Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 316(4): H889-H899, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30735434

RESUMEN

Myocardial ischemia-reperfusion (I/R) results in the generation of free radicals, accumulation of lipid peroxidation-derived unsaturated aldehydes, variable angina (pain), and infarction. The transient receptor potential ankyrin 1 (TRPA1) mediates pain signaling and is activated by unsaturated aldehydes, including acrolein and 4-hydroxynonenal. The contribution of TRPA1 (a Ca2+-permeable channel) to I/R-induced myocardial injury is unknown. We tested the hypothesis that cardiac TRPA1 confers myocyte sensitivity to aldehyde accumulation and promotes I/R injury. Although basal cardiovascular function in TRPA1-null mice was similar to that in wild-type (WT) mice, infarct size was significantly smaller in TRPA1-null mice than in WT mice (34.1 ± 9.3 vs. 14.3 ± 9.9% of the risk region, n = 8 and 7, respectively, P < 0.05), despite a similar I/R-induced area at risk (40.3 ±8.4% and 42.2 ± 11.3% for WT and TRPA1-null mice, respectively) after myocardial I/R (30 min of ischemia followed by 24 h of reperfusion) in situ. Positive TRPA1 immunofluorescence was present in murine and human hearts and was colocalized with connexin43 at intercalated disks in isolated murine cardiomyocytes. Cardiomyocyte TRPA1 was confirmed by quantitative RT-PCR, DNA sequencing, Western blot analysis, and electrophysiology. A role of TRPA1 in cardiomyocyte toxicity was demonstrated in isolated cardiomyocytes exposed to acrolein, an I/R-associated toxin that induces Ca2+ accumulation and hypercontraction, effects significantly blunted by HC-030031, a TRPA1 antagonist. Protection induced by HC-030031 was quantitatively equivalent to that induced by SN-6, a Na+/Ca2+ exchange inhibitor, further supporting a role of Ca2+ overload in acrolein-induced cardiomyocyte toxicity. These data indicate that cardiac TRPA1 activation likely contributes to I/R injury and, thus, that TRPA1 may be a novel therapeutic target for decreasing myocardial I/R injury. NEW & NOTEWORTHY Transient receptor potential ankyrin 1 (TRPA1) activation mediates increased blood flow, edema, and pain reception, yet its role in myocardial ischemia-reperfusion (I/R) injury is unknown. Genetic ablation of TRPA1 significantly decreased myocardial infarction after I/R in mice. Functional TRPA1 in cardiomyocytes was enriched in intercalated disks and contributed to acrolein-induced Ca2+ overload and hypercontraction. These data indicate that I/R activation of TRPA1 worsens myocardial infarction; TRPA1 may be a potential target to mitigate I/R injury.


Asunto(s)
Daño por Reperfusión Miocárdica/genética , Miocitos Cardíacos/metabolismo , Canal Catiónico TRPA1/genética , Acetanilidas/farmacología , Aldehídos/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Masculino , Ratones , Ratones Endogámicos C57BL , Contracción Miocárdica , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Purinas/farmacología , Canal Catiónico TRPA1/antagonistas & inhibidores
2.
J Biol Chem ; 288(39): 28163-79, 2013 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-23928303

RESUMEN

Oxidation of unsaturated lipids generates reactive aldehydes that accumulate in tissues during inflammation, ischemia, or aging. These aldehydes form covalent adducts with histidine-containing dipeptides such as carnosine and anserine, which are present in high concentration in skeletal muscle, heart, and brain. The metabolic pathways involved in the detoxification and elimination of these conjugates are, however, poorly defined, and their significance in regulating oxidative stress is unclear. Here we report that conjugates of carnosine with aldehydes such as acrolein are produced during normal metabolism and excreted in the urine of mice and adult human non-smokers as carnosine-propanols. Our studies show that the reduction of carnosine-propanals is catalyzed by the enzyme aldose reductase (AR). Carnosine-propanals were converted to carnosine-propanols in the lysates of heart, skeletal muscle, and brain tissue from wild-type (WT) but not AR-null mice. In comparison with WT mice, the urinary excretion of carnosine-propanols was decreased in AR-null mice. Carnosine-propanals formed covalent adducts with nucleophilic amino acids leading to the generation of carnosinylated proteins. Deletion of AR increased the abundance of proteins bound to carnosine in skeletal muscle, brain, and heart of aged mice and promoted the accumulation of carnosinylated proteins in hearts subjected to global ischemia ex vivo. Perfusion with carnosine promoted post-ischemic functional recovery in WT but not in AR-null mouse hearts. Collectively, these findings reveal a previously unknown metabolic pathway for the removal of carnosine-propanal conjugates and suggest a new role of AR as a critical regulator of protein carnosinylation and carnosine-mediated tissue protection.


Asunto(s)
Acroleína/metabolismo , Aldehído Reductasa/metabolismo , Carnosina/metabolismo , Acetilcisteína/análisis , Animales , Antioxidantes/metabolismo , Humanos , Inflamación , Peroxidación de Lípido , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Daño por Reperfusión , Distribución Tisular
3.
PLoS One ; 8(12): e83174, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24367585

RESUMEN

Preclinical studies of animals with risk factors, and how those risk factors contribute to the development of cardiovascular disease and cardiac dysfunction, are clearly needed. One such approach is to feed mice a diet rich in fat (i.e. 60%). Here, we determined whether a high fat diet was sufficient to induce cardiac dysfunction in mice. We subjected mice to two different high fat diets (lard or milk as fat source) and followed them for over six months and found no significant decrement in cardiac function (via echocardiography), despite robust adiposity and impaired glucose disposal. We next determined whether antecedent and concomitant exposure to high fat diet (lard) altered the murine heart's response to infarct-induced heart failure; high fat feeding during, or before and during, heart failure did not significantly exacerbate cardiac dysfunction. Given the lack of a robust effect on cardiac dysfunction with high fat feeding, we then examined a commonly used mouse model of overt diabetes, hyperglycemia, and obesity (db/db mice). db/db mice (or STZ treated wild-type mice) subjected to pressure overload exhibited no significant exacerbation of cardiac dysfunction; however, ischemia-reperfusion injury significantly depressed cardiac function in db/db mice compared to their non-diabetic littermates. Thus, we were able to document a negative influence of a risk factor in a relevant cardiovascular disease model; however, this did not involve exposure to a high fat diet. High fat diet, obesity, or hyperglycemia does not necessarily induce cardiac dysfunction in mice. Although many investigators use such diabetes/obesity models to understand cardiac defects related to risk factors, this study, along with those from several other groups, serves as a cautionary note regarding the use of murine models of diabetes and obesity in the context of heart failure.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/fisiopatología , Corazón/efectos de los fármacos , Corazón/fisiopatología , Animales , Respiración de la Célula/efectos de los fármacos , Complicaciones de la Diabetes/etiología , Complicaciones de la Diabetes/metabolismo , Complicaciones de la Diabetes/patología , Complicaciones de la Diabetes/fisiopatología , Grasas de la Dieta/efectos adversos , Grasas de la Dieta/análisis , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Hiperglucemia/complicaciones , Masculino , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Dilatación Mitocondrial/efectos de los fármacos
4.
Chem Biol Interact ; 178(1-3): 250-8, 2009 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-19061876

RESUMEN

Nitric oxide (NO) is an important regulator of the catalytic activity of aldose reductase (AR). It reacts with the active site cysteines of AR and this reaction results in the formation of several kinetically distinct forms of the protein. The catalytic activity of AR is increased in the ischemic heart and this increase in activity is associated with NO-dependent modification of AR. During reperfusion, the enzyme reverts back to its un-activated form. Although, AR activation has been linked to thiol oxidation, the mechanisms of de-activation remain unclear. Here we report that treatment of recombinant human AR (AKR1B1) by a non-thiol-based NO-donor (DEANO) results in activation and S-nitrosylation of the protein. The nitrosylated (ARSNO), but not the reduced (ARSH), protein reacted with reduced glutathione (GSH) and this reaction resulted in the formation of glutathiolated AR (ARSSG). The modification of AR by NO was site-specific at Cys-298 and was not affected by selective mutation of the neighboring residue, Cys-303 to an alanine. Incubation of the glutathiolated AR (ARSSG) with GSH resulted in the regeneration of the reduced form of the protein (ARSH). Treatment of nitrosylated AR (ARSNO) with ascorbic acid also led to the conversion of the protein to its reduced form. These observations suggest that intracellular reductants such as GSH and ascorbate could convert the nitrosylated form of AR to its basal or reduced state. In general, such reductive reactions might represent a common mechanism for denitrosylating proteins or an "off" switch in NO-mediated signaling pathways involving protein S-nitrosylation reactions.


Asunto(s)
Aldehído Reductasa/metabolismo , Glutatión/metabolismo , Compuestos Nitrosos/metabolismo , Procesamiento Proteico-Postraduccional , Aldehído Reductasa/química , Ácido Ascórbico/metabolismo , Western Blotting , Cisteína/metabolismo , Humanos , Donantes de Óxido Nítrico/farmacología , Espectrometría de Masa por Ionización de Electrospray
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA