Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Ear Hear ; 42(5): 1276-1283, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33657576

RESUMEN

OBJECTIVES: Dislocation of the magnet inside the implanted component of a cochlear implant (CI) can be a serious risk for patients undergoing a magnetic resonance imaging (MRI) exam. CI manufacturers aim to reduce this risk either via the design of the implant magnet or magnet housing, or by advising a compression bandage and cover over the magnet. The aim of this study is to measure forces and torque on the magnet for different CI models and assess the effectiveness of the design and preventative measures on the probability of magnet dislocation. DESIGN: Six CI models from four manufacturers covering all the current CI brands were included. Each model was positioned on a polystyrene head with compression bandage and magnet cover according to the recommendations of the manufacturer and tested for dislocation in a 1.5T whole-body MRI system. In addition, measurements of the displacement force in front of the MRI scanner and torque at the MRI scanner isocenter were obtained. RESULTS: Chance of CI magnet dislocation was observed for two CI models. The design of the magnet or magnet housing of the other models proved sufficient to prevent displacement of the magnet. The main cause for magnet dislocation was found to be the rotational force resulting from the torque experienced inside the magnet bore, which ranges from 2.4 to 16.2 N between the models, with the displacement force being lower, ranging from 1.0 to 1.8 N. CONCLUSIONS: In vitro testing shows that two CI models are prone to the risk of magnet dislocation. In these CI models, preparation before MRI with special compression bandage and a stiff cover are of importance. But these do not eliminate the risk of pain and dislocation requiring patient consulting before an MRI exam. Newer models show a better design resulting in a significantly reduced risk of magnet dislocation.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Humanos , Imagen por Resonancia Magnética , Imanes , Torque
2.
Eur J Nucl Med Mol Imaging ; 47(7): 1688-1697, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31822958

RESUMEN

PURPOSE: To compare cardiac magnetic resonance imaging (CMR) with [15O]H2O positron emission tomography (PET) for quantification of absolute myocardial blood flow (MBF) and myocardial flow reserve (MFR) in patients with coronary artery disease (CAD). METHODS: Fifty-nine patients with stable CAD underwent CMR and [15O]H2O PET. The CMR imaging protocol included late gadolinium enhancement to rule out presence of scar tissue and perfusion imaging using a dual sequence, single bolus technique. Absolute MBF was determined for the three main vascular territories at rest and during vasodilator stress. RESULTS: CMR measurements of regional stress MBF and MFR showed only moderate correlation to those obtained using PET (r = 0.39; P < 0.001 for stress MBF and r = 0.36; P < 0.001 for MFR). Bland-Altman analysis revealed a significant bias of 0.2 ± 1.0 mL/min/g for stress MBF and - 0.5 ± 1.2 for MFR. CMR-derived stress MBF and MFR demonstrated area under the curves of respectively 0.72 (95% CI: 0.65 to 0.79) and 0.76 (95% CI: 0.69 to 0.83) and had optimal cutoff values of 2.35 mL/min/g and 2.25 for detecting abnormal myocardial perfusion, defined as [15O]H2O PET-derived stress MBF ≤ 2.3 mL/min/g and MFR ≤ 2.5. Using these cutoff values, CMR and PET were concordant in 137 (77%) vascular territories for stress MBF and 135 (80%) vascular territories for MFR. CONCLUSION: CMR measurements of stress MBF and MFR showed modest agreement to those obtained with [15O]H2O PET. Nevertheless, stress MBF and MFR were concordant between CMR and [15O]H2O PET in 77% and 80% of vascular territories, respectively.


Asunto(s)
Enfermedad de la Arteria Coronaria , Circulación Coronaria , Espectroscopía de Resonancia Magnética , Imagen de Perfusión Miocárdica , Tomografía de Emisión de Positrones , Anciano , Medios de Contraste , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Femenino , Reserva del Flujo Fraccional Miocárdico , Gadolinio , Humanos , Espectroscopía de Resonancia Magnética/normas , Masculino , Persona de Mediana Edad , Imagen de Perfusión Miocárdica/normas , Radioisótopos de Oxígeno , Tomografía de Emisión de Positrones/normas , Reproducibilidad de los Resultados
3.
Skin Res Technol ; 26(1): 67-75, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31423660

RESUMEN

BACKGROUND: User-independent quantitative measures of cutaneous allergic reactions can help the physicians manage and evaluate the treatment of cutaneous allergic reactions. In this paper, we present and validate a method to quantify the elevation, volume and area of cutaneous allergic reactions to red tattoos. METHODS: The skin surface of allergic tattoo reactions was imaged using an optical 3D scanner. The in-house developed analysis tool measured the elevation, volume and area of the lesions, compared to a reference surface. This reference surface was created by 3D interpolation of the skin after manual removal of the lesions. The error of the interpolation tool was validated using a digital arm model. The error of our optical scanner was determined using a 3D printed lesion phantom. The clinical feasibility of the method was tested in 83 lesions in 17 patients. RESULTS: The method showed clear potential to assess skin elevation, volume change and area of an allergic reaction. The validation measurements revealed that the error due to interpolation increases for larger interpolation areas and largely determined the error in the clinical measurements. Lesions with a width ≥4 mm and an elevation ≥0.4 mm could be measured with an error below 26%. Patient measurements showed that lesions up to 600 mm2 could be measured accurately, and elevation and volume changes could be assessed at follow-up. CONCLUSION: Quantification of cutaneous allergic reactions to red tattoos using 3D optical scanning is feasible and may objectify skin elevation and improve management of the allergic reaction.


Asunto(s)
Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/diagnóstico por imagen , Imagenología Tridimensional/métodos , Imagen Óptica/métodos , Piel/diagnóstico por imagen , Dermatitis Atópica/patología , Estudios de Factibilidad , Humanos , Fantasmas de Imagen , Tatuaje/efectos adversos
4.
J Magn Reson Imaging ; 49(5): 1391-1399, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30318731

RESUMEN

BACKGROUND: Each ultrafast dynamic contrast-enhanced (DCE) MRI sequence for breast cancer generates thousands of images in a 4D stack that need to be reviewed by a radiologist. PURPOSE: To assess whether color intensity projections (CIP) effectively summarizes-using only the time of arrival (ToA) and amount of signal enhancement (AoE) of the contrast agent-the thousands of ultrafast images. STUDY TYPE: Retrospective cohort clinical trial. SUBJECTS: The study included 89 patients who had been scanned with an MRI beast protocol, of which 26 had breast cancer and 63 did not. FIELD STRENGTH/SEQUENCE: The 115-second ultrafast DCE sequence at 3T acquired 19 consecutive frames every 4.26 seconds with 152 slices per frame, yielding a 4D stack with 2888 2D images for each of water and fat. ASSESSMENT: For each slice of the water 4D stack a single CIP image was generated that encoded the ToA in the hue (red, orange, yellow, green, cyan, blue) and AoE in the brightness. Each of three experienced radiologists assigned a Breast Imaging and Reporting Data System (BI-RADS) score for each patient, first using only the CIP images, and subsequently using both CIP and the full 4D stack. STATISTICAL TESTS: The one-sided Fisher's exact test was used to determine statistical significance of both the sensitivity and specificity between the CIP alone and the CIP plus 4D stack. RESULTS: All malignancies were detected using only CIP by at least one of the radiologists. The CIP and CIP+4D sensitivities for reader 1 were 96% and 96% (P = 0.57), specificities were 59% and 65% (P = 0.29). For reader 2, the values were 96% and 100% (P = 0.51) with 62% and 71% (P = 0.17). For reader 3 the values were 92% and 96% (P = 0.50) with 51% and 62% (P = 0.07). DATA CONCLUSION: With a 95% sensitivity, CIP provides an effective summary of ultrafast DCE images of breast cancer. LEVEL OF EVIDENCE: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:1391-1399.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Medios de Contraste , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Adulto , Anciano , Anciano de 80 o más Años , Mama/diagnóstico por imagen , Estudios de Cohortes , Femenino , Humanos , Persona de Mediana Edad , Estudios Retrospectivos , Sensibilidad y Especificidad
5.
J Cardiovasc Magn Reson ; 21(1): 30, 2019 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-31104632

RESUMEN

BACKGROUND: A velocity offset error in phase contrast cardiovascular magnetic resonance (CMR) imaging is a known problem in clinical assessment of flow volumes in vessels around the heart. Earlier studies have shown that this offset error is clinically relevant over different systems, and cannot be removed by protocol optimization. Correction methods using phantom measurements are time consuming, and assume reproducibility of the offsets which is not the case for all systems. An alternative previously published solution is to correct the in-vivo data in post-processing, interpolating the velocity offset from stationary tissue within the field-of-view. This study aims to validate this interpolation-based offset correction in-vivo in a multi-vendor, multi-center setup. METHODS: Data from six 1.5 T CMR systems were evaluated, with two systems from each of the three main vendors. At each system aortic and main pulmonary artery 2D flow studies were acquired during routine clinical or research examinations, with an additional phantom measurement using identical acquisition parameters. To verify the phantom acquisition, a region-of-interest (ROI) at stationary tissue in the thorax wall was placed and compared between in-vivo and phantom measurements. Interpolation-based offset correction was performed on the in-vivo data, after manually excluding regions of spatial wraparound. Correction performance of different spatial orders of interpolation planes was evaluated. RESULTS: A total of 126 flow measurements in 82 subjects were included. At the thorax wall the agreement between in-vivo and phantom was - 0.2 ± 0.6 cm/s. Twenty-eight studies were excluded because of a difference at the thorax wall exceeding 0.6 cm/s from the phantom scan, leaving 98. Before correction, the offset at the vessel as assessed in the phantom was - 0.4 ± 1.5 cm/s, which resulted in a - 5 ± 16% error in cardiac output. The optimal order of the interpolation correction plane was 1st order, except for one system at which a 2nd order plane was required. Application of the interpolation-based correction revealed a remaining offset velocity of 0.1 ± 0.5 cm/s and 0 ± 5% error in cardiac output. CONCLUSIONS: This study shows that interpolation-based offset correction reduces the offset with comparable efficacy as phantom measurement phase offset correction, without the time penalty imposed by phantom scans. TRIAL REGISTRATION: The study was registered in The Netherlands National Trial Register (NTR) under TC 4865 . Registered 19 September 2014. Retrospectively registered.


Asunto(s)
Aorta/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Imagen de Perfusión/métodos , Arteria Pulmonar/diagnóstico por imagen , Adulto , Aorta/fisiopatología , Velocidad del Flujo Sanguíneo , Europa (Continente) , Femenino , Humanos , Imagen por Resonancia Magnética/instrumentación , Masculino , Persona de Mediana Edad , Imagen de Perfusión/instrumentación , Fantasmas de Imagen , Valor Predictivo de las Pruebas , Arteria Pulmonar/fisiopatología , Flujo Sanguíneo Regional , Reproducibilidad de los Resultados , Adulto Joven
6.
Eur Radiol ; 28(2): 824-832, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28821947

RESUMEN

OBJECTIVES: Native T1 mapping and late gadolinium enhancement (LGE) imaging offer detailed characterisation of the myocardium after acute myocardial infarction (AMI). We evaluated the effects of microvascular injury (MVI) and intramyocardial haemorrhage on local T1 and T2* values in patients with a reperfused AMI. METHODS: Forty-three patients after reperfused AMI underwent cardiovascular magnetic resonance imaging (CMR) at 4 [3-5] days, including native MOLLI T1 and T2* mapping, STIR, cine imaging and LGE. T1 and T2* values were determined in LGE-defined regions of interest: the MI core incorporating MVI when present, the core-adjacent MI border zone (without any areas of MVI), and remote myocardium. RESULTS: Average T1 in the MI core was higher than in the MI border zone and remote myocardium. However, in the 20 (47%) patients with MVI, MI core T1 was lower than in patients without MVI (MVI 1048±78ms, no MVI 1111±89ms, p=0.02). MI core T2* was significantly lower in patients with MVI than in those without (MVI 20 [18-23]ms, no MVI 31 [26-39]ms, p<0.001). CONCLUSION: The presence of MVI profoundly affects MOLLI-measured native T1 values. T2* mapping suggested that this may be the result of intramyocardial haemorrhage. These findings have important implications for the interpretation of native T1 values shortly after AMI. KEY POINTS: • Microvascular injury after acute myocardial infarction affects local T1 and T2* values. • Infarct zone T1 values are lower if microvascular injury is present. • T2* mapping suggests that low infarct T1 values are likely haemorrhage. • T1 and T2* values are complimentary for correctly assessing post-infarct myocardium.


Asunto(s)
Vasos Coronarios/diagnóstico por imagen , Hemorragia/diagnóstico por imagen , Imagen por Resonancia Magnética , Infarto del Miocardio/diagnóstico por imagen , Medios de Contraste , Vasos Coronarios/patología , Femenino , Gadolinio , Hemorragia/patología , Humanos , Masculino , Microcirculación , Persona de Mediana Edad , Infarto del Miocardio/patología , Miocardio/patología
7.
Radiology ; 272(1): 113-22, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24617731

RESUMEN

PURPOSE: To investigate the effects of cell therapy on myocardial perfusion recovery after treatment of acute myocardial infarction (MI) with primary percutaneous coronary intervention (PCI). MATERIALS AND METHODS: In this HEBE trial substudy, which was approved by the institutional review board (trial registry number ISRCTN95796863), the authors assessed the effects of intracoronary infusion with bone marrow-derived mononuclear cells (BMMCs) or peripheral blood-derived mononuclear cells (PBMCs) on myocardial perfusion recovery by using cardiac magnetic resonance (MR) imaging after revascularization. In 152 patients with acute MI treated with PCI, cardiac MR imaging was performed after obtaining informed consent-before randomization to BMMC, PBMC, or standard therapy (control group)-and repeated at 4-month follow-up. Cardiac MR imaging consisted of cine, rest first-pass perfusion, and late gadolinium enhancement imaging. Perfusion was evaluated semiquantitatively with signal intensity-time curves by calculating the relative upslope (percentage signal intensity change). The relative upslope was calculated for the MI core, adjacent border zone, and remote myocardium. Perfusion differences among treatment groups or between baseline and follow-up were assessed with the Wilcoxon signed rank or Mann-Whitney U test. RESULTS: At baseline, myocardial perfusion differed between the MI core (median, 6.0%; interquartile range [IQR], 4.1%-8.0%), border zone (median, 8.4%; IQR, 6.4%-10.2%), and remote myocardium (median, 12.2%; IQR, 10.5%-15.9%) (P < .001 for all), with equal distribution among treatment groups. These interregional differences persisted at follow-up (P < .001 for all). No difference in perfusion recovery was found between the three treatment groups for any region. CONCLUSION: After revascularization of ST-elevation MI, cell therapy does not augment the recovery of resting perfusion in either the MI core or border zone.


Asunto(s)
Trasplante de Médula Ósea , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Leucocitos Mononucleares/trasplante , Imagen por Resonancia Magnética/métodos , Infarto del Miocardio/patología , Infarto del Miocardio/terapia , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/terapia , Miocardio/patología , Adulto , Anciano , Técnicas de Imagen Sincronizada Cardíacas , Terapia Combinada , Medios de Contraste , Circulación Coronaria , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Cinemagnética , Masculino , Meglumina , Persona de Mediana Edad , Neovascularización Fisiológica , Compuestos Organometálicos , Intervención Coronaria Percutánea , Recuperación de la Función , Resultado del Tratamiento
8.
J Cardiovasc Magn Reson ; 16: 28, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24766828

RESUMEN

BACKGROUND: In hypertrophic cardiomyopathy (HCM), autopsy studies revealed both increased focal and diffuse deposition of collagen fibers. Late gadolinium enhancement imaging (LGE) detects focal fibrosis, but is unable to depict interstitial fibrosis. We hypothesized that with T1 mapping, which is employed to determine the myocardial extracellular volume fraction (ECV), can detect diffuse interstitial fibrosis in HCM patients. METHODS: T1 mapping with a modified Look-Locker Inversion Recovery (MOLLI) pulse sequence was used to calculate ECV in manifest HCM (n = 16) patients and in healthy controls (n = 14). ECV was determined in areas where focal fibrosis was excluded with LGE. RESULTS: The total group of HCM patients showed no significant changes in mean ECV values with respect to controls (0.26 ± 0.03 vs 0.26 ± 0.02, p = 0.83). Besides, ECV in LGE positive HCM patients was comparable with LGE negative HCM patients (0.27 ± 0.03 vs 0.25 ± 0.03, p = 0.12). CONCLUSIONS: This study showed that HCM patients have a similar ECV (e.g. interstitial fibrosis) in myocardium without LGE as healthy controls. Therefore, the additional clinical value of T1 mapping in HCM seems limited, but future larger studies are needed to establish the clinical and prognostic potential of this new technique within HCM.


Asunto(s)
Cardiomiopatía Hipertrófica/diagnóstico , Imagen por Resonancia Cinemagnética , Miocardio/patología , Adulto , Cardiomiopatía Hipertrófica/patología , Estudios de Casos y Controles , Femenino , Fibrosis , Humanos , Interpretación de Imagen Asistida por Computador , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas
9.
Eur Heart J ; 34(26): 1990-8, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23475530

RESUMEN

AIMS: The combined use of cardiac computed tomography (CT) coronary angiography (CTCA) and myocardial perfusion imaging allows the non-invasive evaluation of coronary morphology and function. Cardiovascular magnetic resonance (CMR) imaging has several advantages: it can simultaneously assess myocardial perfusion, ventricular and valvular function, cardiomyopathy, and aortic disease and does not involve any additional ionizing radiation. We investigated the combined use of cardiac CT and CMR for the diagnostic evaluation of patients with suspected coronary artery disease (CAD) in clinical practice. METHODS AND RESULTS: A total of 192 patients with low or intermediate pre-test probability of CAD underwent CTCA and CMR. All patients with obstructive CAD on CTCA and/or myocardial ischaemia on CMR were referred for invasive coronary angiography (ICA). Fractional flow reserve was measured in case of intermediate lesions (30-70% diameter stenosis) on ICA. Additional cardiac and extra-cardiac findings by CTCA and CMR were registered. The combination of CTCA and CMR significantly improved specificity and overall accuracy (94 and 91%) for the detection of significant CAD compared with their use as a single technique (CTCA 39 and 57%, P < 0.0001; CMR 82 and 83%, P = 0.016). No events were recorded during follow-up (18 ± 6 months) in 104 patients who did not undergo ICA. Furthermore, the combined strategy provided an alternative diagnosis in 19 patients. CONCLUSION: The combined use of CTCA and CMR significantly improved specificity and overall diagnostic accuracy for the detection of significant CAD and allowed the detection of alternative (extra-)cardiac disease in patients without significant CAD.


Asunto(s)
Enfermedad de la Arteria Coronaria/diagnóstico , Estenosis Coronaria/diagnóstico , Femenino , Humanos , Angiografía por Resonancia Magnética , Masculino , Persona de Mediana Edad , Isquemia Miocárdica/diagnóstico , Variaciones Dependientes del Observador , Estudios Prospectivos , Curva ROC , Sensibilidad y Especificidad , Tomografía Computarizada por Rayos X
10.
Phys Med ; 117: 103187, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38016215

RESUMEN

BACKGROUND: In the past ferromagnetic cerebral aneurysm clips that are contraindicated for Magnetic Resonance Imaging (MRI) have been implanted. However, the specific clip model is often unknown for older clips, which poses a problem for individual patient management in clinical care. METHODS: Literature and incident databases were searched, and a survey was performed in the Netherlands that identified time periods at which ferromagnetic and non-ferromagnetic clip models were implanted. Considering this information in combination with a national expert opinion, we describe an approach for risk assessment prior to MRI examinations in patients with aneurysm clips. The manuscript is limited to MRI at 1.5 T or 3 T whole body MRI systems with a horizontal closed bore superconducting magnet, covering the majority of clinical Magnetic Resonance (MR) systems. RESULTS: From the literature a list of ferromagnetic clip models was obtained. The risk of movement or rotation of the clip due to the main magnetic field in case of a ferromagnetic clip is the main concern. In the incident databases records of four serious incidents due to aneurysm clips in MRI were found. The survey in the Netherlands showed that from 2000 onwards, no ferromagnetic clips were implanted in Dutch hospitals. DISCUSSION: Recommendations are provided to help the MR safety expert assessing the risks when a patient with a cerebral aneurysm clip is referred for MRI, both for known and unknown clip models. This work was part of the development of a guideline by the Dutch Association of Medical Specialists.


Asunto(s)
Aneurisma Intracraneal , Humanos , Aneurisma Intracraneal/diagnóstico por imagen , Aneurisma Intracraneal/cirugía , Países Bajos , Imagen por Resonancia Magnética/métodos , Instrumentos Quirúrgicos , Prótesis e Implantes
11.
Radiol Cardiothorac Imaging ; 6(2): e230172, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38573128

RESUMEN

Purpose To perform a qualitative and quantitative evaluation of the novel image-navigated (iNAV) 3D late gadolinium enhancement (LGE) cardiac MRI imaging strategy in comparison with the conventional diaphragm-navigated (dNAV) 3D LGE cardiac MRI strategy for the assessment of left atrial fibrosis in atrial fibrillation (AF). Materials and Methods In this prospective study conducted between April and September 2022, 26 consecutive participants with AF (mean age, 61 ± 11 years; 19 male) underwent both iNAV and dNAV 3D LGE cardiac MRI, with equivalent spatial resolution and timing in the cardiac cycle. Participants were randomized in the acquisition order of iNAV and dNAV. Both, iNAV-LGE and dNAV-LGE images were analyzed qualitatively using a 5-point Likert scale and quantitatively (percentage of atrial fibrosis using image intensity ratio threshold 1.2), including testing for overlap in atrial fibrosis areas by calculating Dice score. Results Acquisition time of iNAV was significantly lower compared with dNAV (4.9 ± 1.1 minutes versus 12 ± 4 minutes, P < .001, respectively). There was no evidence of a difference in image quality for all prespecified criteria between iNAV and dNAV, although dNAV was the preferred image strategy in two-thirds of cases (17/26, 65%). Quantitative assessment demonstrated that mean fibrosis scores were lower for iNAV compared with dNAV (12 ± 8% versus 20 ± 12%, P < .001). Spatial correspondence between the atrial fibrosis maps was modest (Dice similarity coefficient, 0.43 ± 0.15). Conclusion iNAV-LGE acquisition in individuals with AF was more than twice as fast as dNAV acquisition but resulted in a lower atrial fibrosis score. The differences between these two strategies might impact clinical interpretation. ©RSNA, 2024.


Asunto(s)
Fibrilación Atrial , Diafragma , Anciano , Humanos , Masculino , Persona de Mediana Edad , Fibrilación Atrial/diagnóstico , Medios de Contraste , Gadolinio , Atrios Cardíacos/diagnóstico por imagen , Imagen por Resonancia Magnética , Estudios Prospectivos , Femenino
12.
J Cardiovasc Magn Reson ; 15: 13, 2013 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-23331520

RESUMEN

BACKGROUND: Quantitative T1-mapping is rapidly becoming a clinical tool in cardiovascular magnetic resonance (CMR) to objectively distinguish normal from diseased myocardium. The usefulness of any quantitative technique to identify disease lies in its ability to detect significant differences from an established range of normal values. We aimed to assess the variability of myocardial T1 relaxation times in the normal human population estimated with recently proposed Shortened Modified Look-Locker Inversion recovery (ShMOLLI) T1 mapping technique. METHODS: A large cohort of healthy volunteers (n = 342, 50% females, age 11-69 years) from 3 clinical centres across two countries underwent CMR at 1.5T. Each examination provided a single average myocardial ShMOLLI T1 estimate using manually drawn myocardial contours on typically 3 short axis slices (average 3.4 ± 1.4), taking care not to include any blood pool in the myocardial contours. We established the normal reference range of myocardial and blood T1 values, and assessed the effect of potential confounding factors, including artefacts, partial volume, repeated measurements, age, gender, body size, hematocrit and heart rate. RESULTS: Native myocardial ShMOLLI T1 was 962 ± 25 ms. We identify the partial volume as primary source of potential error in the analysis of respective T1 maps and use 1 pixel erosion to represent "midwall myocardial" T1, resulting in a 0.9% decrease to 953 ± 23 ms. Midwall myocardial ShMOLLI T1 was reproducible with an intra-individual, intra- and inter-scanner variability of ≤2%. The principle biological parameter influencing myocardial ShMOLLI T1 was the female gender, with female T1 longer by 24 ms up to the age of 45 years, after which there was no significant difference from males. After correction for age and gender dependencies, heart rate was the only other physiologic factor with a small effect on myocardial ShMOLLI T1 (6ms/10bpm). Left and right ventricular blood ShMOLLI T1 correlated strongly with each other and also with myocardial T1 with the slope of 0.1 that is justifiable by the resting partition of blood volume in myocardial tissue. Overall, the effect of all variables on myocardial ShMOLLI T1 was within 2% of relative changes from the average. CONCLUSION: Native T1-mapping using ShMOLLI generates reproducible and consistent results in normal individuals within 2% of relative changes from the average, well below the effects of most acute forms of myocardial disease. The main potential confounder is the partial volume effect arising from over-inclusion of neighbouring tissue at the manual stages of image analysis. In the study of cardiac conditions such as diffuse fibrosis or small focal changes, the use of "myocardial midwall" T1, age and gender matching, and compensation for heart rate differences may all help to improve the method sensitivity in detecting subtle changes. As the accuracy of current T1 measurement methods remains to be established, this study does not claim to report an accurate measure of T1, but that ShMOLLI is a stable and reproducible method for T1-mapping.


Asunto(s)
Imagen por Resonancia Cinemagnética , Contracción Miocárdica , Función Ventricular Izquierda , Función Ventricular Derecha , Adolescente , Adulto , Factores de Edad , Anciano , Artefactos , Tamaño Corporal , Niño , Inglaterra , Femenino , Frecuencia Cardíaca , Hematócrito , Humanos , Masculino , Persona de Mediana Edad , Países Bajos , Variaciones Dependientes del Observador , Valor Predictivo de las Pruebas , Valores de Referencia , Reproducibilidad de los Resultados , Factores Sexuales , Factores de Tiempo , Adulto Joven
13.
J Cardiovasc Magn Reson ; 14: 72, 2012 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-23083397

RESUMEN

BACKGROUND: Phase-contrast velocity images often contain a background or baseline offset error, which adds an unknown offset to the measured velocities. For accurate flow measurements, this offset must be shown negligible or corrected. Some correction techniques depend on replicating the clinical flow acquisition using a uniform stationary phantom, in order to measure the baseline offset at the region of interest and subtract it from the clinical study. Such techniques assume that the background offset is stable over the time of a patient scan, or even longer if the phantom scans are acquired later, or derived from pre-stored background correction images. There is no published evidence regarding temporal stability of the background offset. METHODS: This study assessed the temporal stability of the background offset on 3 different manufacturers' scanners over 8 weeks, using a retrospectively-gated phase-contrast cine acquisition with fixed parameters and at a fixed location, repeated 5 times in rapid succession each week. A significant offset was defined as 0.6 cm/s within 50 mm of isocenter, based upon an accuracy of 10% in a typical cardiac shunt measurement. RESULTS: Over the 5 repeated cine acquisitions, temporal drift in the baseline offset was insignificant on two machines (0.3 cm/s, 0.2 cm/s), and marginally insignificant on the third machine (0.5 cm/s) due to an apparent heating effect. Over a longer timescale of 8 weeks, insignificant drift (0.4 cm/s) occurred on one, with larger drifts (0.9 cm/s, 0.6 cm/s) on the other machines. CONCLUSIONS: During a typical patient study, background drift was insignificant. Extended high gradient power scanning with work requires care to avoid drift on some machines. Over the longer term of 8 weeks, significant drift is likely, preventing accurate correction by delayed phantom corrections or derivation from pre-stored background offset data.


Asunto(s)
Imagen por Resonancia Cinemagnética/instrumentación , Imagen de Cuerpo Entero/instrumentación , Diseño de Equipo , Europa (Continente) , Humanos , Interpretación de Imagen Asistida por Computador , Fantasmas de Imagen , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Factores de Tiempo
14.
Eur Heart J Cardiovasc Imaging ; 23(2): 154-165, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-34143872

RESUMEN

Identification of flow patterns within the heart has long been recognized as a potential contribution to the understanding of physiological and pathophysiological processes of cardiovascular diseases. Although the pulsatile flow itself is multi-dimensional and multi-directional, current available non-invasive imaging modalities in clinical practice provide calculation of flow in only 1-direction and lack 3-dimensional volumetric velocity information. Four-dimensional flow cardiovascular magnetic resonance imaging (4D flow CMR) has emerged as a novel tool that enables comprehensive and critical assessment of flow through encoding velocity in all 3 directions in a volume of interest resolved over time. Following technical developments, 4D flow CMR is not only capable of visualization and quantification of conventional flow parameters such as mean/peak velocity and stroke volume but also provides new hemodynamic parameters such as kinetic energy. As a result, 4D flow CMR is being extensively exploited in clinical research aiming to improve understanding of the impact of cardiovascular disease on flow and vice versa. Of note, the analysis of 4D flow data is still complex and accurate analysis tools that deliver comparable quantification of 4D flow values are a necessity for a more widespread adoption in clinic. In this article, the acquisition and analysis processes are summarized and clinical applications of 4D flow CMR on the heart including conventional and novel hemodynamic parameters are discussed. Finally, clinical potential of other emerging intra-cardiac 4D flow imaging modalities is explored and a near-future perspective on 4D flow CMR is provided.


Asunto(s)
Sistema Cardiovascular , Interpretación de Imagen Asistida por Computador , Velocidad del Flujo Sanguíneo/fisiología , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética , Valor Predictivo de las Pruebas
15.
Eur Heart J Cardiovasc Imaging ; 23(2): 229-237, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-33982071

RESUMEN

AIMS: To compare cardiac magnetic resonance (CMR) measurement of T1 reactivity (ΔT1) with [15O]H2O positron emission tomography (PET) measurements of quantitative myocardial perfusion. METHODS AND RESULTS: Forty-three patients with suspected obstructed coronary artery disease underwent [15O]H2O PET and CMR at 1.5-T, including rest and adenosine stress T1 mapping (ShMOLLI) and late gadolinium enhancement to rule out presence of scar tissue. ΔT1 was determined for the three main vascular territories and compared with [15O]H2O PET-derived regional stress myocardial blood flow (MBF) and myocardial flow reserve (MFR). ΔT1 showed a significant but poor correlation with stress MBF (R2 = 0.04, P = 0.03) and MFR (R2 = 0.07, P = 0.004). Vascular territories with impaired stress MBF (i.e. ≤2.30 mL/min/g) demonstrated attenuated ΔT1 compared with vascular territories with preserved stress MBF (2.9 ± 2.2% vs. 4.1 ± 2.2%, P = 0.008). In contrast, ΔT1 did not differ between vascular territories with impaired (i.e. <2.50) and preserved MFR (3.2 ± 2.6% vs. 4.0 ± 2.1%, P = 0.25). Receiver operating curve analysis of ΔT1 resulted in an area under the curve of 0.66 [95% confidence interval (CI): 0.57-0.75, P = 0.009] for diagnosing impaired stress MBF and 0.62 (95% CI: 0.53-0.71, P = 0.07) for diagnosing impaired MFR. CONCLUSIONS: CMR stress T1 mapping has poor agreement with [15O]H2O PET measurements of absolute myocardial perfusion. Stress T1 and ΔT1 are lower in vascular territories with reduced stress MBF but have poor accuracy for detecting impaired myocardial perfusion.


Asunto(s)
Enfermedad de la Arteria Coronaria , Imagen de Perfusión Miocárdica , Medios de Contraste , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Circulación Coronaria , Gadolinio , Humanos , Espectroscopía de Resonancia Magnética , Imagen de Perfusión Miocárdica/métodos , Radioisótopos de Oxígeno , Tomografía de Emisión de Positrones/métodos
16.
J Cardiovasc Magn Reson ; 13: 18, 2011 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-21388521

RESUMEN

PURPOSE: Eddy current induced velocity offsets are of concern for accuracy in cardiovascular magnetic resonance (CMR) volume flow quantification. However, currently known theoretical aspects of eddy current behavior have not led to effective guidelines for the optimization of flow quantification sequences. This study is aimed at identifying correlations between protocol parameters and the resulting velocity error in clinical CMR flow measurements in a multi-vendor study. METHODS: Nine 1.5T scanners of three different types/vendors were studied. Measurements were performed on a large stationary phantom. Starting from a clinical breath-hold flow protocol, several protocol parameters were varied. Acquisitions were made in three clinically relevant orientations. Additionally, a time delay between the bipolar gradient and read-out, asymmetric versus symmetric velocity encoding, and gradient amplitude and slew rate were studied in adapted sequences as exploratory measurements beyond the protocol. Image analysis determined the worst-case offset for a typical great-vessel flow measurement. RESULTS: The results showed a great variation in offset behavior among scanners (standard deviation among samples of 0.3, 0.4, and 0.9 cm/s for the three different scanner types), even for small changes in the protocol. Considering the absolute values, none of the tested protocol settings consistently reduced the velocity offsets below the critical level of 0.6 cm/s neither for all three orientations nor for all three scanner types. Using multilevel linear model analysis, oblique aortic and pulmonary slices showed systematic higher offsets than the transverse aortic slices (oblique aortic 0.6 cm/s, and pulmonary 1.8 cm/s higher than transverse aortic). The exploratory measurements beyond the protocol yielded some new leads for further sequence development towards reduction of velocity offsets; however those protocols were not always compatible with the time-constraints of breath-hold imaging and flow-related artefacts. CONCLUSIONS: This study showed that with current systems there was no generic protocol which resulted into acceptable flow offset values. Protocol optimization would have to be performed on a per scanner and per protocol basis. Proper optimization might make accurate (transverse) aortic flow quantification possible for most scanners. Pulmonary flow quantification would still need further (offline) correction.


Asunto(s)
Aorta/fisiología , Imagen por Resonancia Magnética/instrumentación , Circulación Pulmonar , Velocidad del Flujo Sanguíneo , Diseño de Equipo , Europa (Continente) , Humanos , Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética/normas , Ensayo de Materiales , Modelos Cardiovasculares , Fantasmas de Imagen , Flujo Sanguíneo Regional , Reproducibilidad de los Resultados
17.
Sci Rep ; 11(1): 5965, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33727587

RESUMEN

The pathophysiology behind thrombus formation in paroxysmal atrial fibrillation (AF) patients is very complex. This can be due to left atrial (LA) flow changes, remodeling, or both. We investigated differences for cardiovascular magnetic resonance (CMR)-derived LA 4D flow and remodeling characteristics between paroxysmal AF patients and patients without cardiac disease. In this proof-of-concept study, the 4D flow data were acquired in 10 patients with paroxysmal AF (age = 61 ± 8 years) and 5 age/gender matched controls (age = 56 ± 1 years) during sinus rhythm. The following LA and LA appendage flow parameters were obtained: flow velocity (mean, peak), stasis defined as the relative volume with velocities < 10 cm/s, and kinetic energy (KE). Furthermore, LA global strain values were derived from b-SSFP cine images using dedicated CMR feature-tracking software. Even in sinus rhythm, LA mean and peak flow velocities over the entire cardiac cycle were significantly lower in paroxysmal AF patients compared to controls [(13.1 ± 2.4 cm/s vs. 16.7 ± 2.1 cm/s, p = 0.01) and (19.3 ± 4.7 cm/s vs. 26.8 ± 5.5 cm/s, p = 0.02), respectively]. Moreover, paroxysmal AF patients expressed more stasis of blood than controls both in the LA (43.2 ± 10.8% vs. 27.8 ± 7.9%, p = 0.01) and in the LA appendage (73.3 ± 5.7% vs. 52.8 ± 16.2%, p = 0.04). With respect to energetics, paroxysmal AF patients demonstrated lower mean and peak KE values (indexed to maximum LA volume) than controls. No significant differences were observed for LA volume, function, and strain parameters between the groups. Global LA flow dynamics in paroxysmal AF patients appear to be impaired including mean/peak flow velocity, stasis fraction, and KE, partly independent of LA remodeling. This pathophysiological flow pattern may be of clinical value to explain the increased incidence of thromboembolic events in paroxysmal AF patients, in the absence of actual AF or LA remodeling.


Asunto(s)
Fibrilación Atrial/diagnóstico , Atrios Cardíacos/diagnóstico por imagen , Atrios Cardíacos/fisiopatología , Hemodinámica , Imagenología Tridimensional , Fibrilación Atrial/complicaciones , Fibrilación Atrial/etiología , Remodelación Atrial , Velocidad del Flujo Sanguíneo , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Electrocardiografía , Humanos , Interpretación de Imagen Asistida por Computador , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética , Variaciones Dependientes del Observador , Tromboembolia/etiología
18.
Int J Cardiol ; 330: 251-258, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33535074

RESUMEN

BACKGROUND: Quantitative cardiovascular magnetic resonance T1-mapping is increasingly used for myocardial tissue characterization. However, the lack of standardization limits direct comparability between centers and wider roll-out for clinical use or trials. PURPOSE: To develop a quality assurance (QA) program assuring standardized T1 measurements for clinical use. METHODS: MR phantoms manufactured in 2013 were distributed, including ShMOLLI T1-mapping and reference T1 and T2 protocols. We first studied the T1 and T2 dependency on temperature and phantom aging using phantom datasets from a single site over 4 years. Based on this, we developed a multiparametric QA model, which was then applied to 78 scans from 28 other multi-national sites. RESULTS: T1 temperature sensitivity followed a second-order polynomial to baseline T1 values (R2 > 0.996). Some phantoms showed aging effects, where T1 drifted up to 49% over 40 months. The correlation model based on reference T1 and T2, developed on 1004 dedicated phantom scans, predicted ShMOLLI-T1 with high consistency (coefficient of variation 1.54%), and was robust to temperature variations and phantom aging. Using the 95% confidence interval of the correlation model residuals as the tolerance range, we analyzed 390 ShMOLLI T1-maps and confirmed accurate sequence deployment in 90%(70/78) of QA scans across 28 multiple centers, and categorized the rest with specific remedial actions. CONCLUSIONS: The proposed phantom QA for T1-mapping can assure correct method implementation and protocol adherence, and is robust to temperature variation and phantom aging. This QA program circumvents the need of frequent phantom replacements, and can be readily deployed in multicenter trials.


Asunto(s)
Cardiomiopatía Hipertrófica , Imagen por Resonancia Magnética , Cardiomiopatía Hipertrófica/diagnóstico por imagen , Humanos , Fantasmas de Imagen , Sistema de Registros , Reproducibilidad de los Resultados
19.
Radiology ; 254(2): 384-92, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20089723

RESUMEN

PURPOSE: To compare coronary computed tomographic (CT) angiography with first-pass magnetic resonance (MR) myocardial perfusion imaging in patients with chest pain and low to intermediate probability of coronary artery disease (CAD). MATERIALS AND METHODS: Local ethics committee approval and patient written informed consent were obtained. Patients with chest pain and low to intermediate pretest probability of CAD underwent both coronary CT angiography and MR myocardial perfusion imaging. Coronary CT angiographic and MR myocardial perfusion images were analyzed qualitatively by blinded observers. Obstructive CAD was defined as more than 50% diameter stenosis at coronary CT angiography. Data were expressed with 95% confidence intervals (CIs) calculated from binomial expression. RESULTS: In 145 (94.2%) of 154 eligible patients, both coronary CT angiography and MR myocardial perfusion imaging were performed successfully. Mean age was 57 years +/- 10 (standard deviation), and 45.5% of patients were male. Mean interval between coronary CT angiography and MR myocardial perfusion imaging was 4.6 days +/- 3.0; median was 5.0 days. CT coronary angiography revealed obstructive CAD in 52 (35.9%) patients and 78 (17.9%) coronary arteries. At MR myocardial perfusion imaging, myocardial ischemia was demonstrated in 33 (22.8%) patients and 59 (13.6%) vessel territories. Of patients without CAD at coronary CT angiography, 90.5% (57 of 63; 95% CI: 82.6%, 95.0%) had normal myocardial perfusion at MR myocardial perfusion imaging. Of patients with nonobstructive CAD, 83.3% (25 of 30; 95% CI: 69.5%, 91.6%) had normal myocardial perfusion at MR myocardial perfusion imaging. Myocardial ischemia was detected at MR myocardial perfusion imaging in 42.3% (22 of 52; 95% CI: 29.5%, 56%) of patients with obstructive CAD at coronary CT angiography. CONCLUSION: MR myocardial perfusion imaging and coronary CT angiography have complementary roles in evaluation of patients who are suspected of having CAD. Coronary CT angiography can be used to reliably rule out CAD, but its capability to demonstrate hemodynamically significant CAD is limited. The combination of both techniques enables the clinician to evaluate morphology and functional relevance of CAD comprehensively and noninvasively.


Asunto(s)
Dolor en el Pecho/diagnóstico por imagen , Dolor en el Pecho/diagnóstico , Angiografía Coronaria/métodos , Enfermedad Coronaria/diagnóstico por imagen , Enfermedad Coronaria/diagnóstico , Angiografía por Resonancia Magnética/métodos , Tomografía Computarizada por Rayos X , Artefactos , Dolor en el Pecho/epidemiología , Intervalos de Confianza , Medios de Contraste , Enfermedad Coronaria/epidemiología , Femenino , Humanos , Yohexol/análogos & derivados , Masculino , Persona de Mediana Edad , Probabilidad , Sensibilidad y Especificidad
20.
J Magn Reson Imaging ; 32(1): 88-93, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20578015

RESUMEN

PURPOSE: To investigate the incremental diagnostic value of dual-bolus over single-contrast-bolus first pass magnetic resonance myocardial perfusion imaging (MR-MPI) for detection of significant coronary artery disease (CAD). MATERIALS AND METHODS: Patients (n = 49) with suspected CAD underwent first pass adenosine stress and rest MR-MPI and invasive coronary angiography (CA). Gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA) was injected with a prebolus (1 mL) and a large bolus (0.1 mmol/kg). For the single-bolus technique, the arterial input function (AIF) was obtained from the large-contrast bolus. For the dual-bolus technique, the AIF was reconstructed from the prebolus. Absolute myocardial perfusion was calculated by Fermi-model constrained deconvolution. Receiver operating characteristic (ROC) analysis was used to investigate diagnostic accuracy of MR myocardial perfusion imaging for detection of significant CAD on CA at vessel-based analysis. RESULTS: The area under the curve (AUC) of the minimal stress perfusion value for the detection of significant CAD using the single-bolus and dual-bolus technique was 0.85 +/- 0.04 (95% confidence interval [CI], 0.77-0.93) and 0.77 +/- 0.05 (95% CI, 0.67-0.86), respectively. CONCLUSION: In this study the dual-bolus technique had no incremental diagnostic value over single-bolus technique for detection of significant CAD with the used contrast concentrations.


Asunto(s)
Medios de Contraste , Enfermedad de la Arteria Coronaria/diagnóstico , Gadolinio DTPA , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética/métodos , Imagen de Perfusión Miocárdica/métodos , Área Bajo la Curva , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Curva ROC , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA