RESUMEN
ABSTRACT: The World Health Organization (WHO) classification of hematolymphoid tumors and the International Consensus Classification (ICC) of 2022 introduced major changes to the definition of chronic myelomonocytic leukemia (CMML). To assess its qualitative and quantitative implications for patient care, we started with 3311 established CMML cases (according to WHO 2017 criteria) and included 2130 oligomonocytosis cases fulfilling the new CMML diagnostic criteria. Applying both 2022 classification systems, 356 and 241 of oligomonocytosis cases were newly classified as myelodysplastic (MD)-CMML (WHO and ICC 2022, respectively), most of which were diagnosed as myelodysplastic syndrome (MDS) according to the WHO 2017 classification. Importantly, 1.5 times more oligomonocytosis cases were classified as CMML according to WHO 2022 than based on ICC, because of different diagnostic criteria. Genetic analyses of the newly classified CMML cases showed a distinct mutational profile with strong enrichment of MDS-typical alterations, resulting in a transcriptional subgroup separated from established MD and myeloproliferative CMML. Despite a different cytogenetic, molecular, immunophenotypic, and transcriptional landscape, no differences in overall survival were found between newly classified and established MD-CMML cases. To the best of our knowledge, this study represents the most comprehensive analysis of routine CMML cases to date, both in terms of clinical characterization and transcriptomic analysis, placing newly classified CMML cases on a disease continuum between MDS and previously established CMML.
Asunto(s)
Leucemia Mielomonocítica Crónica , Síndromes Mielodisplásicos , Humanos , Consenso , Síndromes Mielodisplásicos/diagnóstico , Síndromes Mielodisplásicos/genética , Leucemia Mielomonocítica Crónica/diagnóstico , Leucemia Mielomonocítica Crónica/genética , Leucemia Mielomonocítica Crónica/patología , Leucocitosis , Organización Mundial de la Salud , Pronóstico , Compuestos OrgánicosRESUMEN
ABSTRACT: Patients with T- and natural killer (NK)-cell neoplasms frequently have somatic STAT5B gain-of-function mutations. The most frequent STAT5B mutation is STAT5BN642H, which is known to drive murine T-cell leukemia, although its role in NK-cell malignancies is unclear. Introduction of the STAT5BN642H mutation into human NK-cell lines enhances their potential to induce leukemia in mice. We have generated a mouse model that enables tissue-specific expression of STAT5BN642H and have selectively expressed the mutated STAT5B in hematopoietic cells (N642Hvav/+) or exclusively in NK cells (N642HNK/NK). All N642Hvav/+ mice rapidly develop an aggressive T/NKT-cell leukemia, whereas N642HNK/NK mice display an indolent NK-large granular lymphocytic leukemia (NK-LGLL) that progresses to an aggressive leukemia with age. Samples from patients with NK-cell leukemia have a distinctive transcriptional signature driven by mutant STAT5B, which overlaps with that of murine leukemic N642HNK/NK NK cells. To our knowledge, we have generated the first reliable STAT5BN642H-driven preclinical mouse model that displays an indolent NK-LGLL progressing to aggressive NK-cell leukemia. This novel in vivo tool will enable us to explore the transition from an indolent to an aggressive disease and will thus permit the study of prevention and treatment options for NK-cell malignancies.
Asunto(s)
Células Asesinas Naturales , Leucemia Linfocítica Granular Grande , Factor de Transcripción STAT5 , Animales , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Ratones , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/patología , Humanos , Leucemia Linfocítica Granular Grande/genética , Leucemia Linfocítica Granular Grande/patología , Modelos Animales de Enfermedad , Linaje de la Célula/genética , Mutación , Ratones TransgénicosRESUMEN
ABSTRACT: Systemic mastocytosis (SM) is defined by the expansion and accumulation of neoplastic mast cells (MCs) in the bone marrow (BM) and extracutaneous organs. Most patients harbor a somatic KIT D816V mutation, which leads to growth factor-independent KIT activation and accumulation of MC. Tumor necrosis factor α (TNF) is a proapoptotic and inflammatory cytokine that has been implicated in the clonal selection of neoplastic cells. We found that KIT D816V increases the expression and secretion of TNF. TNF expression in neoplastic MCs is reduced by KIT-targeting drugs. Similarly, knockdown of KIT or targeting the downstream signaling cascade of MAPK and NF-κB signaling reduced TNF expression levels. TNF reduces colony formation in human BM cells, whereas KIT D816V+ cells are less susceptible to the cytokine, potentially contributing to clonal selection. In line, knockout of TNF in neoplastic MC prolonged survival and reduced myelosuppression in a murine xenotransplantation model. Mechanistic studies revealed that the relative resistance of KIT D816V+ cells to TNF is mediated by the apoptosis-regulator BIRC5 (survivin). Expression of BIRC5 in neoplastic MC was confirmed by immunohistochemistry of samples from patients with SM. TNF serum levels are significantly elevated in patients with SM and high TNF levels were identified as a biomarker associated with inferior survival. We here characterized TNF as a KIT D816V-dependent cytokine that promotes clonal dominance. We propose TNF and apoptosis-associated proteins as potential therapeutic targets in SM.
Asunto(s)
Mastocitosis Sistémica , Mastocitosis , Humanos , Animales , Ratones , Factor de Necrosis Tumoral alfa , Survivin/genética , Pronóstico , Mastocitosis Sistémica/diagnóstico , Mastocitosis Sistémica/genética , CitocinasRESUMEN
Gain-of-function mutations in the signal transducer and activator of transcription 3 (STAT3) gene are recurrently identified in patients with large granular lymphocytic leukemia (LGLL) and in some cases of natural killer (NK)/T-cell and adult T-cell leukemia/lymphoma. To understand the consequences and molecular mechanisms contributing to disease development and oncogenic transformation, we developed murine hematopoietic stem and progenitor cell models that express mutated STAT3Y640F. These cells show accelerated proliferation and enhanced self-renewal potential. We integrated gene expression analyses and chromatin occupancy profiling of STAT3Y640F-transformed cells with data from patients with T-LGLL. This approach uncovered a conserved set of direct transcriptional targets of STAT3Y640F. Among these, strawberry notch homolog 2 (SBNO2) represents an essential transcriptional target, which was identified by a comparative genome-wide CRISPR/Cas9-based loss-of-function screen. The STAT3-SBNO2 axis is also present in NK-cell leukemia, T-cell non-Hodgkin lymphoma, and NPM-ALK-rearranged T-cell anaplastic large cell lymphoma (T-ALCL), which are driven by STAT3-hyperactivation/mutation. In patients with NPM-ALK+ T-ALCL, high SBNO2 expression correlates with shorter relapse-free and overall survival. Our findings identify SBNO2 as a potential therapeutic intervention site for STAT3-driven hematopoietic malignancies.
Asunto(s)
Neoplasias Hematológicas , Factor de Transcripción STAT3 , Animales , Humanos , Ratones , Quinasa de Linfoma Anaplásico/metabolismo , Línea Celular Tumoral , Neoplasias Hematológicas/genética , Linfoma Anaplásico de Células Grandes/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismoRESUMEN
ABSTRACT: Growth factor independence 1 (GFI1) is a DNA-binding transcription factor and a key regulator of hematopoiesis. GFI1-36N is a germ line variant, causing a change of serine (S) to asparagine (N) at position 36. We previously reported that the GFI1-36N allele has a prevalence of 10% to 15% among patients with acute myeloid leukemia (AML) and 5% to 7% among healthy Caucasians and promotes the development of this disease. Using a multiomics approach, we show here that GFI1-36N expression is associated with increased frequencies of chromosomal aberrations, mutational burden, and mutational signatures in both murine and human AML and impedes homologous recombination (HR)-directed DNA repair in leukemic cells. GFI1-36N exhibits impaired binding to N-Myc downstream-regulated gene 1 (Ndrg1) regulatory elements, causing decreased NDRG1 levels, which leads to a reduction of O6-methylguanine-DNA-methyltransferase (MGMT) expression levels, as illustrated by both transcriptome and proteome analyses. Targeting MGMT via temozolomide, a DNA alkylating drug, and HR via olaparib, a poly-ADP ribose polymerase 1 inhibitor, caused synthetic lethality in human and murine AML samples expressing GFI1-36N, whereas the effects were insignificant in nonmalignant GFI1-36S or GFI1-36N cells. In addition, mice that received transplantation with GFI1-36N leukemic cells treated with a combination of temozolomide and olaparib had significantly longer AML-free survival than mice that received transplantation with GFI1-36S leukemic cells. This suggests that reduced MGMT expression leaves GFI1-36N leukemic cells particularly vulnerable to DNA damage initiating chemotherapeutics. Our data provide critical insights into novel options to treat patients with AML carrying the GFI1-36N variant.
Asunto(s)
Proteínas de Unión al ADN , Leucemia Mieloide Aguda , Humanos , Ratones , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Temozolomida , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Daño del ADN , Reparación del ADN , Células Germinativas/metabolismo , ADN , Factores de Transcripción/genéticaRESUMEN
Myeloid neoplasms include myeloproliferative and myelodysplastic neoplasms and acute myeloid leukaemia. Historically, these diseases have been diagnosed based on clinicopathological features with sometimes arbitrary thresholds that have persisted even as molecular features were gradually incorporated into their classification. As such, although current diagnostic approaches can classify the majority of myeloid neoplasms accurately using a combination of molecular and clinicopathological features, some areas of overlap persist and occasionally pose diagnostic challenges. These include overlap across BCR::ABL1-negative myeloproliferative neoplasms; between clonal cytopenia of undetermined significance and myelodysplastic neoplasms; myelodysplastic/myeloproliferative neoplasms; and, detection of KIT mutations in myeloid neoplasms other than mastocytosis, raising the prospect of systemic mastocytosis. Molecular testing has become state of the art in the diagnostic work-up of myeloid neoplasms, and molecular patterns can inherently help to classify overlapping entities if considered within a framework of haematological presentations. For future development, molecular testing will likely include whole genome and transcriptome sequencing, and primarily molecular classifications of myeloid neoplasms have already been suggested. As such, genetically defined groups should still constitute the basis for our understanding of disease development from early onset to progression, while clinicopathological features could then be used to describe the stage of the disease rather than the specific type of myeloid neoplasm.
RESUMEN
Despite major therapeutic advances in the treatment of acute lymphoblastic leukemia (ALL), resistances and long-term toxicities still pose significant challenges. Cyclins and their associated cyclin-dependent kinases are one focus of cancer research when looking for targeted therapies. We discovered cyclin C as a key factor for B-ALL development and maintenance. While cyclin C is non-essential for normal hematopoiesis, CcncΔ/Δ BCR::ABL1+ B-ALL cells fail to elicit leukemia in mice. RNA sequencing experiments revealed a p53 pathway deregulation in CcncΔ/Δ BCR::ABL1+ cells resulting in the incapability of the leukemic cells to adequately respond to stress. A genome-wide CRISPR/Cas9 loss-of-function screen supplemented with additional knock-outs unveiled a dependency of human B-lymphoid cell lines on CCNC. High cyclin C levels in B-cell precursor (BCP) ALL patients were associated with poor event-free survival and increased risk of early disease recurrence after remission. Our findings highlight cyclin C as potential therapeutic target for B-ALL, particularly to enhance cancer cell sensitivity to stress and chemotherapy.
RESUMEN
Acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) are life-threatening hematopoietic malignancies characterized by clonal expansion of leukemic blasts in the bone marrow and peripheral blood. The epigenetic reader BRD4 and its downstream effector MYC have recently been identified as potential drug targets in human AML and ALL. We compared anti-leukemic efficacies of the small-molecule BET inhibitor JQ1 and the recently developed BRD4 degraders dBET1 and dBET6 in AML and ALL cells. JQ1, dBET1, and dBET6 were found to suppress growth and viability in all AML and ALL cell lines examined as well as in primary patient-derived AML and ALL cells, including CD34+/CD38- and CD34+/CD38+ leukemic stem and progenitor cells, independent of the type (variant) of leukemia or molecular driver expressed in leukemic cells. Moreover, we found that dBET6 overcomes osteoblast-induced drug resistance in AML and ALL cells, regardless of the type of leukemia or the drug applied. Most promising cooperative or even synergistic drug combination effects were seen with dBET6 and the FLT3 ITD blocker gilteritinib in FLT3 ITD-mutated AML cells, and with dBET6 and the multi-kinase blocker ponatinib in BCR::ABL1+ ALL cells. Finally, all BRD4-targeting drugs suppressed interferon-gamma- and tumor necrosis factor-alpha-induced expression of the resistance-related checkpoint antigen PD-L1 in AML and ALL cells, including LSC. In all assays examined, the BRD4 degrader dBET6 was a superior anti-leukemic drug compared with dBET1 and JQ1. Together, BRD4 degraders may provide enhanced inhibition of multiple mechanisms of therapy resistance in AML and ALL.
Asunto(s)
Azepinas , Proteínas de Ciclo Celular , Resistencia a Antineoplásicos , Leucemia Mieloide Aguda , Células Madre Neoplásicas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Factores de Transcripción , Triazoles , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/genética , Triazoles/farmacología , Triazoles/uso terapéutico , Azepinas/farmacología , Azepinas/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Proteínas de Ciclo Celular/antagonistas & inhibidores , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Línea Celular Tumoral , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Pirazinas/farmacología , Pirazinas/uso terapéutico , Sinergismo Farmacológico , Piridazinas/farmacología , Piridazinas/uso terapéutico , Proteínas que Contienen Bromodominio , Compuestos de AnilinaRESUMEN
OBJECTIVES: Serum protein electrophoresis (SPE) in combination with immunotyping (IMT) is the diagnostic standard for detecting monoclonal proteins (M-proteins). However, interpretation of SPE and IMT is weakly standardized, time consuming and investigator dependent. Here, we present five machine learning (ML) approaches for automated detection of M-proteins on SPE on an unprecedented large and well-curated data set and compare the performance with that of laboratory experts. METHODS: SPE and IMT were performed in serum samples from 69,722 individuals from Norway. IMT results were used to label the samples as M-protein present (positive, n=4,273) or absent (negative n=65,449). Four feature-based ML algorithms and one convolutional neural network (CNN) were trained on 68,722 randomly selected SPE patterns to detect M-proteins. Algorithm performance was compared to that of an expert group of clinical pathologists and laboratory technicians (n=10) on a test set of 1,000 samples. RESULTS: The random forest classifier showed the best performance (F1-Score 93.2â¯%, accuracy 99.1â¯%, sensitivity 89.9â¯%, specificity 99.8â¯%, positive predictive value 96.9â¯%, negative predictive value 99.3â¯%) and outperformed the experts (F1-Score 61.2 ± 16.0â¯%, accuracy 89.2 ± 10.2â¯%, sensitivity 94.3 ± 2.8â¯%, specificity 88.9 ± 10.9â¯%, positive predictive value 47.3 ± 16.2â¯%, negative predictive value 99.5 ± 0.2â¯%) on the test set. Interestingly the performance of the RFC saturated, the CNN performance increased steadily within our training set (n=68,722). CONCLUSIONS: Feature-based ML systems are capable of automated detection of M-proteins on SPE beyond expert-level and show potential for use in the clinical laboratory.
Asunto(s)
Electroforesis de las Proteínas Sanguíneas , Aprendizaje Automático , Humanos , Electroforesis de las Proteínas Sanguíneas/métodos , Algoritmos , Proteínas Sanguíneas/análisis , Proteínas de Mieloma/análisis , Noruega , Redes Neurales de la ComputaciónRESUMEN
Paroxysmal nocturnal hemoglobinuria (PNH) is a rare hemolytic disease driven by impaired complement regulation. Mutations in genes encoding the enzymes that build the GPI anchors are causative, with somatic mutations in the PIG-A gene occurring most frequently. As a result, the important membrane-bound complement regulators CD55 and CD59 are missing on the affected hematopoietic stem cells and their progeny, rendering those cells vulnerable to complement attack. Immune escape mechanisms sparing affected PNH stem cells from removal are suspected in the PNH pathogenesis, but molecular mechanisms have not been elucidated. We hypothesized that exuberant complement activity in PNH results in enhanced immune checkpoint interactions, providing a molecular basis for the potential immune escape in PNH. In a series of PNH patients, we found increased expression levels of the checkpoint ligand programmed death-ligand 1 (PD-L1) on granulocytes and monocytes, as well as in the plasma of PNH patients. Mechanistically, we demonstrate that complement activation leading to the decoration of particles/cells with C3- and/or C4-opsonins increased PD-L1 expression on neutrophils and monocytes as shown for different in vitro models of classical or alternative pathway activation. We further establish in vitro that complement inhibition at the level of C3, but not C5, inhibits the alternative pathway-mediated upregulation of PD-L1 and show by means of soluble PD-L1 that this observation translates into the clinical situation when PNH patients are treated with either C3 or C5 inhibitors. Together, the presented data show that the checkpoint ligand PD-L1 is increased in PNH patients, which correlates with proximal complement activation.
Asunto(s)
Antígeno B7-H1/metabolismo , Activación de Complemento/inmunología , Complemento C3/antagonistas & inhibidores , Complemento C5/antagonistas & inhibidores , Hemoglobinuria Paroxística/patología , Antígeno B7-H1/sangre , Antígenos CD55/genética , Antígenos CD59/genética , Complemento C3/inmunología , Complemento C5/inmunología , Granulocitos/metabolismo , Células Madre Hematopoyéticas/citología , Hemoglobinuria Paroxística/inmunología , Humanos , Evasión Inmune/inmunología , Proteínas de la Membrana/genética , Monocitos/metabolismoRESUMEN
BACKGROUND: Mast cells (MC) and basophils are effector cells of allergic reactions and display a number of activation-linked cell surface antigens. Of these antigens, however, only a few are functionally relevant and specifically expressed in these cells. OBJECTIVE: We sought to identify MC- and basophil-specific surface molecules and to study their cellular distribution and regulation during cytokine-induced and IgE-dependent activation. METHODS: Multicolor flow cytometry was performed to recognize surface antigens and to determine changes in antigen expression upon activation. RESULTS: We identified Siglec-6 (CD327) as a differentially regulated surface antigen on human MC and basophils. In the bone marrow, Siglec-6 was expressed abundantly on MC in patients with mastocytosis and in reactive states, but it was not detected on other myeloid cells, with the exception of basophils and monocytes. In healthy individuals, allergic patients, and patients with chronic myeloid leukemia (CML), Siglec-6 was identified on CD203c+ blood basophils, a subset of CD19+ B lymphocytes, and few CD14+ monocytes, but not on other blood leukocytes. CML basophils expressed higher levels of Siglec-6 than normal basophils. IL-3 promoted Siglec-6 expression on normal and CML basophils, and stem cell factor increased the expression of Siglec-6 on tissue MC. Unexpectedly, IgE-dependent activation resulted in downregulation of Siglec-6 in IL-3-primed basophils, whereas in MC, IgE-dependent activation augmented stem cell factor-induced upregulation of Siglec-6. CONCLUSIONS: Siglec-6 is a dynamically regulated marker of MC and basophils. Activated MC and basophils exhibit unique Siglec-6 responses, including cytokine-dependent upregulation and unique, cell-specific, responses to IgE-receptor cross-linking.
Asunto(s)
Basófilos , Mastocitos , Humanos , Antígenos CD , Enfermedad Crónica , Inmunoglobulina E , Interleucina-3/metabolismo , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico , Factor de Células Madre/metabolismoRESUMEN
BACKGROUND: Undetermined stroke etiology hampers optimal secondary prevention in a large proportion of young patients. We explored whether genetic screening for clonal hematopoiesis of indetermined potential (CHIP), a novel risk factor for stroke, could identify patients with myeloid precursor lesions or covert myeloid neoplasm requiring specific treatment. METHODS: We performed targeted sequencing on 56 genes recurrently mutated in hematologic neoplasms in a prospective cohort of patients with acute brain ischemia between 18 and 60 years. CHIP prevalence was compared with age-matched healthy controls from the Nijmegen Biomedical Study (n=1604) and the UK Biobank (n=101 678). Patients with suspicion of high-risk CHIP or myeloid neoplasm were invited for further hematologic evaluation. RESULTS: We included 248 consecutive patients (39% women) of whom 176 (71%) had cryptogenic stroke etiology. Fifty-one (21%) patients had CHIP, 3-fold more than in the general population (7.7% versus 2.6% for the Nijmegen Biomedical Study and 11.9% versus 4.1% for UK Biobank; P<0.001 for both). Patients with CHIP were older (median [interquartile range], 53 [50-59] versus 51 [41-56] years; P<0.001), had higher carotid intima-media thickness (0.68 [0.58-0.80] versus 0.59 [0.51-0.73] mm; P=0.009), and had higher burden of atherosclerosis (29.4% versus 16.7%; P=0.04). We invited 11 patients (4.4%) for further hematologic assessment, which in 7 led to the diagnosis of high-risk CHIP and in 2 to the new diagnosis of a myeloproliferative neoplasm with indication for cytoreductive therapy. CONCLUSIONS: Using genetic screening for myeloid disorders in patients with stroke of predominantly undetermined etiology, we found a 3-fold higher CHIP prevalence than in the general population. We identified high-risk CHIP and previously covert myeloproliferative neoplasms as potential stroke etiologies in 4.4% and 1% of patients, respectively. Our findings demonstrate the diagnostic and therapeutic yield of genetic screening in young patients with stroke. Future studies should investigate the role of CHIP for stroke recurrence and optimal secondary prevention.
Asunto(s)
Neoplasias Hematológicas , Accidente Cerebrovascular , Humanos , Femenino , Masculino , Hematopoyesis Clonal , Prevalencia , Estudios Prospectivos , Grosor Intima-Media Carotídeo , Hematopoyesis/genética , Mutación , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/genética , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/genéticaRESUMEN
Prostate cancer (PCa) is a common and fatal type of cancer in men. Metastatic PCa (mPCa) is a major factor contributing to its lethality, although the mechanisms remain poorly understood. PTEN is one of the most frequently deleted genes in mPCa. Here we show a frequent genomic co-deletion of PTEN and STAT3 in liquid biopsies of patients with mPCa. Loss of Stat3 in a Pten-null mouse prostate model leads to a reduction of LKB1/pAMPK with simultaneous activation of mTOR/CREB, resulting in metastatic disease. However, constitutive activation of Stat3 led to high LKB1/pAMPK levels and suppressed mTORC1/CREB pathway, preventing mPCa development. Metformin, one of the most widely prescribed therapeutics against type 2 diabetes, inhibits mTORC1 in liver and requires LKB1 to mediate glucose homeostasis. We find that metformin treatment of STAT3/AR-expressing PCa xenografts resulted in significantly reduced tumor growth accompanied by diminished mTORC1/CREB, AR and PSA levels. PCa xenografts with deletion of STAT3/AR nearly completely abrogated mTORC1/CREB inhibition mediated by metformin. Moreover, metformin treatment of PCa patients with high Gleason grade and type 2 diabetes resulted in undetectable mTORC1 levels and upregulated STAT3 expression. Furthermore, PCa patients with high CREB expression have worse clinical outcomes and a significantly increased risk of PCa relapse and metastatic recurrence. In summary, we have shown that STAT3 controls mPCa via LKB1/pAMPK/mTORC1/CREB signaling, which we have identified as a promising novel downstream target for the treatment of lethal mPCa.
Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Neoplasias de la Próstata , Animales , Humanos , Masculino , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Metformina/farmacología , Recurrencia Local de Neoplasia , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismoRESUMEN
Mastocytosis is a hematopoietic neoplasm characterized by expansion of KIT D816V-mutated clonal mast cells in various organs and severe or even life-threatening anaphylactic reactions. Recently, hereditary α-tryptasemia (HαT) has been described as a common genetic trait with increased copy numbers of the α-tryptase encoding gene, TPSAB1, and associated with an increased basal serum tryptase level and a risk of mast cell activation. The purpose of our study was to elucidate the clinical relevance of HαT in patients with mastocytosis. TPSAB1 germline copy number variants were assessed by digital polymerase chain reaction in 180 mastocytosis patients, 180 sex-matched control subjects, 720 patients with other myeloid neoplasms, and 61 additional mastocytosis patients of an independent validation cohort. α-Tryptase encoding TPSAB1 copy number gains, compatible with HαT, were identified in 17.2% of mastocytosis patients and 4.4% of the control population (P < .001). Patients with HαT exhibited higher tryptase levels than patients without HαT (median tryptase in HαT+ cases: 49.6 ng/mL vs HαT- cases: 34.5 ng/mL, P = .004) independent of the mast cell burden. Hymenoptera venom hypersensitivity reactions and severe cardiovascular mediator-related symptoms/anaphylaxis were by far more frequently observed in mastocytosis patients with HαT than in those without HαT. Results were confirmed in an independent validation cohort. The high prevalence of HαT in mastocytosis hints at a potential pathogenic role of germline α-tryptase encoding TPSAB1 copy number gains in disease evolution. Together, our data suggest that HαT is a novel emerging robust biomarker in mastocytosis that is useful for determining the individual patient´s risk of developing severe anaphylaxis.
Asunto(s)
Mastocitosis , Triptasas/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Variaciones en el Número de Copia de ADN , Femenino , Marcadores Genéticos , Humanos , Masculino , Mastocitosis/sangre , Mastocitosis/genética , Persona de Mediana Edad , Triptasas/sangre , Adulto JovenRESUMEN
Eosinophilia and eosinophil activation are recurrent features in various reactive states and certain hematologic malignancies. In patients with hypereosinophilia (HE), HE-induced organ damage is often encountered and may lead to the diagnosis of a hypereosinophilic syndrome (HES). A number of known mechanisms and etiologies contribute to the development of HE and HES. Based on these etiologies and the origin of eosinophils, HE and HES are divided into primary forms where eosinophils are clonal cells, reactive forms where an underlying reactive or neoplastic condition is detected and eosinophils are considered to be "non-clonal" cells, and idiopathic HE and HES in which neither a clonal nor a reactive underlying pathology is detected. Since 2012, this classification and the related criteria have been widely accepted and regarded as standard. However, during the past few years, new developments in the field and an increasing number of markers and targets have created a need to update these criteria and the classification of HE and HES. To address this challenge, a Working Conference on eosinophil disorders was organized in 2021. In this conference, a panel of experts representing the relevant fields, including allergy, dermatology, hematology, immunology, laboratory medicine, and pathology, met and discussed new markers and concepts as well as refinements in definitions, criteria and classifications of HE and HES. The outcomes of this conference are presented in this article and should assist in the diagnosis and management of patients with HE and HES in daily practice and in the preparation and conduct of clinical trials.
Asunto(s)
Eosinofilia , Síndrome Hipereosinofílico , Hipersensibilidad , Humanos , Eosinófilos/patología , Eosinofilia/diagnóstico , Eosinofilia/etiología , Eosinofilia/tratamiento farmacológico , Síndrome , Hipersensibilidad/complicaciones , Síndrome Hipereosinofílico/etiología , Síndrome Hipereosinofílico/complicacionesRESUMEN
Patient-related factors are of prognostic importance in acute myeloid leukemia (AML). Likewise, cardiac disorders may limit the tolerance of intensive therapy. Little is known about the prognostic value of N-terminal pro-brain natriuretic peptide (NT-proBNP). We analyzed NT-proBNP levels at diagnosis in 312 AML patients (median age: 61 years; range 17-89 years) treated with 3 + 7-based induction-chemotherapy and consolidation with up to four cycles of intermediate or high-dose ARA-C. NT-proBNP levels were elevated in 199 patients (63.8%), normal (0-125 pg/ml) in 113 (36.2%), and highly elevated (>2000 pg/ml) in 20 patients (6.4%). Median NT-proBNP levels differed significantly among patients with complete remission (153.3 pg/ml), no remission (225.9 pg/ml), or early death (735.5 pg/ml) (p = .002). In multivariate analysis, NT-proBNP, age, and the 2009 European LeukemiaNet (ELN-2009) classification were independent predictors of outcome after induction chemotherapy. Overall survival (OS) differed significantly between patients with normal, moderately elevated, and highly elevated NT-proBNP (p < .001). These differences were observed in all patients and in patients <60 years but not in those ≥60 years. In multivariate analysis, NT-proBNP, age, and ELN-2009 remained independent prognostic variables for OS (p < .01). Together, NT-proBNP is an independent prognostic factor indicating the risk of induction failure, early death, and reduced OS in patients with AML.
Asunto(s)
Cardiopatías , Leucemia Mieloide Aguda , Humanos , Persona de Mediana Edad , Pronóstico , Biomarcadores , Péptido Natriurético Encefálico , Fragmentos de Péptidos , Leucemia Mieloide Aguda/tratamiento farmacológicoRESUMEN
Myeloproliferative neoplasms (MPN) are characterized by uncontrolled expansion of myeloid cells, disease-related mutations in certain driver-genes including JAK2, CALR, and MPL, and a substantial risk to progress to secondary acute myeloid leukemia (sAML). Although behaving as stem cell neoplasms, little is known about disease-initiating stem cells in MPN. We established the phenotype of putative CD34+ /CD38- stem cells and CD34+ /CD38+ progenitor cells in MPN. A total of 111 patients with MPN suffering from polycythemia vera, essential thrombocythemia, or primary myelofibrosis (PMF) were examined. In almost all patients tested, CD34+ /CD38- stem cells expressed CD33, CD44, CD47, CD52, CD97, CD99, CD105, CD117, CD123, CD133, CD184, CD243, and CD274 (PD-L1). In patients with PMF, MPN stem cells often expressed CD25 and sometimes also CD26 in an aberrant manner. MPN stem cells did not exhibit substantial amounts of CD90, CD273 (PD-L2), CD279 (PD-1), CD366 (TIM-3), CD371 (CLL-1), or IL-1RAP. The phenotype of CD34+ /CD38- stem cells did not change profoundly during progression to sAML. The disease-initiating capacity of putative MPN stem cells was confirmed in NSGS mice. Whereas CD34+ /CD38- MPN cells engrafted in NSGS mice, no substantial engraftment was produced by CD34+ /CD38+ or CD34- cells. The JAK2-targeting drug fedratinib and the BRD4 degrader dBET6 induced apoptosis and suppressed proliferation in MPN stem cells. Together, MPN stem cells display a unique phenotype, including cytokine receptors, immune checkpoint molecules, and other clinically relevant target antigens. Phenotypic characterization of neoplastic stem cells in MPN and sAML should facilitate their enrichment and the development of stem cell-eradicating (curative) therapies.
Asunto(s)
Leucemia Mieloide Aguda , Trastornos Mieloproliferativos , Policitemia Vera , Animales , Ratones , Calreticulina/genética , Janus Quinasa 2/genética , Mutación , Trastornos Mieloproliferativos/genética , Células Madre Neoplásicas , Proteínas Nucleares/genética , Fenotipo , Policitemia Vera/genética , Factores de Transcripción/genética , HumanosRESUMEN
OBJECTIVES: Immune checkpoints play an important role in maintaining the balance of the immune system and in the development of autoimmune diseases. A central checkpoint molecule is the programmed cell death protein 1 (PD-1, CD279) which is typically located on the surface of T cells. Its primary ligand PD-L1 is expressed on antigen presenting cells and on cancer cells. Several variants of PD-L1 exist, among these soluble molecules (sPD-L1) present in serum at low concentrations. sPD-L1 was found elevated in cancer and several other diseases. sPD-L1 in infectious diseases has received relatively little attention so far and is therefore subject of this study. METHODS: sPD-L1 serum levels were determined in 170 patients with viral infections (influenza, varicella, measles, Dengue fever, SARS-CoV2) or bacterial sepsis by ELISA and compared to the levels obtained in 11 healthy controls. RESULTS: Patients with viral infections and bacterial sepsis generally show significantly higher sPD-L1 serum levels compared to healthy donors, except for varicella samples where results do not reach significance. sPD-L1 is increased in patients with impaired renal function compared to those with normal renal function, and sPD-L1 correlates significantly with serum creatinine. Among sepsis patients with normal renal function, sPD-L1 serum levels are significantly higher in Gram-negative sepsis compared to Gram-positive sepsis. In addition, in sepsis patients with impaired renal function, sPD-L1 correlates positively with ferritin and negatively with transferrin. CONCLUSIONS: sPD-L1 serum levels are significantly elevated in patients with sepsis, influenza, mesasles, Dengue fever or SARS-CoV2. Highest levels are detectable in patients with measles and Dengue fever. Also impaired renal function causes an increase in levels of sPD-L1. As a consequence, renal function has to be taken into account in the interpretation of sPD-L1 levels in patients.
Asunto(s)
Varicela , Dengue , Gripe Humana , Sarampión , Sepsis , Humanos , Antígeno B7-H1/metabolismo , Donantes de Sangre , ARN Viral , Riñón/fisiología , PronósticoRESUMEN
The development and approval of the tyrosine kinase inhibitor imatinib in 2001 has heralded the advance of directed therapy options. Today, an armamentarium of targeted therapeutics is available and enables the use of precision medicine in non-solid cancer. Precision medicine is guided by the detection of tumor-specific and targetable characteristics. These include pathogenic fusions and/or mutations, dependency on specific signaling pathways, and the expression of certain cell surface markers. Within the first part, we review approved targeted therapies for the compound classes of small molecule inhibitors, antibody-based therapies and cellular therapies. Particular consideration is given to the underlying pathobiology and the respective mechanism of action. The second part emphasizes on how biomarkers, whether they are of diagnostic, prognostic, or predictive relevance, are indispensable tools to guide therapy choice and management in precision medicine. Finally, the examples of acute myeloid leukemia, chronic lymphocytic leukemia, and chronic myeloid leukemia illustrate how integration of these biomarkers helps to tailor therapy.
Asunto(s)
Leucemia Linfocítica Crónica de Células B , Leucemia Mielógena Crónica BCR-ABL Positiva , Humanos , Medicina de Precisión , Biomarcadores de TumorRESUMEN
Genetic variants within complement factor H (CFH), a major alternative complement pathway regulator, are associated with the development of age-related macular degeneration (AMD) and other complementopathies. This is explained with the reduced binding of CFH or its splice variant factor H-like protein 1 (FHL-1) to self-ligands or altered self-ligands (e.g., malondialdehyde [MDA]-modified molecules) involved in homeostasis, thereby causing impaired complement regulation. Considering the critical role of CFH in inhibiting alternative pathway activation on MDA-modified surfaces, we performed an unbiased genome-wide search for genetic variants that modify the ability of plasma CFH to bind MDA in 1,830 individuals and characterized the mechanistic basis and the functional consequences of this. In a cohort of healthy individuals, we identified rs1061170 in CFH and the deletion of CFHR3 and CFHR1 as dominant genetic variants that modify CFH/FHL-1 binding to MDA. We further demonstrated that FHR1 and FHR3 compete with CFH for binding to MDA-epitopes and that FHR1 displays the highest affinity toward MDA-epitopes compared to CFH and FHR3. Moreover, FHR1 bound to MDA-rich areas on necrotic cells and prevented CFH from mediating its cofactor activity on MDA-modified surfaces, resulting in enhanced complement activation. These findings provide a mechanistic explanation as to why the deletion of CFHR3 and CFHR1 is protective in AMD and highlight the importance of genetic variants within the CFH/CFHR3/CFHR1 locus in the recognition of altered-self in tissue homeostasis.