Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Lipid Res ; 64(6): 100378, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37087100

RESUMEN

Reliability, robustness, and interlaboratory comparability of quantitative measurements is critical for clinical lipidomics studies. Lipids' different ex vivo stability in blood bears the risk of misinterpretation of data. Clear recommendations for the process of blood sample collection are required. We studied by UHPLC-high resolution mass spectrometry, as part of the "Preanalytics interest group" of the International Lipidomics Society, the stability of 417 lipid species in EDTA whole blood after exposure to either 4°C, 21°C, or 30°C at six different time points (0.5 h-24 h) to cover common daily routine conditions in clinical settings. In total, >800 samples were analyzed. 325 and 288 robust lipid species resisted 24 h exposure of EDTA whole blood to 21°C or 30°C, respectively. Most significant instabilities were detected for FA, LPE, and LPC. Based on our data, we recommend cooling whole blood at once and permanent. Plasma should be separated within 4 h, unless the focus is solely on robust lipids. Lists are provided to check the ex vivo (in)stability of distinct lipids and potential biomarkers of interest in whole blood. To conclude, our results contribute to the international efforts towards reliable and comparable clinical lipidomics data paving the way to the proper diagnostic application of distinct lipid patterns or lipid profiles in the future.


Asunto(s)
Lipidómica , Lípidos , Lipidómica/métodos , Lípidos/química , Ácido Edético , Reproducibilidad de los Resultados , Espectrometría de Masas/métodos
2.
Anal Chem ; 93(31): 10916-10924, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34328315

RESUMEN

From microbes to human beings, nontargeted metabolic profiling by liquid chromatography (LC)-mass spectrometry (MS) has been commonly used to investigate metabolic alterations. Still, a major challenge is the annotation of metabolites from thousands of detected features. The aim of our research was to go beyond coverage of metabolite annotation in common nontargeted metabolomics studies by an integrated multistep strategy applying data-dependent acquisition (DDA)-based ultrahigh-performance liquid chromatography (UHPLC)-high-resolution mass spectrometry (HRMS) analysis followed by comprehensive neutral loss matches for characteristic metabolite modifications and database searches in a successive manner. Using pooled human urine as a model sample for method establishment, we found 22% of the detected compounds having modifying structures. Major types of metabolite modifications in urine were glucuronidation (33%), sulfation (20%), and acetylation (6%). Among the 383 annotated metabolites, 100 were confirmed by standard compounds and 50 modified metabolites not present in common databases such as human metabolite database (HMDB) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were structurally elucidated. Practicability was tested by the investigation of urines from pregnant women diagnosed with gestational diabetes mellitus vs healthy controls. Overall, 83 differential metabolites were annotated and 67% of them were modified metabolites including five previously unreported compounds. To conclude, the systematic modifying group-assisted strategy can be taken as a useful tool to extend the number of annotated metabolites in biological and biomedical nontargeted studies.


Asunto(s)
Metabolómica , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Bases de Datos Factuales , Femenino , Humanos , Espectrometría de Masas , Embarazo
3.
Clin Chem Lab Med ; 59(5): 913-920, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33068377

RESUMEN

OBJECTIVES: Due to its high specificity, liquid chromatography-tandem mass spectrometry (LC-MS/MS) is considered the gold standard in diagnostic areas such as therapeutic monitoring of immunosuppressive drugs (ISDs). However, many laboratories still rely on immunoassays for ISD quantification in a tradeoff between analytical performance and the advantages of fully automated analyzers - shorter turnaround times, greater ease of use, and 24/7 availability. METHODS: The LC-MS/MS-based Thermo Scientific™ Cascadion™ SM Immunosuppressant Panel was evaluated for >6 months in the routine laboratory of a university hospital. We assessed the analytical performance of the panel and compared it to conventional LC-MS/MS as well as to immunoassays (cyclosporine A, sirolimus, tacrolimus (Siemens) and everolimus (Thermo Fisher)). In addition, both ISD panel and Cascadion analyzer were scrutinized with regards to, e.g., turnaround time, usability, and robustness. RESULTS: All ISDs showed high linearity and precision (CV≤6%) and a good correlation with conventional LC-MS/MS. The mean deviation to the immunoassays was 17-19% and negative for all ISDs except everolimus with a positive 19% bias. No weak points were revealed when challenging assay and system with, e.g., high haematocrit, sedimented whole blood or priority samples. The Cascadion integrated well into our 24/7 routine and could easily be operated simultaneously with several other analyzers by technical staff without LC-MS experience. CONCLUSIONS: The ISD panel showed excellent analytical performance and demonstrated that a fully automated LC-MS-based analysis starting from primary samples is feasible, suggesting that LC-MS could become an integral part of 24/7 diagnostics in the near future.


Asunto(s)
Laboratorios , Preparaciones Farmacéuticas , Cromatografía Liquida , Monitoreo de Drogas , Everolimus , Humanos , Inmunosupresores , Tacrolimus , Espectrometría de Masas en Tándem
4.
Am J Physiol Endocrinol Metab ; 318(5): E701-E709, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32101032

RESUMEN

Little is known about xenometabolites in human metabolism, particularly under exercising conditions. Previously, an exercise-modifiable, likely xenometabolite derivative, cis-3,4-methylene-heptanoylcarnitine, was reported in human plasma. Here, we identified trans-3,4-methylene-heptanoylcarnitine, and its cis-isomer, in plasma and skeletal muscle by liquid chromatography-mass spectrometry. We analyzed the regulation by exercise and the arterial-to-venous differences of these cyclopropane ring-containing carnitine esters over the hepatosplanchnic bed and the exercising leg in plasma samples obtained in three separate studies from young, lean and healthy males. Compared with other medium-chain acylcarnitines, the plasma concentrations of the 3,4-methylene-heptanoylcarnitine isomers only marginally increased with exercise. Both isomers showed a more than twofold increase in the skeletal muscle tissue of the exercising leg; this may have been due to the net effect of fatty acid oxidation in the exercising muscle and uptake from blood. The latter idea is supported by a more than twofold increased net uptake in the exercising leg only. Both isomers showed a constant release from the hepatosplanchnic bed, with an increased release of the trans-isomer after exercise. The isomers differ in their plasma concentration, with a four times higher concentration of the cis-isomer regardless of the exercise state. This is the first approach studying kinetics and fluxes of xenolipid isomers from tissues under exercise conditions, supporting the hypothesis that hepatic metabolism of cyclopropane ring-containing fatty acids is one source of these acylcarnitines in plasma. The data also provide clear evidence for an exercise-dependent regulation of xenometabolites, opening perspectives for future studies about the physiological role of this largely unknown class of metabolites.


Asunto(s)
Carnitina/análogos & derivados , Carnitina/metabolismo , Ejercicio Físico/fisiología , Músculo Esquelético/metabolismo , Humanos , Masculino , Adulto Joven
5.
Pflugers Arch ; 471(3): 383-396, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30338347

RESUMEN

Regular physical activity not only improves the exercise capacity of the skeletal muscle performing the contractions, but it is beneficial for the whole body. An extensive search for "exercise factors" mediating these beneficial effects has been going on for decades. Particularly skeletal muscle tissue has been investigated as a source of circulating exercise factors, and several myokines have been identified. However, exercise also has an impact on other tissues. The liver is interposed between energy storing and energy utilising tissues and is highly active during exercise, maintaining energy homeostasis. Recently, a novel group of exercise factors-termed hepatokines-has emerged. These proteins (fibroblast growth factor 21, follistatin, angiopoietin-like protein 4, heat shock protein 72, insulin-like growth factor binding protein 1) are released from the liver and increased in the bloodstream during or in the recovery after an exercise bout. In this narrative review, we evaluate this new group of exercise factors focusing on the regulation and potential function in exercise metabolism and adaptations. These hepatokines may convey some of the beneficial whole-body effects of exercise that could ameliorate metabolic diseases, such as obesity or type 2 diabetes.


Asunto(s)
Ejercicio Físico/fisiología , Hígado/metabolismo , Proteínas/metabolismo , Animales , Homeostasis/fisiología , Humanos , Enfermedades Metabólicas/metabolismo , Músculo Esquelético/metabolismo
6.
Am J Physiol Endocrinol Metab ; 317(2): E374-E387, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31211616

RESUMEN

Mitochondria are dynamic organelles with diverse functions in tissues such as liver and skeletal muscle. To unravel the mitochondrial contribution to tissue-specific physiology, we performed a systematic comparison of the mitochondrial proteome and lipidome of mice and assessed the consequences hereof for respiration. Liver and skeletal muscle mitochondrial protein composition was studied by data-independent ultra-high-performance (UHP)LC-MS/MS-proteomics, and lipid profiles were compared by UHPLC-MS/MS lipidomics. Mitochondrial function was investigated by high-resolution respirometry in samples from mice and humans. Enzymes of pyruvate oxidation as well as several subunits of complex I, III, and ATP synthase were more abundant in muscle mitochondria. Muscle mitochondria were enriched in cardiolipins associated with higher oxidative phosphorylation capacity and flexibility, in particular CL(18:2)4 and 22:6-containing cardiolipins. In contrast, protein equipment of liver mitochondria indicated a shuttling of complex I substrates toward gluconeogenesis and ketogenesis and a higher preference for electron transfer via the flavoprotein quinone oxidoreductase pathway. Concordantly, muscle and liver mitochondria showed distinct respiratory substrate preferences. Muscle respired significantly more on the complex I substrates pyruvate and glutamate, whereas in liver maximal respiration was supported by complex II substrate succinate. This was a consistent finding in mouse liver and skeletal muscle mitochondria and human samples. Muscle mitochondria are tailored to produce ATP with a high capacity for complex I-linked substrates. Liver mitochondria are more connected to biosynthetic pathways, preferring fatty acids and succinate for oxidation. The physiologic diversity of mitochondria may help to understand tissue-specific disease pathologies and to develop therapies targeting mitochondrial function.


Asunto(s)
Metabolismo Energético/fisiología , Hígado/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/metabolismo , Proteoma/metabolismo , Animales , Femenino , Humanos , Hígado/química , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias Hepáticas/metabolismo , Mitocondrias Musculares/metabolismo , Proteínas Mitocondriales/análisis , Músculo Esquelético/química , Especificidad de Órganos , Mapeo Peptídico/métodos , Proteoma/análisis
7.
Proc Natl Acad Sci U S A ; 113(20): 5754-9, 2016 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-27140617

RESUMEN

Metabolic syndrome is characterized by insulin resistance, obesity, and dyslipidemia. It is the consequence of an imbalance between caloric intake and energy consumption. Adiponectin protects against metabolic syndrome. Insulin-induced signaling includes activation of PI3 kinase and protein kinase B (PKB)/Akt. PKB/Akt in turn inactivates glycogen synthase kinase (GSK) 3, a major regulator of metabolism. Here, we studied the significance of PI3K-dependent GSK3 inactivation for adiponectin formation in diet-induced metabolic syndrome. Mice expressing PI3K-insensitive GSK3 (gsk3(KI)) and wild-type mice (gsk3(WT)) were fed a high-fat diet. Compared with gsk3(WT) mice, gsk3(KI) mice were protected against the development of metabolic syndrome as evident from a markedly lower weight gain, lower total body and liver fat accumulation, better glucose tolerance, stronger hepatic insulin-dependent PKB/Akt phosphorylation, lower serum insulin, cholesterol, and triglyceride levels, as well as higher energy expenditure. Serum adiponectin concentration and the activity of transcription factor C/EBPα controlling the expression of adiponectin in adipose tissue was significantly higher in gsk3(KI) mice than in gsk3(WT) mice. Treatment with GSK3 inhibitor lithium significantly decreased the serum adiponectin concentration of gsk3(KI) mice and abrogated the difference in C/EBPα activity between the genotypes. Taken together, our data demonstrate that the expression of PI3K-insensitive GSK3 stimulates the production of adiponectin and protects from diet-induced metabolic syndrome.


Asunto(s)
Adiponectina/biosíntesis , Glucógeno Sintasa Quinasa 3/fisiología , Síndrome Metabólico/enzimología , Tejido Adiposo/metabolismo , Animales , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Dieta Alta en Grasa/efectos adversos , Intolerancia a la Glucosa/enzimología , Resistencia a la Insulina , Hígado/enzimología , Masculino , Síndrome Metabólico/etiología , Ratones Transgénicos , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/fisiología
8.
Clin Chem ; 64(5): 810-819, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29567661

RESUMEN

BACKGROUND: Nonadherence to standard operating procedures (SOPs) during handling and processing of whole blood is one of the most frequent causes affecting the quality of serum and plasma. Yet, the quality of blood samples is of the utmost importance for reliable, conclusive research findings, valid diagnostics, and appropriate therapeutic decisions. METHODS: UHPLC-MS-driven nontargeted metabolomics was applied to identify biomarkers that reflected time to processing of blood samples, and a targeted UHPLC-MS analysis was used to quantify and validate these biomarkers. RESULTS: We found that (4E,14Z)-sphingadienine-C18-1-phosphate (S1P-d18:2) was suitable for the reliable assessment of the pronounced changes in the quality of serum and plasma caused by errors in the phase between collection and centrifugation of whole blood samples. We rigorously validated S1P-d18:2, which included the use of practicality tests on >1400 randomly selected serum and plasma samples that were originally collected during single- and multicenter trials and then stored in 11 biobanks in 3 countries. Neither life-threatening disease states nor strenuous metabolic challenges (i.e., high-intensity exercise) affected the concentration of S1P-d18:2. Cutoff values for sample assessment were defined (plasma, ≤0.085 µg/mL; serum, ≤0.154 µg/mL). CONCLUSIONS: Unbiased valid monitoring to check for adherence to SOP-dictated time for processing to plasma or serum and/or time to storage of whole blood at 4 °C is now feasible. This novel quality assessment step could enable scientists to uncover common preanalytical errors, allowing for identification of serum and plasma samples that should be excluded from certain investigations. It should also allow control of samples before long-term storage in biobanks.


Asunto(s)
Biomarcadores/sangre , Etanolaminas/sangre , Fosfatos/sangre , Control de Calidad , Manejo de Especímenes , Humanos , Ácido Láctico/sangre , Lisofosfolípidos/sangre , Reproducibilidad de los Resultados , Esfingosina/análogos & derivados , Esfingosina/sangre
9.
Diabetologia ; 58(8): 1845-54, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26067360

RESUMEN

AIMS/HYPOTHESIS: The therapeutic benefit of physical activity to prevent and treat type 2 diabetes is commonly accepted. However, the impact of the disease on the acute metabolic response is less clear. To this end, we investigated the effect of type 2 diabetes on exercise-induced plasma metabolite changes and the muscular transcriptional response using a complementary metabolomics/transcriptomics approach. METHODS: We analysed 139 plasma metabolites and hormones at nine time points, and whole genome expression in skeletal muscle at three time points, during a 60 min bicycle ergometer exercise and a 180 min recovery phase in type 2 diabetic patients and healthy controls matched for age, percentage body fat and maximal oxygen consumption (VO2). RESULTS: Pathway analysis of differentially regulated genes upon exercise revealed upregulation of regulators of GLUT4 (SLC2A4RG, FLOT1, EXOC7, RAB13, RABGAP1 and CBLB), glycolysis (HK2, PFKFB1, PFKFB3, PFKM, FBP2 and LDHA) and insulin signal mediators in diabetic participants compared with controls. Notably, diabetic participants had normalised rates of lactate and insulin levels, and of glucose appearance and disappearance, after exercise. They also showed an exercise-induced compensatory regulation of genes involved in biosynthesis and metabolism of amino acids (PSPH, GATM, NOS1 and GLDC), which responded to differences in the amino acid profile (consistently lower plasma levels of glycine, cysteine and arginine). Markers of fat oxidation (acylcarnitines) and lipolysis (glycerol) did not indicate impaired metabolic flexibility during exercise in diabetic participants. CONCLUSIONS/INTERPRETATION: Type 2 diabetic individuals showed specific exercise-regulated gene expression. These data provide novel insight into potential mechanisms to ameliorate the disturbed glucose and amino acid metabolism associated with type 2 diabetes.


Asunto(s)
Aminoácidos/metabolismo , Metabolismo de los Hidratos de Carbono/genética , Diabetes Mellitus Tipo 2/metabolismo , Ejercicio Físico/fisiología , Glucosa/metabolismo , Glucemia/metabolismo , Calorimetría Indirecta , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Humanos , Hipoglucemiantes/uso terapéutico , Masculino , Metformina/uso terapéutico , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Consumo de Oxígeno , Compuestos de Sulfonilurea/uso terapéutico
10.
Biochim Biophys Acta ; 1842(10): 1563-70, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25128765

RESUMEN

Brown adipose tissue (BAT) is a thermogenic organ with a vital function in small mammals and potential as metabolic drug target in humans. By using high-resolution LC-tandem-mass spectrometry, we quantified 329 lipid species from 17 (sub)classes and identified the fatty acid composition of all phospholipids from BAT and subcutaneous and gonadal white adipose tissue (WAT) from female and male mice. Phospholipids and free fatty acids were higher in BAT, while DAG and TAG levels were higher in WAT. A set of phospholipids dominated by the residue docosahexaenoic acid, which influences membrane fluidity, showed the highest specificity for BAT. We additionally detected major sex-specific differences between the BAT lipid profiles, while samples from the different WAT depots were comparatively similar. Female BAT contained less triacylglycerol and more phospholipids rich in arachidonic and stearic acid whereas another set of fatty acid residues that included linoleic and palmitic acid prevailed in males. These differences in phospholipid fatty acid composition could greatly affect mitochondrial membranes and other cellular organelles and thereby regulate the function of BAT in a sex-specific manner.

11.
Anal Chem ; 87(15): 7698-704, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26145158

RESUMEN

Identification of lipids in nontargeted lipidomics based on liquid-chromatography coupled to mass spectrometry (LC-MS) is still a major issue. While both accurate mass and fragment spectra contain valuable information, retention time (tR) information can be used to augment this data. We present a retention time model based on machine learning approaches which enables an improved assignment of lipid structures and automated annotation of lipidomics data. In contrast to common approaches we used a complex mixture of 201 lipids originating from fat tissue instead of a standard mixture to train a support vector regression (SVR) model including molecular structural features. The cross-validated model achieves a correlation coefficient between predicted and experimental test sample retention times of r = 0.989. Combining our retention time model with identification via accurate mass search (AMS) of lipids against the comprehensive LIPID MAPS database, retention time filtering can significantly reduce the rate of false positives in complex data sets like adipose tissue extracts. In our case, filtering with retention time information removed more than half of the potential identifications, while retaining 95% of the correct identifications. Combination of high-precision retention time prediction and accurate mass can thus significantly narrow down the number of hypotheses to be assessed for lipid identification in complex lipid pattern like tissue profiles.


Asunto(s)
Técnicas de Química Analítica/métodos , Lípidos/análisis , Cromatografía Liquida , Lípidos/química , Espectrometría de Masas
12.
Exerc Immunol Rev ; 21: 42-57, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25826388

RESUMEN

The role of inflammation in skeletal muscle adaptation to exercise is complex and has hardly been elucidated so far. While the acute inflammatory response to exercise seems to promote skeletal muscle training adaptation and regeneration, persistent, low-grade inflammation, as seen in a multitude of chronic diseases, is obviously detrimental. The regulation of cytokine production in skeletal muscle cells has been relatively well studied, yet little is known about the compensatory and anti-inflammatory mechanisms that resolve inflammation and restore tissue homeostasis. One important strategy to ensure sequential, timely and controlled resolution of inflammation relies on the regulated stability of mRNAs encoding pro-inflammatory mediators. Many key transcripts in early immune responses are characterized by the presence of AU-rich elements (AREs) in the 3'-untranslated regions of their mRNAs, allowing efficient fine-tuning of gene expression patterns at the post-transcriptional level. AREs exert their function by recruiting particular RNA-binding proteins, resulting, in most cases, in de-stabilization of the target transcripts. The best-characterized ARE-binding proteins are HuR, CUGBP1, KSRP, AUF1, and the three ZFP36 proteins, especially TTP/ZFP36. Here, we give a general introduction into the role of inflammation in the adaptation of skeletal muscle to exercise. Subsequently, we focus on potential roles of ARE-binding proteins in skeletal muscle tissue in general and specifically exercise-induced skeletal muscle remodeling. Finally, we present novel data suggesting a specific function of TTP/ZFP36 in exercise-induced skeletal muscle plasticity.


Asunto(s)
Regiones no Traducidas 3'/genética , Ejercicio Físico/fisiología , Regulación de la Expresión Génica/fisiología , Inflamación/fisiopatología , Proteínas Musculares/fisiología , Músculo Esquelético/fisiología , Proteínas de Unión al ARN/fisiología , Adaptación Fisiológica/genética , Adaptación Fisiológica/fisiología , Animales , Citocinas/genética , Citocinas/fisiología , Humanos , Mediadores de Inflamación/fisiología , Contracción Muscular/genética , Contracción Muscular/fisiología , Músculo Esquelético/crecimiento & desarrollo , Condicionamiento Físico Animal/fisiología , Procesamiento Postranscripcional del ARN , Estabilidad del ARN , ARN Mensajero/metabolismo , Regeneración/fisiología , Transcripción Genética
13.
Mol Metab ; 80: 101868, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159882

RESUMEN

OBJECTIVE: Endothelin receptor B (ETB) together with ETA mediates cellular effects of endothelin 1 (ET-1), an autocrine and endocrine peptide produced by the endothelium and other cells. It regulates vascular tone and controls kidney function. Metabolic syndrome is due to high caloric intake and is characterized by insulin resistance, dyslipidemia, and white adipose tissue (WAT) accumulation. ETA/ETB antagonism has been demonstrated to favorably influence insulin resistance. Our study explored the role of ETB in metabolic syndrome. METHODS: Wild type (etb+/+) and rescued ETB-deficient (etb-/-) mice were fed a high-fat diet, and energy, glucose, and insulin metabolism were analyzed, and hormones and lipids measured in serum and tissues. Cell culture experiments were performed in HepG2 cells. RESULTS: Compared to etb+/+ mice, etb-/- mice exhibited better glucose tolerance and insulin sensitivity, less WAT accumulation, lower serum triglycerides, and higher energy expenditure. Protection from metabolic syndrome was paralleled by higher hepatic production of fibroblast growth factor 21 (FGF21) and higher serum levels of free thyroxine (fT4), stimulators of energy expenditure. CONCLUSIONS: ETB deficiency confers protection from metabolic syndrome by counteracting glucose intolerance, dyslipidemia, and WAT accumulation due to enhanced energy expenditure, effects at least in part dependent on enhanced production of thyroid hormone/FGF21. ETB antagonism may therefore be a novel therapeutic approach in metabolic syndrome.


Asunto(s)
Dislipidemias , Resistencia a la Insulina , Síndrome Metabólico , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Glucosa/metabolismo , Receptores de Endotelina
14.
Am J Physiol Cell Physiol ; 304(2): C128-36, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23114963

RESUMEN

Myogenic differentiation of skeletal muscle cells is characterized by a sequence of events that include activation of signal transducer and activator of transcription 3 (STAT3) and enhanced expression of its target gene Socs3. Autocrine effects of IL-6 may contribute to the activation of the STAT3-Socs3 cascade and thus to myogenic differentiation. The importance of IL-6 and STAT3 for the differentiation process was studied in C2C12 cells and in primary mouse wild-type and IL-6(-/-) skeletal muscle cells. In differentiating C2C12 myoblasts, the upregulation of IL-6 mRNA expression and protein secretion started after increased phosphorylation of STAT3 on tyrosine 705 and increased mRNA expression of Socs3 was observed. Knockdown of STAT3 and IL-6 mRNA in differentiating C2C12 myoblasts impaired the expression of the myogenic markers myogenin and MyHC IIb and subsequently myotube fusion. However, the knockdown of IL-6 did not prevent the induction of STAT3 tyrosine phosphorylation. The IL-6-independent activation of STAT3 was verified in differentiating primary IL-6(-/-) myoblasts. The phosphorylation of STAT3 and the expression levels of STAT3, Socs3, and myogenin during differentiation were comparable in the primary myoblasts independent of the genotype. However, IL-6(-/-) cells failed to induce MyHC IIb expression to the same level as in wild-type cells and showed reduced myotube formation. Supplementation of IL-6 could partially restore the fusion of IL-6(-/-) cells. These data demonstrate that IL-6 depletion during myogenic differentiation does not reduce the activation of the STAT3-Socs3 cascade, while IL-6 and STAT3 are both necessary to promote myotube fusion.


Asunto(s)
Diferenciación Celular , Interleucina-6/fisiología , Desarrollo de Músculos , Mioblastos Esqueléticos/citología , Factor de Transcripción STAT3/metabolismo , Animales , Células Cultivadas , Técnicas de Silenciamiento del Gen , Interleucina-6/genética , Ratones , Ratones Mutantes , Fibras Musculares Esqueléticas/metabolismo , Miogenina/biosíntesis , Cadenas Pesadas de Miosina/biosíntesis , Fosforilación , Factor de Transcripción STAT3/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteína 3 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas/biosíntesis , Tirosina/metabolismo
15.
Anal Chem ; 85(9): 4651-7, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23537127

RESUMEN

Investigations of complex metabolic mechanisms and networks have become a focus of research in the postgenomic area, thereby creating an increasing demand for sophisticated analytical approaches. One such tool is lipidomics analysis that provides, a detailed picture of the lipid composition of a system at a given time. Introducing stable isotopes into the studied system can additionally provide information on the synthesis, transformation and degradation of individual lipid species. However, capturing the entire dynamics of lipid networks is still a challenge. We developed and evaluated a novel strategy for the in-depth analysis of the dynamics of lipid metabolism with the capacity for high molecular specificity and network coverage. The general workflow consists of stable isotope-labeling experiments, ultrahigh-performance liquid chromatography (UHPLC)/high-resolution Orbitrap-mass spectrometry (MS) lipid profiling and data processing by a software tool for global isotopomer filtering and matching. As a proof of concept, this approach was applied to the network-wide mapping of dynamic lipid metabolism in primary human skeletal muscle cells cultured for 4, 12, and 24 h with [U-(13)C]-palmitate. In the myocellular lipid extracts, 692 isotopomers were detected that could be assigned to 203 labeled lipid species spanning 12 lipid (sub)classes. Interestingly, some lipid classes showed high turnover rates but stable total amounts while the amount of others increased in the course of palmitate treatment. The novel strategy presented here has the potential to open new detailed insights into the dynamics of lipid metabolism that may lead to a better understanding of physiological mechanisms and metabolic perturbations.


Asunto(s)
Marcaje Isotópico , Lípidos/análisis , Músculo Esquelético/metabolismo , Termodinámica , Células Cultivadas , Cromatografía Líquida de Alta Presión , Humanos , Metabolismo de los Lípidos , Espectrometría de Masas , Músculo Esquelético/citología , Programas Informáticos
16.
FASEB J ; 26(5): 1799-809, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22278939

RESUMEN

Impaired insulin action in the brain represents an early step in the progression toward type 2 diabetes, and elevated levels of saturated free fatty acids are known to impair insulin action in prediabetic subjects. One potential mediator that links fatty acids to inflammation and insulin resistance is the Toll-like receptor (TLR) family. Therefore, C3H/HeJ/TLR2-KO (TLR2/4-deficient) mice were fed a high-fat diet (HFD), and insulin action in the brain as well as cortical and locomotor activity was analyzed by using telemetric implants. TLR2/4-deficient mice were protected from HFD-induced glucose intolerance and insulin resistance in the brain and displayed an improvement in cortical and locomotor activity that was not observed in C3H/HeJ mice. Sleep recordings revealed a 42% increase in rapid eye movement sleep in the deficient mice during daytime, and these mice spent 41% more time awake during the night period. Treatment of control mice with a neutralizing IL-6 antibody improved insulin action in the brain as well as cortical activity and diminished osteopontin protein to levels of the TLR2/4-deficient mice. Together, our data suggest that the lack of functional TLR2/4 protects mice from a fat-mediated impairment in insulin action, brain activity, locomotion, and sleep architecture by an IL-6/osteopontin-dependent mechanism.


Asunto(s)
Encéfalo/fisiología , Insulina/fisiología , Interleucina-6/fisiología , Osteopontina/fisiología , Sueño , Receptor Toll-Like 2/fisiología , Receptor Toll-Like 4/fisiología , Animales , Astrocitos/metabolismo , Células Cultivadas , Electroencefalografía , Prueba de Tolerancia a la Glucosa , Resistencia a la Insulina , Interleucina-6/inmunología , Locomoción , Ratones , Ratones Endogámicos C3H , Ratones Noqueados , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/genética
17.
J Mass Spectrom Adv Clin Lab ; 30: 1-9, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37583571

RESUMEN

Background: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a sensitive method with high specificity. However, its routine use in the clinical laboratory is hampered by its high complexity and lack of automation. Studies demonstrate excellent analytical performance using the first fully automated LC-MS/MS for 25-hydroxy vitamin D and immunosuppressant drugs (ISD) in hospital routine laboratories. Objectives: Our objectives were (1) to verify the suitability of an automated LC-MS/MS in a commercial laboratory, which differs from the needs of hospital laboratories, and (2) examine its usability among operators with various professional backgrounds. Methods: We assessed the analytical assay performance for vitamin D and the ISDs cyclosporine A and tacrolimus over five months. The assays were compared to an identical analyzer in a hospital laboratory, to in-house LC-MS/MS methods, and to chemiluminescent microparticle immunoassays (CMIA). Nine operators evaluated the usability of the fully automated LC-MS/MS system by means of a structured questionnaire. Results: The automated system exhibited a high precision (CV < 8%), accuracy (bias < 7%) and good agreement with concentrations of external quality assessment (EQA) samples. Comparable results were obtained with an identical analyzer in a hospital routine laboratory. Acceptable median deviations of results versus an in-house LC-MS/MS were observed for 25-OH vitamin D3 (-10.6%), cyclosporine A (-4.3%) and tacrolimus (-6.6%). The median bias between the automated system and immunoassays was only acceptable for 25-OH vitamin D3 (6.6%). All users stated that they had had a good experience with the fully automated LC-MS/MS system. Conclusions: A fully automated LC-MS/MS can be easily integrated for routine diagnostics in a commercial laboratory.

18.
Metabolites ; 13(10)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37887386

RESUMEN

The gut microbiome is of tremendous relevance to human health and disease, so it is a hot topic of omics-driven biomedical research. However, a valid identification of gut microbiota-associated molecules in human blood or urine is difficult to achieve. We hypothesize that bowel evacuation is an easy-to-use approach to reveal such metabolites. A non-targeted and modifying group-assisted metabolomics approach (covering 40 types of modifications) was applied to investigate urine samples collected in two independent experiments at various time points before and after laxative use. Fasting over the same time period served as the control condition. As a result, depletion of the fecal microbiome significantly affected the levels of 331 metabolite ions in urine, including 100 modified metabolites. Dominating modifications were glucuronidations, carboxylations, sulfations, adenine conjugations, butyrylations, malonylations, and acetylations. A total of 32 compounds, including common, but also unexpected fecal microbiota-associated metabolites, were annotated. The applied strategy has potential to generate a microbiome-associated metabolite map (M3) of urine from healthy humans, and presumably also other body fluids. Comparative analyses of M3 vs. disease-related metabolite profiles, or therapy-dependent changes may open promising perspectives for human gut microbiome research and diagnostics beyond analyzing feces.

19.
J Clin Endocrinol Metab ; 108(4): 865-875, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36285617

RESUMEN

CONTEXT: One acute bout of exercise leads to a rapid increase in the systemic cytokine concentration. Regular exercise might alter the cytokine response, in particular in beforehand untrained and obese individuals. OBJECTIVE: Using a proximity extension assay, we studied the effects of acute exercise as well as endurance training on a panel of 92 cytokines related to inflammation. METHODS: A total of 22 individuals (30 ± 9 years; peak oxygen uptake [VO2peak] 25.2 ± 4.2 mL/[kg × min]; body mass index [BMI] 31.7 ± 4.4) participated in an 8-week endurance exercise intervention. Blood samples were collected before and immediately after 30 minutes' ergometer exercise at 80% VO2peak. RESULTS: Before and after the training intervention, 40 and 37 cytokines, respectively, were acutely increased more than 1.2-fold (Benjamini-Hochberg [BH]-adjusted P < .05). The exercise intervention did not change the acute increase in cytokines nor the resting cytokine levels, whereas fitness was improved and adiposity reduced. The increase in fitness led to a slight increase in power output when exercising at the same heart rate, which might explain the comparable increase in cytokines before and after the intervention. The largest acute increase was found for OSM, TGFA, CXCL1 and 5, and TNFSF14 (≥ 1.9-fold, BH-adjusted P < .001). The transcript levels of these proteins in whole blood were also elevated, particularly in the trained state. Only the acute increase in IL6 (1.3-fold) was related to the increase in lactate, confirming the lactate-driven secretion of IL6. CONCLUSION: Our comprehensive proteomics approach detected several underexplored serum exerkines with up to now less understood function in the adaptation to exercise.


Asunto(s)
Entrenamiento Aeróbico , Humanos , Citocinas , Interleucina-6 , Ejercicio Físico/fisiología , Obesidad/terapia , Lactatos , Resistencia Física/fisiología
20.
Metabolites ; 13(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36676940

RESUMEN

Physical exercise is a powerful measure to prevent cardiometabolic diseases. However, the individual response to lifestyle interventions is variable and cannot, to date, be predicted. N-Lactoylphenylalanine (Lac-Phe) produced during exercise has recently been shown to mediate weight loss in obese mice. Lac-Phe could also contribute to, and potentially explain differences in, the effectiveness of exercise interventions in humans. Sedentary overweight and obese subjects completed an 8-week supervised endurance exercise intervention (n = 22). Before and after the intervention, plasma levels of Lac-Phe were determined by UHPLC-MS in the resting state and immediately after an acute bout of endurance exercise. Adipose tissue volume was quantified using MRI. Acute exercise caused a pronounced increase in Lac-Phe, both before and after the intervention. Higher levels of Lac-Phe after acute exercise were associated with a greater reduction in abdominal subcutaneous and, to a lower degree, visceral adipose tissue during the intervention. Lac-Phe produced during physical activity could contribute to weight loss by acting as a signaling molecule that regulates food intake, as previously shown in mice. Quantification of Lac-Phe during an exercise test could be employed as a tool to predict and potentially improve the individual response to exercise-based lifestyle interventions in overweight humans and those with obesity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA