochondrial DNA (mtDNA). We found contrasting patterns of population structure for mtDNA and microsatellite DNA markers, such that low diversity and little structure were seen for all populations for mtDNA (consistent with a recent founder expansion event), while fine-scale structuring was evident for nuclear markers. Strong differentiation for microsatellite DNA loci was seen among freshwater-resident L. planeri populations and between L. fluviatilis and L. planeri in most cases, but little structure was evident among anadromous L. fluviatilis populations. We conclude that postglacial colonization founded multiple freshwater-resident populations with strong habitat fidelity and limited dispersal tendencies that became highly differentiated, a pattern that was likely intensified by anthropogenic barriers.
Asunto(s)
Distribución Animal , Genética de Población , Lampreas/genética , Animales , ADN Mitocondrial/genética , Ecotipo , Europa (Continente) , Agua Dulce , Flujo Génico , Variación Genética , Haplotipos , Repeticiones de Microsatélite , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Reino UnidoRESUMEN
Zooarcheological evidence suggests that pigs were domesticated in Southwest Asia ~8,500 BC. They then spread across the Middle and Near East and westward into Europe alongside early agriculturalists. European pigs were either domesticated independently or more likely appeared so as a result of admixture between introduced pigs and European wild boar. As a result, European wild boar mtDNA lineages replaced Near Eastern/Anatolian mtDNA signatures in Europe and subsequently replaced indigenous domestic pig lineages in Anatolia. The specific details of these processes, however, remain unknown. To address questions related to early pig domestication, dispersal, and turnover in the Near East, we analyzed ancient mitochondrial DNA and dental geometric morphometric variation in 393 ancient pig specimens representing 48 archeological sites (from the Pre-Pottery Neolithic to the Medieval period) from Armenia, Cyprus, Georgia, Iran, Syria, and Turkey. Our results reveal the first genetic signatures of early domestic pigs in the Near Eastern Neolithic core zone. We also demonstrate that these early pigs differed genetically from those in western Anatolia that were introduced to Europe during the Neolithic expansion. In addition, we present a significantly more refined chronology for the introduction of European domestic pigs into Asia Minor that took place during the Bronze Age, at least 900 years earlier than previously detected. By the 5th century AD, European signatures completely replaced the endemic lineages possibly coinciding with the widespread demographic and societal changes that occurred during the Anatolian Bronze and Iron Ages.
Asunto(s)
ADN Mitocondrial/genética , Diente Molar/anatomía & histología , Sus scrofa/genética , Distribución Animal , Animales , Animales Domésticos/genética , Asia , Europa (Continente) , Humanos , Filogeografía , Análisis de Secuencia de ADN , Porcinos/genéticaRESUMEN
Genetic diversity provides the raw material for populations to respond to changing environmental conditions. The evolution of diversity within populations is based on the accumulation of mutations and their retention or loss through selection and genetic drift, while migration can also introduce new variation. However, the extent to which population growth and sustained large population size can lead to rapid and significant increases in diversity has not been widely investigated. Here, we assess this empirically by applying approximate Bayesian computation to a novel ancient DNA dataset that spans the life of a southern elephant seal (Mirounga leonina) population, from initial founding approximately 7000 years ago to eventual extinction within the past millennium. We find that rapid population growth and sustained large population size can explain substantial increases in population genetic diversity over a period of several hundred generations, subsequently lost when the population went to extinction. Results suggest that the impact of diversity introduced through migration was relatively minor. We thus demonstrate, by examining genetic diversity across the life of a population, that environmental change could generate the raw material for adaptive evolution over a very short evolutionary time scale through rapid establishment of a large, stable population.
Asunto(s)
Efecto Fundador , Phocidae/genética , Adaptación Biológica/genética , Animales , Teorema de Bayes , Evolución Biológica , Extinción Biológica , Femenino , Flujo Genético , Dinámica PoblacionalRESUMEN
The evolution of diversity in the marine ecosystem is poorly understood, given the relatively high potential for connectivity, especially for highly mobile species such as whales and dolphins. The killer whale (Orcinus orca) has a worldwide distribution, and individual social groups travel over a wide geographic range. Even so, regional populations have been shown to be genetically differentiated, including among different foraging specialists (ecotypes) in sympatry. Given the strong matrifocal social structure of this species together with strong resource specializations, understanding the process of differentiation will require an understanding of the relative importance of both genetic drift and local adaptation. Here we provide a high-resolution analysis based on nuclear single-nucleotide polymorphic markers and inference about differentiation at both neutral loci and those potentially under selection. We find that all population comparisons, within or among foraging ecotypes, show significant differentiation, including populations in parapatry and sympatry. Loci putatively under selection show a different pattern of structure compared to neutral loci and are associated with gene ontology terms reflecting physiologically relevant functions (e.g. related to digestion). The pattern of differentiation for one ecotype in the North Pacific suggests local adaptation and shows some fixed differences among sympatric ecotypes. We suggest that differential habitat use and resource specializations have promoted sufficient isolation to allow differential evolution at neutral and functional loci, but that the process is recent and dependent on both selection and drift.
Asunto(s)
Ecotipo , Flujo Genético , Selección Genética , Simpatría , Orca/genética , Animales , Evolución Molecular , Sitios Genéticos , Genética de Población , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADNRESUMEN
The six species currently classified within the genus Lagenorhynchus exhibit a pattern of antitropical distribution common among marine taxa. In spite of their morphological similarities they are now considered an artificial grouping, and include both recent and the oldest representatives of the Delphinidae radiation. They are, therefore, a good model for studying questions about the evolutionary processes that have driven dolphin speciation, dispersion and distribution. Here we used two different approaches. First we constructed a multigenic phylogeny with a minimum amount of missing data (based on 9 genes, 11,030bp, using the 6 species of the genus and their closest relatives) to infer their relationships. Second, we built a supermatrix phylogeny (based on 33 species and 27 genes) to test the effect of taxon sampling on the phylogeny of the genus, to provide inference on biogeographic history, and provide inference on the main events shaping the dispersion and radiation of delphinids. Our analyses suggested an early evolutionary history of marine dolphins in the North Atlantic Ocean and revealed multiple pathways of migration and radiation, probably guided by paleoceanographic changes during the Miocene and Pliocene. L. acutus and L. albirostris likely shared a common ancestor that arose in the North Atlantic around the Middle Miocene, predating the radiation of subfamilies Delphininae, Globicephalinae and Lissodelphininae.
Asunto(s)
Evolución Biológica , Delfines/clasificación , Evolución Molecular , Filogenia , Animales , Océano Atlántico , Teorema de Bayes , ADN Mitocondrial/genética , Delfines/genética , Funciones de Verosimilitud , Modelos Genéticos , Análisis de Secuencia de ADNRESUMEN
Understanding the evolution of diversity and the resulting systematics in marine systems is confounded by the lack of clear boundaries in oceanic habitats, especially for highly mobile species like marine mammals. Dolphin populations and sibling species often show differentiation between coastal and offshore habitats, similar to the pelagic/littoral or benthic differentiation seen for some species of fish. Here we test the hypothesis that lineages within the polytypic genus Tursiops track past changes in the environment reflecting ecological drivers of evolution facilitated by habitat release. We used a known recent time point for calibration (the opening of the Bosphorus) and whole mitochondrial genome (mitogenome) sequences for high phylogenetic resolution. The pattern of lineage formation suggested an origin in Australasia and several early divisions involving forms currently inhabiting coastal habitats. Radiation in pelagic environments was relatively recent, and was likely followed by a return to coastal habitat in some regions. The timing of some nodes defining different ecotypes within the genus clustered near the two most recent interglacial transitions. A signal for an increase in diversification was also seen for dates after the last glacial maximum. Together these data suggest the tracking of habitat preference during geographic expansions, followed by transition points reflecting habitat shifts, which were likely associated with periods of environmental change.