Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Europace ; 26(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38193546

RESUMEN

AIMS: Ongoing clinical trials investigate the therapeutic value of stereotactic cardiac radioablation (cRA) in heart failure patients with ventricular tachycardia. Animal data indicate an effect on local cardiac conduction properties. However, the exact mechanism of cRA in patients remains elusive. Aim of the current study was to investigate in vivo and in vitro myocardial properties in heart failure and ventricular tachycardia upon cRA. METHODS AND RESULTS: High-density 3D electroanatomic mapping in sinus rhythm was performed in a patient with a left ventricular assist device and repeated ventricular tachycardia episodes upon several catheter-based endocardial radio-frequency ablation attempts. Subsequent to electroanatomic mapping and cRA of the left ventricular septum, two additional high-density electroanatomic maps were obtained at 2- and 4-month post-cRA. Myocardial tissue samples were collected from the left ventricular septum during 4-month post-cRA from the irradiated and borderzone regions. In addition, we performed molecular biology and mitochondrial density measurements of tissue and isolated cardiomyocytes. Local voltage was altered in the irradiated region of the left ventricular septum during follow-up. No change of local voltage was observed in the control (i.e. borderzone) region upon irradiation. Interestingly, local activation time was significantly shortened upon irradiation (2-month post-cRA), a process that was reversible (4-month post-cRA). Molecular biology unveiled an increased expression of voltage-dependent sodium channels in the irradiated region as compared with the borderzone, while Connexin43 and transforming growth factor beta were unchanged (4-month post-cRA). Moreover, mitochondrial density was decreased in the irradiated region as compared with the borderzone. CONCLUSION: Our study supports the notion of transiently altered cardiac conduction potentially related to structural and functional cellular changes as an underlying mechanism of cRA in patients with ventricular tachycardia.


Asunto(s)
Ablación por Catéter , Insuficiencia Cardíaca , Taquicardia Ventricular , Humanos , Miocitos Cardíacos , Técnicas Electrofisiológicas Cardíacas/métodos , Ventrículos Cardíacos , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/etiología , Arritmias Cardíacas , Ablación por Catéter/métodos
2.
Heart Vessels ; 38(10): 1277-1287, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37418015

RESUMEN

Despite the progress in understanding left atrial substrate and arrhythmogenesis, only little is known about conduction characteristics in atrial fibrillation patients with various stages of fibrotic atrial cardiomyopathy (FACM). This study evaluates left atrial conduction times and conduction velocities based on high-density voltage and activation maps in sinus rhythm (CARTO®3 V7) of 53 patients with persistent atrial fibrillation (LVEF 60% (55-60 IQR), LAVI 39 ml/m2 (31-47 IQR), LApa 24 ± 6 cm2). Measurements were made in low voltage areas (LVA ≤ 0.5 mV) and normal voltage areas (NVA ≥ 1.5 mV) at the left atrial anterior and posterior walls. Maps of 28 FACM and 25 no FACM patients were analyzed (19 FACM I/II, 9 FACM III/IV, LVA 14 ± 11 cm2). Left atrial conduction time averaged to 110 ± 24 ms but was shown to be prolonged in FACM (119 ms, + 17%) when compared to no FACM patients (101 ms, p = 0.005). This finding was pronounced in high-grade FACM (III/IV) (133 ms, + 31.2%, p = 0.001). In addition, the LVA extension correlated significantly with the left atrial conduction time (r = 0.56, p = 0.002). Conduction velocities were overall slower in LVA than in NVA (0.6 ± 0.3 vs. 1.3 ± 0.5 m/s, -51%, p < 0.001). Anterior conduction appeared slower than posterior, which was significant in NVA (1 vs. 1.4 m/s, -29%, p < 0.001) but not in LVA (0.6 vs. 0.8 m/s, p = 0.096). FACM has a significant influence on left atrial conduction characteristics in patients with persistent atrial fibrillation. Left atrial conduction time prolongs with the grade of FACM and the quantitative expanse of LVA up to 31%. LVAs show a 51% conduction velocity reduction compared to NVA. Moreover, regional conduction velocity differences are present in the left atrium when comparing anterior to posterior walls. Our data may influence individualized ablation strategies.


Asunto(s)
Fibrilación Atrial , Cardiomiopatías , Ablación por Catéter , Humanos , Fibrilación Atrial/complicaciones , Fibrilación Atrial/diagnóstico , Sistema de Conducción Cardíaco , Atrios Cardíacos , Frecuencia Cardíaca , Cardiomiopatías/diagnóstico , Fibrosis
3.
Cardiovasc Diabetol ; 20(1): 7, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33413413

RESUMEN

BACKGROUND: Sodium-glucose linked transporter type 2 (SGLT-2) inhibition has been shown to reduce cardiovascular mortality in heart failure independently of glycemic control and prevents the onset of atrial arrhythmias, a common co-morbidity in heart failure with preserved ejection fraction (HFpEF). The mechanism behind these effects is not fully understood, and it remains unclear if they could be further enhanced by additional SGLT-1 inhibition. We investigated the effects of chronic treatment with the dual SGLT-1&2 inhibitor sotagliflozin on left atrial (LA) remodeling and cellular arrhythmogenesis (i.e. atrial cardiomyopathy) in a metabolic syndrome-related rat model of HFpEF. METHODS: 17 week-old ZSF-1 obese rats, a metabolic syndrome-related model of HFpEF, and wild type rats (Wistar Kyoto), were fed 30 mg/kg/d sotagliflozin for 6 weeks. At 23 weeks, LA were imaged in-vivo by echocardiography. In-vitro, Ca2+ transients (CaT; electrically stimulated, caffeine-induced) and spontaneous Ca2+ release were recorded by ratiometric microscopy using Ca2+-sensitive fluorescent dyes (Fura-2) during various experimental protocols. Mitochondrial structure (dye: Mitotracker), Ca2+ buffer capacity (dye: Rhod-2), mitochondrial depolarization (dye: TMRE) and production of reactive oxygen species (dye: H2DCF) were visualized by confocal microscopy. Statistical analysis was performed with 2-way analysis of variance followed by post-hoc Bonferroni and student's t-test, as applicable. RESULTS: Sotagliflozin ameliorated LA enlargement in HFpEF in-vivo. In-vitro, LA cardiomyocytes in HFpEF showed an increased incidence and amplitude of arrhythmic spontaneous Ca2+ release events (SCaEs). Sotagliflozin significantly reduced the magnitude of SCaEs, while their frequency was unaffected. Sotagliflozin lowered diastolic [Ca2+] of CaT at baseline and in response to glucose influx, possibly related to a ~ 50% increase of sodium sodium-calcium exchanger (NCX) forward-mode activity. Sotagliflozin prevented mitochondrial swelling and enhanced mitochondrial Ca2+ buffer capacity in HFpEF. Sotagliflozin improved mitochondrial fission and reactive oxygen species (ROS) production during glucose starvation and averted Ca2+ accumulation upon glycolytic inhibition. CONCLUSION: The SGLT-1&2 inhibitor sotagliflozin ameliorated LA remodeling in metabolic HFpEF. It also improved distinct features of Ca2+-mediated cellular arrhythmogenesis in-vitro (i.e. magnitude of SCaEs, mitochondrial Ca2+ buffer capacity, diastolic Ca2+ accumulation, NCX activity). The safety and efficacy of combined SGLT-1&2 inhibition for the treatment and/or prevention of atrial cardiomyopathy associated arrhythmias should be further evaluated in clinical trials.


Asunto(s)
Arritmias Cardíacas/prevención & control , Función del Atrio Izquierdo/efectos de los fármacos , Remodelación Atrial/efectos de los fármacos , Glicósidos/farmacología , Atrios Cardíacos/efectos de los fármacos , Insuficiencia Cardíaca/tratamiento farmacológico , Transportador 1 de Sodio-Glucosa/antagonistas & inhibidores , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Transportador 2 de Sodio-Glucosa/metabolismo , Animales , Arritmias Cardíacas/etiología , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Señalización del Calcio/efectos de los fármacos , Modelos Animales de Enfermedad , Atrios Cardíacos/metabolismo , Atrios Cardíacos/fisiopatología , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Síndrome Metabólico/complicaciones , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Dinámicas Mitocondriales/efectos de los fármacos , Dilatación Mitocondrial/efectos de los fármacos , Ratas Endogámicas WKY , Ratas Zucker , Especies Reactivas de Oxígeno/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Transportador 1 de Sodio-Glucosa/metabolismo
4.
Pacing Clin Electrophysiol ; 44(1): 93-100, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33140439

RESUMEN

BACKGROUND: Implantable cardioverter defibrillators use low-voltage shock impedance measurements to monitor the lead integrity. However, previous case reports suggest that low-voltage shock impedance measurements may fail to detect insulation breaches that can cause life-threatening electrical short circuits. METHODS AND RESULTS: We report six cases of insulation breaches in transvenous defibrillation leads that were not obvious during standard interrogations and testing of the lead beforehand. In two cases, an electrical short circuit during commanded shock delivery for internal electrical cardioversion resulted in a total damage of the ICD generator. In one of these cases, commanded shock delivery induced ventricular fibrillation, which required external defibrillation. In two cases, a shock due to ventricular tachycardia was aborted as the shock impedance was less than 20 Ω. However, in both cases the tiny residual shock energy terminated the ventricular tachycardia. In contrast, in one case the residual energy of the aborted shock did not end ventricular fibrillation induced at defibrillator threshold testing. In one case, the ICD indicated an error code for a short circuit condition detected during an adequate shock delivery. CONCLUSIONS: This case series illustrates that low-voltage shock impedance measurements can fail to detect insulation breaches. These data suggest that in patients without a contraindication, traditional defibrillator threshold testing or high voltage synchronized shock at the time of device replacement should be considered.


Asunto(s)
Desfibriladores Implantables , Cardioversión Eléctrica/efectos adversos , Cardioversión Eléctrica/instrumentación , Anciano , Anciano de 80 o más Años , Impedancia Eléctrica , Electrocardiografía , Análisis de Falla de Equipo , Humanos , Masculino , Persona de Mediana Edad
5.
Int J Mol Sci ; 22(11)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34073033

RESUMEN

Atrial fibrillation (AF) is the most common sustained (atrial) arrhythmia, a considerable global health burden and often associated with heart failure. Perturbations of redox signalling in cardiomyocytes provide a cellular substrate for the manifestation and maintenance of atrial arrhythmias. Several clinical trials have shown that treatment with sodium-glucose linked transporter inhibitors (SGLTi) improves mortality and hospitalisation in heart failure patients independent of the presence of diabetes. Post hoc analysis of the DECLARE-TIMI 58 trial showed a 19% reduction in AF in patients with diabetes mellitus (hazard ratio, 0.81 (95% confidence interval: 0.68-0.95), n = 17.160) upon treatment with SGLTi, regardless of pre-existing AF or heart failure and independent from blood pressure or renal function. Accordingly, ongoing experimental work suggests that SGLTi not only positively impact heart failure but also counteract cellular ROS production in cardiomyocytes, thereby potentially altering atrial remodelling and reducing AF burden. In this article, we review recent studies investigating the effect of SGLTi on cellular processes closely interlinked with redox balance and their potential effects on the onset and progression of AF. Despite promising insight into SGLTi effect on Ca2+ cycling, Na+ balance, inflammatory and fibrotic signalling, mitochondrial function and energy balance and their potential effect on AF, the data are not yet conclusive and the importance of individual pathways for human AF remains to be established. Lastly, an overview of clinical studies investigating SGLTi in the context of AF is provided.


Asunto(s)
Fibrilación Atrial/tratamiento farmacológico , Miocitos Cardíacos , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Transportador 1 de Sodio-Glucosa/antagonistas & inhibidores , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Animales , Calcio/metabolismo , Células Cultivadas , Humanos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Especies Reactivas de Oxígeno/metabolismo
6.
J Cardiovasc Electrophysiol ; 31(6): 1527-1535, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32173957

RESUMEN

INTRODUCTION: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmia syndrome characterized by adrenergically stimulated ventricular tachycardia. The most common form of CPVT is due to autosomal dominant variants in the cardiac ryanodine-receptor gene (RYR2). However, trans-2,3-enoyl-CoA reductase-like (TECRL) was recently suggested to be a novel candidate gene for life-threatening inherited arrhythmias. Patients previously reported with pathogenic changes in TECRL showed a special mixed phenotype of CPVT and long-QT-syndrome (LQTS) termed CPVT type 3 (CPVT3), an autosomal recessive disorder. METHODS AND RESULTS: We implemented TECRL into our NGS panel diagnostics for CPVT and LQTS in April 2017. By December 2018, 631 index patients with suspected CPVT or LQTS had been referred to our laboratory for genetic testing. Molecular analysis identified four Caucasian families carrying novel variants in TECRL. One patient was homozygous for Gln139* resulting in a premature stop codon and loss-of-function of the TECRL protein. Another patient was homozygous for Pro290His, probably leading to an altered folding of the 3-oxo-5-alpha steroid 4-dehydrogenase domain of the TECRL protein. The LOF-variant Ser309* and the missense-variant Val298Ala have been shown to be compound heterozygous in another individual. NGS-based copy number variation analysis and quantitative PCR revealed a quadruplication of TECRL in the last individual, which is likely to be a homozygous duplication. CONCLUSION: The data from our patient collective indicate that CPVT3 occurs much more frequently than previously expected. Variants in TECRL may be causative in up to 5% of all CPVT cases. According to these findings, the default analysis of this gene is recommended if CPVT is suspected.


Asunto(s)
Codón sin Sentido , Variaciones en el Número de Copia de ADN , Amplificación de Genes , Mutación con Pérdida de Función , Oxidorreductasas/genética , Taquicardia Ventricular/genética , Potenciales de Acción , Adolescente , Niño , Femenino , Predisposición Genética a la Enfermedad , Sistema de Conducción Cardíaco/fisiopatología , Frecuencia Cardíaca , Herencia , Heterocigoto , Homocigoto , Humanos , Masculino , Persona de Mediana Edad , Oxidorreductasas/metabolismo , Linaje , Fenotipo , Pliegue de Proteína , Medición de Riesgo , Factores de Riesgo , Índice de Severidad de la Enfermedad , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/enzimología , Taquicardia Ventricular/fisiopatología
7.
Pacing Clin Electrophysiol ; 43(3): 327-331, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32091133

RESUMEN

INTRODUCTION: Radiofrequency (RF) ablation is a commonly used tool in the invasive electrophysiology laboratory to treat a variety of rhythm disorders. Reliable creation of transmural ablation lesions is crucial for long-term success. Lesion size index (LSI) is a multiparametric index that incorporates time, power, contact force (CF), and impedance data recorded during RF ablation in a weighted formula and has been shown to predict the extent of myocardial tissue lesions. Whether the force stability of contact influences lesion size in LSI-guided ablations is unknown. OBJECTIVES: The aim of this study was to analyze the influence of the force stability of contact on lesion size during LSI-guided ablations in an ex-vivo model. METHODS AND RESULTS: A total of 267 RF lesions (n = 6 hearts) were created on porcine myocardial slabs by using an open-tip irrigated ablation catheter with the following settings: 35 W with either intermittent (varied between 0 and up to 20 g), variable (10 to 20 g), or constant tissue contact (15 g) in a perpendicular or parallel fashion (applied manually) up to a target LSI of either 5 or 6. Subsequently, lesion width and depth were determined. Lesion width was mainly influenced by catheter tip orientation and LSI, whereas lesion depth was mainly influenced by LSI alone. The force stability of catheter contact had no relevant impact on lesion width or depth. CONCLUSION: The force stability of catheter contact has only little effect on lesion depth or width in LSI-guided catheter ablation while the catheter orientation primarily affects lesion width.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos/métodos , Ablación por Radiofrecuencia/métodos , Animales , Procedimientos Quirúrgicos Cardíacos/instrumentación , Técnicas In Vitro , Modelos Animales , Ablación por Radiofrecuencia/instrumentación , Porcinos
8.
J Electrocardiol ; 63: 110-114, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33181453

RESUMEN

BACKGROUND: Atrial and ventricular arrhythmias significantly contribute to morbidity and mortality of patients with cardiac disease. Ablation of these arrhythmias has shown to improve clinical outcomes, yet targeted ablation strategies rely on proper mapping capabilities. In the present study, we compare different modes of high-resolution mapping in clinically relevant arrhythmias using HD grid. METHODS AND RESULTS: Using the Advisor™ HD Grid Mapping Catheter in either the standard, the wave (bipolar along spline and bipolar orthogonal) or the wave diagonal setting, low-voltage areas were determined. Low-voltage was defined as local electrograms with an amplitude <0.5 mV (bipolar; atria/ventricle) or <4 mV (unipolar; ventricle). Ultra high-density mapping in 47 patients with ventricular tachycardia, ventricular premature beats, atrial fibrillation and atrial tachycardia provided reliable information for the understanding of the arrhythmia mechanism resulting in safe ablation procedures. Regions of low voltage were significantly decreased by 14 ± 2% and 31 ± 3% with wave and wave diagonal settings as compared to standard settings, respectively. CONCLUSION: Substrate mapping and risk stratification relies on proper low voltage discrimination. Even though the Advisor™ HD Grid Mapping Catheter was safely used in all cases, the extent of low voltage areas was mapping-mode dependent.


Asunto(s)
Ablación por Catéter , Taquicardia Ventricular , Catéteres , Electrocardiografía , Técnicas Electrofisiológicas Cardíacas , Humanos , Taquicardia Ventricular/cirugía
9.
J Mol Cell Cardiol ; 131: 53-65, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31005484

RESUMEN

AIMS: Atrial contractile dysfunction is associated with increased mortality in heart failure (HF). We have shown previously that a metabolic syndrome-based model of HFpEF and a model of hypertensive heart disease (HHD) have impaired left atrial (LA) function in vivo (rat). In this study we postulate, that left atrial cardiomyocyte (CM) and cardiac fibroblast (CF) paracrine interaction related to the inositol 1,4,5-trisphosphate signalling cascade is pivotal for the manifestation of atrial mechanical dysfunction in HF and that quantitative atrial remodeling is highly disease-dependent. METHODS AND RESULTS: Differential remodeling was observed in HHD and HFpEF as indicated by an increase of atrial size in vivo (HFpEF), unchanged fibrosis (HHD and HFpEF) and a decrease of CM size (HHD). Baseline contractile performance of rat CM in vitro was enhanced in HFpEF. Upon treatment with conditioned medium from their respective stretched CF (CM-SF), CM (at 21 weeks) of WT showed increased Ca2+ transient (CaT) amplitudes related to the paracrine activity of the inotrope endothelin (ET-1) and inositol 1,4,5-trisphosphate induced Ca2+ release. Concentration of ET-1 was increased in CM-SF and atrial tissue from WT as compared to HHD and HFpEF. In HHD, CM-SF had no relevant effect on CaT kinetics. However, in HFpEF, CM-SF increased diastolic Ca2+ and slowed Ca2+ removal, potentially contributing to an in-vivo decompensation. During disease progression (i.e. at 27 weeks), HFpEF displayed dysfunctional excitation-contraction-coupling (ECC) due to lower sarcoplasmic-reticulum Ca2+ content unrelated to CF-CM interaction or ET-1, but associated with enhanced nuclear [Ca2+]. In human patients, tissue ET-1 was not related to the presence of arterial hypertension or obesity. CONCLUSIONS: Atrial remodeling is a complex entity that is highly disease and stage dependent. The activity of fibrosis related to paracrine interaction (e.g. ET-1) might contribute to in vitro and in vivo atrial dysfunction. However, during later stages of disease, ECC is impaired unrelated to CF.


Asunto(s)
Fibroblastos/citología , Fibroblastos/metabolismo , Insuficiencia Cardíaca/metabolismo , Hipertensión/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Animales , Fibrilación Atrial/metabolismo , Remodelación Atrial/fisiología , Comunicación Celular/fisiología , Ecocardiografía , Atrios Cardíacos/metabolismo , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Ratas
11.
J Mol Cell Cardiol ; 115: 10-19, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29289652

RESUMEN

Heart failure (HF) with preserved ejection fraction (HFpEF) is present in about 50% of HF patients. Atrial remodeling is common in HFpEF and associated with increased mortality. We postulate that atrial remodeling is associated with atrial dysfunction in vivo related to alterations in cardiomyocyte Calcium (Ca) signaling and remodeling. We examined atrial function in vivo and Ca transients (CaT) (Fluo4-AM, field stim) in atrial cardiomyocytes of ZSF-1 rats without (Ln; lean hypertensive) and with metabolic syndrome (Ob; obese, hypertensive, diabetic) and HFpEF. RESULTS: At 21weeks Ln showed an increased left ventricular (LV) mass and left ventricular end-diastolic pressure (LVEDP), but unchanged left atrial (LA) size and preserved atrial ejection fraction vs. wild-type (WT). CaT amplitude in atrial cardiomyocytes was increased in Ln (2.9±0.2 vs. 2.3±0.2F/F0 in WT; n=22 cells/group; p<0.05). Studying subcellular Ca release in more detail, we found that local central cytosolic CaT amplitude was increased, while subsarcolemmal CaT amplitudes remained unchanged. Moreover, Sarcoplasmic reticulum (SR) Ca content (caffeine) was preserved while Ca spark frequency and tetracaine-dependent SR Ca leak were significantly increased in Ln. Ob mice developed a HFpEF phenotype in vivo, LA area was significantly increased and atrial in vivo function was impaired, despite increased atrial CaT amplitudes in vitro (2.8±0.2; p<0.05 vs. WT). Ob cells showed alterations of the tubular network possibly contributing to the observed phenotype. CaT kinetics as well as SR Ca in Ob were not significantly different from WT, but SR Ca leak remained increased. Angiotensin II (Ang II) reduced in vitro cytosolic CaT amplitudes and let to active nuclear Ca release in Ob but not in Ln or WT. SUMMARY: In hypertensive ZSF-1 rats, a possibly compensatory increase of cytosolic CaT amplitude and increased SR Ca leak precede atrial remodeling and HFpEF. Atrial remodeling in ZSF-1 HFpEF is associated with an altered tubular network in-vitro and atrial contractile dysfunction in vivo, indicating insufficient compensation. Atrial cardiomyocyte dysfunction in vitro is induced by the addition of angiotensin II.


Asunto(s)
Atrios Cardíacos/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Síndrome Metabólico/fisiopatología , Volumen Sistólico , Angiotensina II , Animales , Remodelación Atrial , Calcio/metabolismo , Señalización del Calcio , Núcleo Celular/metabolismo , Citosol/metabolismo , Modelos Animales de Enfermedad , Acoplamiento Excitación-Contracción , Insuficiencia Cardíaca/complicaciones , Ventrículos Cardíacos/fisiopatología , Hipertensión/complicaciones , Hipertensión/fisiopatología , Síndrome Metabólico/complicaciones , Miocitos Cardíacos/metabolismo , Ratas , Retículo Sarcoplasmático/metabolismo
12.
Heart Fail Rev ; 23(1): 27-36, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29038991

RESUMEN

Heart failure and atrial fibrillation are common and responsible for significant mortality of patients. Both share the same risk factors like hypertension, ischemic heart disease, diabetes, obesity, arteriosclerosis, and age. A variety of microscopic and macroscopic changes favor the genesis of atrial fibrillation in patients with preexisting heart failure, altered subcellular Ca2+ homeostasis leading to increased cellular automaticity as well as concomitant fibrosis that are induced by pressure/volume overload and altered neurohumoral states. Atrial fibrillation itself promotes clinical deterioration of patients with preexisting heart failure as atrial contraction significantly contributes to ventricular filling. In addition, atrial fibrillation induced tachycardia can even further compromise ventricular function by inducing tachycardiomyopathy. Even though evidence has been provided that atrial functions significantly and independently of confounding ventricular pathologies, correlate with mortality of heart failure patients, rate and rhythm controls have been shown to be of equal effectiveness in improving mortality. Yet, it also has been shown that cohorts of patients with heart failure benefit from a rhythm control concept regarding symptom control and hospitalization. To date, amiodarone is the most feasible approach to restore sinus rhythm, yet its use is limited by its extensive side-effect profile. In addition, other therapies like catheter-based pulmonary vein isolation are of increasing importance. A wide range of heart failure-specific therapies are available with mixed impact on new onset or perpetuation of atrial fibrillation. This review highlights pathophysiological concepts and possible therapeutic approaches to treat patients with heart failure at risk for or with atrial fibrillation.


Asunto(s)
Fibrilación Atrial , Terapia de Resincronización Cardíaca/métodos , Ablación por Catéter/métodos , Atrios Cardíacos/fisiopatología , Insuficiencia Cardíaca , Volumen Sistólico/fisiología , Anticoagulantes/uso terapéutico , Fibrilación Atrial/mortalidad , Fibrilación Atrial/fisiopatología , Fibrilación Atrial/terapia , Salud Global , Insuficiencia Cardíaca/mortalidad , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/terapia , Humanos , Pronóstico , Tasa de Supervivencia/tendencias
13.
J Physiol ; 593(6): 1459-77, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25416623

RESUMEN

KEY POINTS: Impaired calcium (Ca(2+)) signalling is the main contributor to depressed ventricular contractile function and occurrence of arrhythmia in heart failure (HF). Here we report that in atrial cells of a rabbit HF model, Ca(2+) signalling is enhanced and we identified the underlying cellular mechanisms. Enhanced Ca(2+) transients (CaTs) are due to upregulation of inositol-1,4,5-trisphosphate receptor induced Ca(2+) release (IICR) and decreased mitochondrial Ca(2+) sequestration. Enhanced IICR, however, together with an increased activity of the sodium-calcium exchange mechanism, also facilitates spontaneous Ca(2+) release in form of arrhythmogenic Ca(2+) waves and spontaneous action potentials, thus enhancing the arrhythmogenic potential of atrial cells. Our data show that enhanced Ca(2+) signalling in HF provides atrial cells with a mechanism to improve ventricular filling and to maintain cardiac output, but also increases the susceptibility to develop atrial arrhythmias facilitated by spontaneous Ca(2+) release. ABSTRACT: We studied excitation-contraction coupling (ECC) and inositol-1,4,5-triphosphate (IP3)-dependent Ca(2+) release in normal and heart failure (HF) rabbit atrial cells. Left ventricular HF was induced by combined volume and pressure overload. In HF atrial myocytes diastolic [Ca(2+)]i was increased, action potential (AP)-induced Ca(2+) transients (CaTs) were larger in amplitude, primarily due to enhanced Ca(2+) release from central non-junctional sarcoplasmic reticulum (SR) and centripetal propagation of activation was accelerated, whereas HF ventricular CaTs were depressed. The larger CaTs were due to enhanced IP3 receptor-induced Ca(2+) release (IICR) and reduced mitochondrial Ca(2+) buffering, consistent with a reduced mitochondrial density and Ca(2+) uptake capacity in HF. Elementary IP3 receptor-mediated Ca(2+) release events (Ca(2+) puffs) were more frequent in HF atrial myoctes and were detected more often in central regions of the non-junctional SR compared to normal cells. HF cells had an overall higher frequency of spontaneous Ca(2+) waves and a larger fraction of waves (termed arrhythmogenic Ca(2+) waves) triggered APs and global CaTs. The higher propensity of arrhythmogenic Ca(2+) waves resulted from the combined action of enhanced IICR and increased activity of sarcolemmal Na(+)-Ca(2+) exchange depolarizing the cell membrane. In conclusion, the data support the hypothesis that in atrial myocytes from hearts with left ventricular failure, enhanced CaTs during ECC exert positive inotropic effects on atrial contractility which facilitates ventricular filling and contributes to maintaining cardiac output. However, HF atrial cells were also more susceptible to developing arrhythmogenic Ca(2+) waves which might form the substrate for atrial rhythm disorders frequently encountered in HF.


Asunto(s)
Señalización del Calcio , Acoplamiento Excitación-Contracción , Atrios Cardíacos/metabolismo , Insuficiencia Cardíaca/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Calcio/metabolismo , Atrios Cardíacos/citología , Masculino , Miocitos Cardíacos/fisiología , Conejos
14.
Circ Res ; 113(5): 527-38, 2013 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-23825358

RESUMEN

RATIONALE: Synchronized release of Ca²âº into the cytosol during each cardiac cycle determines cardiomyocyte contraction. OBJECTIVE: We investigated synchrony of cytosolic [Ca²âº] decay during diastole and the impact of cardiac remodeling. METHODS AND RESULTS: Local cytosolic [Ca²âº] transients (1-µm intervals) were recorded in murine, porcine, and human ventricular single cardiomyocytes. We identified intracellular regions of slow (slowCaR) and fast (fastCaR) [Ca²âº] decay based on the local time constants of decay (TAUlocal). The SD of TAUlocal as a measure of dyssynchrony was not related to the amplitude or the timing of local Ca²âº release. Stimulation of sarcoplasmic reticulum Ca²âº ATPase with forskolin or istaroxime accelerated and its inhibition with cyclopiazonic acid slowed TAUlocal significantly more in slowCaR, thus altering the relationship between SD of TAUlocal and global [Ca²âº] decay (TAUglobal). Na⁺/Ca²âº exchanger inhibitor SEA0400 prolonged TAUlocal similarly in slowCaR and fastCaR. FastCaR were associated with increased mitochondrial density and were more sensitive to the mitochondrial Ca²âº uniporter blocker Ru360. Variation in TAUlocal was higher in pig and human cardiomyocytes and higher with increased stimulation frequency (2 Hz). TAUlocal correlated with local sarcomere relengthening. In mice with myocardial hypertrophy after transverse aortic constriction, in pigs with chronic myocardial ischemia, and in end-stage human heart failure, variation in TAUlocal was increased and related to cardiomyocyte hypertrophy and increased mitochondrial density. CONCLUSIONS: In cardiomyocytes, cytosolic [Ca²âº] decay is regulated locally and related to local sarcomere relengthening. Dyssynchronous intracellular [Ca²âº] decay in cardiac remodeling and end-stage heart failure suggests a novel mechanism of cellular contractile dysfunction.


Asunto(s)
Señalización del Calcio/fisiología , Insuficiencia Cardíaca/fisiopatología , Ventrículos Cardíacos/citología , Miocitos Cardíacos/fisiología , Remodelación Ventricular/fisiología , Compuestos de Anilina/farmacología , Animales , Señalización del Calcio/efectos de los fármacos , ATPasas Transportadoras de Calcio/antagonistas & inhibidores , ATPasas Transportadoras de Calcio/metabolismo , Colforsina/farmacología , Citosol/metabolismo , Diástole , Estimulación Eléctrica , Etiocolanolona/análogos & derivados , Etiocolanolona/farmacología , Humanos , Hipertrofia , Hipertrofia Ventricular Izquierda/fisiopatología , Indoles/farmacología , Ratones , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Isquemia Miocárdica/fisiopatología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Éteres Fenílicos/farmacología , Compuestos de Rutenio/farmacología , Sarcómeros/ultraestructura , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/enzimología , Intercambiador de Sodio-Calcio/antagonistas & inhibidores , Intercambiador de Sodio-Calcio/genética , Sus scrofa , Porcinos
15.
PLoS One ; 19(5): e0303540, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38820336

RESUMEN

INTRODUCTION: Microvascular dysfunction (MVD) is a hallmark feature of chronic graft dysfunction in patients that underwent orthotopic heart transplantation (OHT) and is the main contributor to impaired long-term graft survival. The aim of this study was to determine the effect of MVD on functional and structural properties of cardiomyocytes isolated from ventricular biopsies of OHT patients. METHODS: We included 14 patients post-OHT, who had been transplanted for 8.1 years [5.0; 15.7 years]. Mean age was 49.6 ± 14.3 years; 64% were male. Coronary microvasculature was assessed using guidewire-based coronary flow reserve(CFR)/index of microvascular resistance (IMR) measurements. Ventricular myocardial biopsies were obtained and cardiomyocytes were isolated using enzymatic digestion. Cells were electrically stimulated and subcellular Ca2+ signalling as well as mitochondrial density were measured using confocal imaging. RESULTS: MVD measured by IMR was present in 6 of 14 patients with a mean IMR of 53±10 vs. 12±2 in MVD vs. controls (CTRL), respectively. CFR did not differ between MVD and CTRL. Ca2+ transients during excitation-contraction coupling in isolated ventricular cardiomyocytes from a subset of patients showed unaltered amplitudes. In addition, Ca2+ release and Ca2+ removal were not significantly different between MVD and CTRL. However, mitochondrial density was significantly increased in MVD vs. CTRL (34±1 vs. 29±2%), indicating subcellular changes associated with MVD. CONCLUSION: In-vivo ventricular microvascular dysfunction post OHT is associated with preserved excitation-contraction coupling in-vitro, potentially owing to compensatory changes on the mitochondrial level or due to the potentially reversible cause of the disease.


Asunto(s)
Trasplante de Corazón , Miocitos Cardíacos , Humanos , Masculino , Trasplante de Corazón/efectos adversos , Persona de Mediana Edad , Femenino , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Adulto , Acoplamiento Excitación-Contracción , Microvasos/patología , Microvasos/fisiopatología , Calcio/metabolismo , Mitocondrias Cardíacas/metabolismo , Señalización del Calcio
16.
Artículo en Inglés | MEDLINE | ID: mdl-39052191

RESUMEN

Speckle-tracking echocardiography (STE) parameters are an integral part of the assessment of left ventricular (LV) function. We aimed to evaluate established and novel STE parameters of LV diastolic function and their prognostic role in patients with LV anteroapical aneurysm undergoing surgical ventricular repair (SVR). We retrospectively examined the data of 137 patients with anteroapical LV aneurysm who underwent SVR. In 27 patients, the correlation of STE parameters with invasive hemodynamic parameters was evaluated. Preoperative echocardiographic parameters were assessed for their association with outcome, defined as all-cause mortality, LV assist device implantation, or heart transplantation. The late diastolic strain rate (GLSRa) showed a stronger correlation with mean pulmonary artery pressure (r = - 0.75, p < 0.001) than all other parameters. GLSRa was also significantly correlated with mean pulmonary capillary wedge pressure and LV end-diastolic pressure. In the multivariate model, GLSRa and the ratio of early diastolic filling velocity to GLSRa demonstrated incremental prognostic value in addition to clinical and echocardiographic parameters. Patients with GLSRa < 0.59 s-1 had significantly shorter event-free survival than those with GLSRa > 0.59 s-1 (6.7 vs. 10.9 years, p < 0.001). Peak reservoir left atrial strain showed a weaker association with hemodynamic parameters and outcome compared to GLSRa. In patients with LV aneurysm, late diastolic strain rate and left atrial strain can be used for the assessment of LV diastolic function and have a predictive value for the outcome after surgical ventricular restoration.

17.
Acta Physiol (Oxf) ; 240(4): e14124, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38436094

RESUMEN

AIM: Exercise intolerance is the central symptom in patients with heart failure with preserved ejection fraction. In the present study, we investigated the adrenergic reserve both in vivo and in cardiomyocytes of a murine cardiometabolic HFpEF model. METHODS: 12-week-old male C57BL/6J mice were fed regular chow (control) or a high-fat diet and L-NAME (HFpEF) for 15 weeks. At 27 weeks, we performed (stress) echocardiography and exercise testing and measured the adrenergic reserve and its modulation by nitric oxide and reactive oxygen species in left ventricular cardiomyocytes. RESULTS: HFpEF mice (preserved left ventricular ejection fraction, increased E/e', pulmonary congestion [wet lung weight/TL]) exhibited reduced exercise capacity and a reduction of stroke volume and cardiac output with adrenergic stress. In ventricular cardiomyocytes isolated from HFpEF mice, sarcomere shortening had a higher amplitude and faster relaxation compared to control animals. Increased shortening was caused by a shift of myofilament calcium sensitivity. With addition of isoproterenol, there were no differences in sarcomere function between HFpEF and control mice. This resulted in a reduced inotropic and lusitropic reserve in HFpEF cardiomyocytes. Preincubation with inhibitors of nitric oxide synthases or glutathione partially restored the adrenergic reserve in cardiomyocytes in HFpEF. CONCLUSION: In this murine HFpEF model, the cardiac output reserve on adrenergic stimulation is impaired. In ventricular cardiomyocytes, we found a congruent loss of the adrenergic inotropic and lusitropic reserve. This was caused by increased contractility and faster relaxation at rest, partially mediated by nitro-oxidative signaling.


Asunto(s)
Insuficiencia Cardíaca , Función Ventricular Izquierda , Humanos , Masculino , Animales , Ratones , Volumen Sistólico , Función Ventricular Izquierda/fisiología , Adrenérgicos , Modelos Animales de Enfermedad , Óxido Nítrico , Ratones Endogámicos C57BL
18.
J Am Coll Cardiol ; 83(1): 47-59, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38171710

RESUMEN

BACKGROUND: The lack of disease-modifying drugs is one of the major unmet needs in patients with heart failure (HF). Peptides are highly selective molecules with the potential to act directly on cardiomyocytes. However, a strategy for effective delivery of therapeutics to the heart is lacking. OBJECTIVES: In this study, the authors sought to assess tolerability and efficacy of an inhalable lung-to-heart nano-in-micro technology (LungToHeartNIM) for cardiac-specific targeting of a mimetic peptide (MP), a first-in-class for modulating impaired L-type calcium channel (LTCC) trafficking, in a clinically relevant porcine model of HF. METHODS: Heart failure with reduced ejection fraction (HFrEF) was induced in Göttingen minipigs by means of tachypacing over 6 weeks. In a setting of overt HFrEF (left ventricular ejection fraction [LVEF] 30% ± 8%), animals were randomized and treatment was started after 4 weeks of tachypacing. HFrEF animals inhaled either a dry powder composed of mannitol-based microparticles embedding biocompatible MP-loaded calcium phosphate nanoparticles (dpCaP-MP) or the LungToHeartNIM only (dpCaP without MP). Efficacy was evaluated with the use of echocardiography, invasive hemodynamics, and biomarker assessment. RESULTS: DpCaP-MP inhalation restored systolic function, as shown by an absolute LVEF increase over the treatment period of 17% ± 6%, while reversing cardiac remodeling and reducing pulmonary congestion. The effect was recapitulated ex vivo in cardiac myofibrils from treated HF animals. The treatment was well tolerated, and no adverse events occurred. CONCLUSIONS: The overall tolerability of LungToHeartNIM along with the beneficial effects of the LTCC modulator point toward a game-changing treatment for HFrEF patients, also demonstrating the effective delivery of a therapeutic peptide to the diseased heart.


Asunto(s)
Insuficiencia Cardíaca , Animales , Enfermedad Crónica , Pulmón , Péptidos , Volumen Sistólico , Porcinos , Porcinos Enanos , Función Ventricular Izquierda
19.
Aerosp Med Hum Perform ; 94(3): 102-106, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36829278

RESUMEN

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is highly prevalent and often associated with chronic hypoxia. Previous studies have shown alterations of cerebral oxygenation and cardiac repolarization in COPD patients (GOLD stage II-IV). Airplane travel is common in patients with COPD; however, the clinical effects of a diminished oxygen partial pressure in aircraft cabin environments at cruising altitude remain elusive. The aim of this study was to assess changes of cerebral oxygenation as well as parameters of cardiac repolarization during a hypoxia altitude simulation combined with mild physical activity in these patients.METHODS: Patients with COPD and healthy subjects (10 per group) randomly selected from the Charité outpatient clinic conducted a hypoxia altitude simulation test which consisted of three phases. The regional cerebral oxygen saturation (rSO2) of the frontal cortex was measured at rest using near-infrared spectroscopy (NIRS). Furthermore, oxygen saturation (SpO2), blood pressure, and heart rate values, as well as a 12-lead-ECG, were recorded. Subsequently, a mild treadmill exercise program (25 W) was divided into 10 min of normoxia (pre-hypoxia), 30 min of mild hypoxia (FIO2 = 0.15), followed by a second 10-min period of normoxia (post-hypoxia). Meanwhile, mentioned parameters were recorded in 2-min intervals. P, PQ, QRS, QT, QTc, QTd, T-peak-T-end interval (TpTe), and corrected TpTe (TpTec) were measured on three ECG complexes, each at baseline, at the end of the normoxic phase, and at the end of the hypoxic phase.RESULTS: A total of 10 patients with COPD and 10 control subjects were included in this study. SpO2 was significantly lower in COPD patients throughout the whole test. Frontal cerebral rSO2 was significantly lower in the left hemisphere during hypoxia altitude simulation in COPD patients (59.5 ± 8.5 vs. 67.5 ± 5.7).CONCLUSIONS: We show reduced left frontal cerebral oxygenation during hypoxia and mild exercise in patients with COPD, suggesting diminished altitude resilience and altitude capabilities. Preflight hypoxia assessment might be recommended to patients with severe COPD.Dehe L, Hohendanner F, Gültekin E, Werth G, Wutzler A, Bender TO. Hypoxia altitude simulation and reduction of cerebral oxygenation in COPD patients. Aerosp Med Hum Perform. 2023; 94(3):102-106.


Asunto(s)
Altitud , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Ejercicio Físico/fisiología , Hipoxia , Oxígeno , Enfermedad Pulmonar Obstructiva Crónica/complicaciones
20.
Biomedicines ; 11(2)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36831062

RESUMEN

BACKGROUND: Atrial fibrillation (AF) is promoted by various stimuli like angiotensin II, endothelin-1, epinephrine/norepinephrine, vagal activation, or mechanical stress, all of which activate receptors coupled to G-proteins of the Gαq/Gα11-family (Gq). Besides pro-fibrotic and pro-inflammatory effects, Gq-mediated signaling induces inositol trisphosphate receptor (IP3R)-mediated intracellular Ca2+ mobilization related to delayed after-depolarisations and AF. However, direct evidence of arrhythmogenic Gq-mediated signaling is absent. METHODS AND RESULTS: To define the role of Gq in AF, transgenic mice with tamoxifen-inducible, cardiomyocyte-specific Gαq/Gα11-deficiency (Gq-KO) were created and exposed to intracardiac electrophysiological studies. Baseline electrophysiological properties, including heart rate, sinus node recovery time, and atrial as well as AV nodal effective refractory periods, were comparable in Gq-KO and control mice. However, inducibility and mean duration of AF episodes were significantly reduced in Gq-KO mice-both before and after vagal stimulation. To explore underlying mechanisms, left atrial cardiomyocytes were isolated from Gq-KO and control mice and electrically stimulated to study Ca2+-mobilization during excitation-contraction coupling using confocal microscopy. Spontaneous arrhythmogenic Ca2+ waves and sarcoplasmic reticulum content-corrected Ca2+ sparks were less frequent in Gq-KO mice. Interestingly, nuclear but not cytosolic Ca2+ transient amplitudes were significantly decreased in Gq-KO mice. CONCLUSION: Gq-signaling promotes arrhythmogenic atrial Ca2+-release and AF in mice. Targeting this pathway, ideally using Gq-selective, biased receptor ligands, may be a promising approach for the treatment and prevention of AF. Importantly, the atrial-specific expression of the Gq-effector IP3R confers atrial selectivity mitigating the risk of life-threatening ventricular pro-arrhythmic effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA