Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(29): e2207020119, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858345

RESUMEN

Changes in Ca2+ influx during proinflammatory stimulation modulates cellular responses, including the subsequent activation of inflammation. Whereas the involvement of Ca2+ has been widely acknowledged, little is known about the role of Na+. Ranolazine, a piperazine derivative and established antianginal drug, is known to reduce intracellular Na+ as well as Ca2+ levels. In stable coronary artery disease patients (n = 51) we observed reduced levels of high-sensitive C-reactive protein (CRP) 3 mo after the start of ranolazine treatment (n = 25) as compared to the control group. Furthermore, we found that in 3,808 acute coronary syndrome patients of the MERLIN-TIMI 36 trial, individuals treated with ranolazine (1,934 patients) showed reduced CRP values compared to placebo-treated patients. The antiinflammatory effects of sodium modulation were further confirmed in an atherosclerotic mouse model. LDL-/- mice on a high-fat diet were treated with ranolazine, resulting in a reduced atherosclerotic plaque burden, increased plaque stability, and reduced activation of the immune system. Pharmacological Na+ inhibition by ranolazine led to reduced express of adhesion molecules and proinflammatory cytokines and reduced adhesion of leukocytes to activated endothelium both in vitro and in vivo. We demonstrate that functional Na+ shuttling is required for a full cellular response to inflammation and that inhibition of Na+ influx results in an attenuated inflammatory reaction. In conclusion, we demonstrate that inhibition of Na+-Ca2+ exchange during inflammation reduces the inflammatory response in human endothelial cells in vitro, in a mouse atherosclerotic disease model, and in human patients.


Asunto(s)
Síndrome Coronario Agudo , Proteína C-Reactiva , Fármacos Cardiovasculares , Enfermedad de la Arteria Coronaria , Ranolazina , Bloqueadores de los Canales de Sodio , Sodio , Síndrome Coronario Agudo/tratamiento farmacológico , Animales , Proteína C-Reactiva/análisis , Proteína C-Reactiva/metabolismo , Fármacos Cardiovasculares/farmacología , Fármacos Cardiovasculares/uso terapéutico , Enfermedad de la Arteria Coronaria/tratamiento farmacológico , Células Endoteliales/metabolismo , Humanos , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Ratones , Ranolazina/farmacología , Ranolazina/uso terapéutico , Sodio/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Bloqueadores de los Canales de Sodio/uso terapéutico
2.
FASEB J ; 36(10): e22532, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36063138

RESUMEN

Interleukin-4 (IL-4) and its receptors (IL-4R) promote the proliferation and polarization of macrophages. However, it is unknown if IL-4R also influences monocyte homeostasis and if steady state IL-4 levels are sufficient to affect monocytes. Employing full IL-4 receptor alpha knockout mice (IL-4Rα-/- ) and mice with a myeloid-specific deletion of IL-4Rα (IL-4Rαf/f LysMcre ), we show that IL-4 acts as a homeostatic factor regulating circulating monocyte numbers. In the absence of IL-4Rα, murine monocytes in blood were reduced by 50% without altering monocytopoiesis in the bone marrow. This reduction was accompanied by a decrease in monocyte-derived inflammatory cytokines in the plasma. RNA sequencing analysis and immunohistochemical staining of splenic monocytes revealed changes in mRNA and protein levels of anti-apoptotic factors including BIRC6 in IL-4Rα-/- knockout animals. Furthermore, assessment of monocyte lifespan in vivo measuring BrdU+ cells revealed that the lifespan of circulating monocytes was reduced by 55% in IL-4Rα-/- mice, whereas subcutaneously applied IL-4 prolonged it by 75%. Treatment of human monocytes with IL-4 reduced the amount of dying monocytes in vitro. Furthermore, IL-4 stimulation reduced the phosphorylation of proteins involved in the apoptosis pathway, including the phosphorylation of the NFκBp65 protein. In a cohort of human patients, serum IL-4 levels were significantly associated with monocyte counts. In a sterile peritonitis model, reduced monocyte counts resulted in an attenuated recruitment of monocytes upon inflammatory stimulation in IL-4Rαf/f LysMcre mice without changes in overall migratory function. Thus, we identified a homeostatic role of IL-4Rα in regulating the lifespan of monocytes in vivo.


Asunto(s)
Interleucina-4/metabolismo , Monocitos , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Animales , Homeostasis , Humanos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Monocitos/metabolismo
3.
Int J Mol Sci ; 23(3)2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35163803

RESUMEN

Quantitative and functional analysis of mononuclear leukocyte populations is an invaluable tool to understand the role of the immune system in the pathogenesis of a disease. Cryopreservation of mononuclear cells (MNCs) is routinely used to guarantee similar experimental conditions. Immune cells react differently to cryopreservation, and populations and functions of immune cells change during the process of freeze-thawing. To allow for a setup that preserves cell number and function optimally, we tested four different cryopreservation media. MNCs from 15 human individuals were analyzed. Before freezing and after thawing, the distribution of leukocytes was quantified by flow cytometry. Cultured cells were stimulated using lipopolysaccharide, and their immune response was quantified by flow cytometry, quantitative polymerase chain reaction (qPCR), and enzyme-linked immunosorbent assay (ELISA). Ultimately, the performance of the cryopreservation media was ranked. Cell recovery and viability were different between the media. Cryopreservation led to changes in the relative number of monocytes, T cells, B cells, and their subsets. The inflammatory response of MNCs was altered by cryopreservation, enhancing the basal production of inflammatory cytokines. Different cryopreservation media induce biases, which needs to be considered when designing a study relying on cryopreservation. Here, we provide an overview of four different cryopreservation media for choosing the optimal medium for a specific task.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Criopreservación/métodos , Leucocitos Mononucleares/citología , Supervivencia Celular , Células Cultivadas , Femenino , Citometría de Flujo , Humanos , Recuento de Leucocitos , Leucocitos Mononucleares/metabolismo , Masculino
4.
Blood ; 134(6): 561-567, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31221672

RESUMEN

Membrane-bound plasmin is used by immune cells to degrade extracellular matrices, which facilitates migration. The plasminogen receptor Plg-RKT is expressed by immune cells, including monocytes and macrophages. Among monocytes and macrophages, distinct subsets can be distinguished based on cell surface markers and pathophysiological function. We investigated expression of Plg-RKT by monocyte and macrophage subsets and whether potential differential expression might have functional consequences for cell migration. Proinflammatory CD14++CD16+ human monocytes and Ly6Chigh mouse monocytes expressed the highest levels of Plg-RKT and bound significantly more plasminogen compared with the other respective subsets. Proinflammatory human macrophages, generated by polarization with lipopolysaccharide and interferon-γ, showed significantly higher expression of Plg-RKT compared with alternatively activated macrophages, polarized with interleukin-4 and interleukin-13. Directional migration of proinflammatory monocytes was plasmin dependent and was abolished by anti-Plg-RKT monoclonal antibody, ε-amino-caproic acid, aprotinin, and the aminoterminal fragment of urokinase-type plasminogen activator. In an in vivo peritonitis model, significantly less Ly6Chigh monocyte recruitment was observed in Plg-RKT -/- compared with Plg-RKT +/+ mice. Immunohistochemical analysis of human carotid plaques and adipose tissue showed that proinflammatory macrophages also exhibited high levels of Plg-RKT in vivo. Our data demonstrate higher expression of Plg-RKT on proinflammatory monocyte and macrophage subsets that impacts their migratory capacity.


Asunto(s)
Regulación de la Expresión Génica , Macrófagos/inmunología , Macrófagos/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Receptores de Superficie Celular/genética , Animales , Biomarcadores , Movimiento Celular/inmunología , Matriz Extracelular/metabolismo , Humanos , Inmunofenotipificación , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Ratones
5.
Haematologica ; 106(2): 454-463, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31974204

RESUMEN

Macrophages are versatile cells that can be polarized by the tissue environment to fulfill required needs. Proinflammatory polarization is associated with increased tissue degradation and propagation of inflammation whereas alternative polarization within a Th2 cytokine environment is associated with wound healing and angiogenesis. To understand if polarization of macrophages can lead to a procoagulant macrophage subset we polarized human monocyte derived macrophages to a proinflammatory and an alternative activation state. Alternative polarization with interleukin-4 and IL-13 led to a macrophage phenotype characterized by increased tissue factor (TF) production and release and by an increase in extracellular vesicle production. In addition, also TF activity was enhanced in extracellular vesicles of alternatively polarized macrophages. This TF induction was dependent on signal transducer and activator of transcription-6 signaling and poly ADP ribose polymerase activity. In contrast to monocytes, human macrophages did not show increased tissue factor expression upon stimulation with lipopolysaccharide and interferon-γ. Previous polarization to either a proinflammatory or an alternative activation subset does not change the subsequent stimulation of TF. The inability of proinflammatory activated macrophages to respond to lipopolysaccharide and interferon-γ with an increase in TF production seems to be due to an increase in TF promoter methylation and was reversible when treating these macrophages with a demethylation agent. In conclusion, we provide evidence that proinflammatory polarization of macrophages does not lead to enhanced procoagulatory function, whereas alternative polarization of macrophages leads to an increased expression of TF and increased production of TF bearing extracellular vesicles by these cells suggesting a procoagulatory phenotype of alternatively polarized macrophages.


Asunto(s)
Vesículas Extracelulares , Tromboplastina , Citocinas , Humanos , Lipopolisacáridos/farmacología , Macrófagos , Tromboplastina/genética
6.
J Thromb Thrombolysis ; 47(1): 51-56, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30259314

RESUMEN

Obesity is associated with a prothrombotic milieu and an increased risk for thrombotic events. Bariatric surgery is the most effective treatment for obesity resulting in dramatic weight loss and reduced inflammation and extrinsic coagulation pathway activation. Blood samples were drawn from 60 patients undergoing Roux-en-Y gastric bypass surgery before and 1 year after the intervention. Protein C (PC), activated PC (APC), soluble thrombomodulin (TM), soluble E-selectin (E-Sel), prothrombin time (PT) and activated partial thromboplastin time (aPTT) were evaluated. Both PC (187.4 ± 64.5% before surgery to 118.1 ± 48% 1 year after surgery, p < 0.001) and APC (138.7 ± 64.4% before surgery to 69.1 ± 65.7% after surgery, p < 0.001) were reduced following surgical intervention. TM showed a similar behavior with a reduction of soluble TM after the procedure from 5.7 ± 2.6 to 3.2 ± 1.4 ng/ml (p < 0.001). Similarly, soluble E-Sel was reduced after surgery from 26.6 ± 12.7 to 5.5 ± 4.1 ng/ml (p < 0.001). In contrast, aPTT was not shortened but slightly increased from 29.1 ± 4.8 s. before surgery to 31 ± 4.4 s. (p = 0.001) after surgery and levels of PT were reduced after surgery to 89.6 ± 15.5% from an initial 97.5 ± 13.5% (p < 0.001). In conclusion, we demonstrate a reduction of PC and APC 1 year after bariatric surgery accompanied by a reduction in soluble TM and soluble E-Sel. The reduction of PC and APC is not paralleled by a reduction but in contrast by a prolongation of aPTT suggesting a compensatory upregulation of PC during obesity. The reduction of TM and E-Sel might hint towards an improved endothelial function in this cohort of patients.


Asunto(s)
Cirugía Bariátrica/efectos adversos , Obesidad Mórbida/cirugía , Proteína C/análisis , Trombomodulina/sangre , Anticoagulantes/sangre , Selectina E/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tiempo de Tromboplastina Parcial , Factores de Tiempo
7.
Int J Mol Sci ; 20(9)2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-31052333

RESUMEN

Circulating extracellular vesicles are small particles enclosed by a phospholipid bilayer. Vesicles deriving directly from the cellular membrane by an active budding process retain cell origin specific proteins and RNA. These vesicles carry pathophysiological information from their parental cell and hold the potential to allow analysis of organs without the need for a biopsy. We included in our study 27 patients undergoing bariatric surgery. Hepatic extracellular vesicles were determined by flow cytometry. mRNA specific for hepatic cellular origin was determined in the extracellular vesicle fraction using qPCR. Surgery led to a massive reduction of weight and overall hepatic stress as determined by alanine transaminase (ALT), aspartate transaminase (AST) and γ-glutamyltransferase (GGT). Total extracellular vesicle numbers were reduced after bariatric surgery. Liver specific vesicles identified by HepPar1 or asialoglycoprotein receptor (ASGPR) were significantly reduced after bariatric surgery in both AnnexinV+ and AnnexinV- subgroups. When analyzing circulating liver-specific mRNAs, we found reduced levels of these mRNAs after surgery even though total circulating RNA remained unchanged. We conclude that circulating hepatic extracellular vesicles are detectable in samples from patients undergoing gastric bypass surgery. These vesicles are reduced after a reduction of hepatic stress also observed with classic liver enzyme measurements. We conclude that ASGPR or HepPar positive vesicles hold the potential to serve as liver specific vesicle markers.


Asunto(s)
Vesículas Extracelulares/metabolismo , Derivación Gástrica , Hígado/metabolismo , Obesidad Mórbida/metabolismo , Adulto , Biomarcadores/sangre , Ácidos Nucleicos Libres de Células/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Obesidad Mórbida/sangre , Obesidad Mórbida/cirugía
8.
J Cell Mol Med ; 22(12): 6122-6133, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30216659

RESUMEN

Interleukin (IL)-33 is a member of the IL-1 family and is able to act cardioprotective. The aim of this study was to investigate the regulation of IL-33 by 3-hydroxy-3-methylglutaryl-coenzyme-A (HMG-CoA) reductase inhibitors (statins) and bisphosphonates (BPs) in human cardiac tissue. The lipophilic fluvastatin, simvastatin, atorvastatin, and lovastatin as well as the nitrogenous BPs alendronate and ibandronate, but not hydrophilic pravastatin increased IL-33 mRNA and intracellular IL-33 protein levels in both human adult cardiac myocytes (HACM) and fibroblasts (HACF). Additionally, fluvastatin reduced soluble ST2 secretion from HACM. IL-33 was also up-regulated by the general inhibitor of prenylation perillic acid, a RhoA kinase inhibitor Y-27632, and by latrunculin B, but statin-induced IL-33 expression was inhibited by mevalonate, geranylgeranyl pyrophosphate (GGPP) and RhoA activator U-46619. The IL-33 promoter was 2.3-fold more accessible in statin-treated HACM compared to untreated cells (P = 0.037). In explanted hearts of statin-treated patients IL-33 protein was up-regulated as compared with the hearts of non-statin-treated patients (P = 0.048). As IL-33 was previously shown to exert cardioprotective effects, one could speculate that such up-regulation of IL-33 expression in human cardiac cells, which might happen mainly through protein geranylgeranylation, could be a novel mechanism contributing to known cardioprotective effects of statins and BPs.


Asunto(s)
Cardiopatías/dietoterapia , Corazón/efectos de los fármacos , Interleucina-33/genética , Miocardio/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología , Amidas/farmacología , Apoptosis/efectos de los fármacos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Ciclohexenos/farmacología , Citocinas/genética , Difosfonatos/farmacología , Fibroblastos/efectos de los fármacos , Fluvastatina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Cardiopatías/tratamiento farmacológico , Humanos , Lovastatina/farmacología , Ácido Mevalónico/farmacología , Monoterpenos/farmacología , Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Pravastatina/farmacología , Piridinas/farmacología , Simvastatina/farmacología , Tiazolidinas/farmacología , Proteína de Unión al GTP rhoA
9.
Arterioscler Thromb Vasc Biol ; 37(10): 1913-1922, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28818858

RESUMEN

OBJECTIVE: Macrophages are versatile immune cells capable of polarizing into functional subsets depending on environmental stimulation. In atherosclerotic lesions, proinflammatory polarized macrophages are associated with symptomatic plaques, whereas Th2 (T-helper cell type 2) cytokine-polarized macrophages are inversely related with disease progression. To establish a functional cause for these observations, we analyzed extracellular matrix degradation phenotypes in polarized macrophages. APPROACH AND RESULTS: We provide evidence that proinflammatory polarized macrophages rely on membrane-bound proteases including MMP-14 (matrix metalloproteinase-14) and the serine protease uPA (urokinase plasminogen activator) together with its receptor uPAR for extracellular matrix degradation. In contrast, Th2 cytokine alternatively primed macrophages do not show different proteolytic activity in comparison to unpolarized macrophages and lack increased localization of MMP-14 and uPA receptor to the cell membrane. Nonetheless, they express the highest amount of the serine protease uPA. However, uPA activity is blocked by similarly increased expression of its inhibitor PAI-1 (plasminogen activator inhibitor 1). When inhibiting PAI-1 or when analyzing macrophages deficient in PAI-1, Th2 cytokine-polarized macrophages display the same matrix degradation capability as proinflammatory-primed macrophages. Within atherosclerotic lesions, macrophages positive for the alternative activation marker CD206 express high levels of PAI-1. In addition, to test changed tissue remodeling capacities of alternatively activated macrophages, we used a bleomycin lung injury model in mice reconstituted with PAI-1-/- bone marrow. These results supported an enhanced remodeling phenotype displayed by increased fibrosis and elevated MMP activity in the lung after PAI-1 loss. CONCLUSIONS: We were able to demonstrate matrix degradation dependent on membrane-bound proteases in proinflammatory stimulated macrophages and a forced proteolytical quiescence in alternatively polarized macrophages by the expression of PAI-1.


Asunto(s)
Macrófagos/metabolismo , Inhibidor 1 de Activador Plasminogénico/metabolismo , Proteolisis , Fibrosis , Humanos , Pulmón/enzimología , Pulmón/patología , Metaloproteinasa 14 de la Matriz/metabolismo , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo
10.
Apoptosis ; 22(8): 1048-1055, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28643198

RESUMEN

The role of uPA in tissue remodeling and cell migration is already well established. In addition, uPA was reported to stabilize p53, a key cell cycle control, DNA repair and apoptosis initiation protein. We aimed to determine the role of uPA-uPAR signaling towards cell survival or apoptosis in human adult cardiac myocytes (HACM). HACM were stimulated with uPA and DNA damage was inflicted by incubating cells with 200 µM H2O2. To analyze for apoptotic cells we applied TUNEL staining. Oxidative damage foci were analyzed by staining for 8-oxoguanine base pairs. In vivo qPCR analysis from RNA extracted from failing human hearts demonstrated a close relation of uPA with apoptosis and the p53 pathway. Furthermore, we observed a close correlation of uPA and p53 protein in homogenized tissue lysates. In vitro studies revealed that uPA preincubation protected HACM from oxidative damage induced cell death and reduced oxidative damage foci. uPA protection is independent of its catalytic activity, as the amino terminal fragment of uPA showed similar protection. A key enzyme for repairing oxidative DNA damage is the p53 target hOGG1. We found a significant increase of hOGG1 after pretreatment of HACM with uPA. Knockdown of hOGG1 completely abrogated the protective effect of uPA. We conclude that uPA might have a tissue protective role in human hearts besides its role in tissue remodeling. Tissue protection is mediated by the DNA repair protein hOGG1. This might be beneficial during tissue remodeling and thus could be a target for therapeutic approaches in the diseased heart.


Asunto(s)
ADN Glicosilasas/genética , Estrés Oxidativo/genética , Proteína p53 Supresora de Tumor/genética , Activador de Plasminógeno de Tipo Uroquinasa/genética , Apoptosis/efectos de los fármacos , Apoptosis/genética , Movimiento Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/toxicidad , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Estrés Oxidativo/efectos de los fármacos , Receptores del Activador de Plasminógeno Tipo Uroquinasa/genética , Transducción de Señal/efectos de los fármacos
11.
Crit Care Med ; 43(12): 2633-41, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26448617

RESUMEN

OBJECTIVES: Despite underlying pathologies leading to ICU admittance are heterogeneous, many patients develop a systemic inflammatory response syndrome often in the absence of microbial pathogens. Mitochondrial DNA that shows similarities to bacterial DNA may be released after tissue damage and activates the innate immune system by binding to toll-like receptor-9 on immune cells. The aim of this study was to analyze whether levels of mitochondrial DNA are associated with 30-day survival and whether this predictive value is modified by the expression of its receptor toll-like receptor-9. DESIGN: Single-center, prospective, observational study. SETTING: A tertiary ICU in a university hospital. PATIENTS: Two hundred twenty-eight consecutive patients admitted to a medical ICU between August 2012 and August 2013. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Blood was taken within 24 hours after ICU admission, and the levels of circulating mitochondrial DNA were quantified by real-time polymerase chain reaction. Toll-like receptor-9 expression in monocytes was measured by flow cytometry. Median acute physiology and chronic health evaluation II score was 20, and 30-day mortality was 25%. Median mitochondrial DNA levels at admission were significantly higher in nonsurvivors when compared with survivors (26.9, interquartile range = 11.2-60.6 ng/mL vs 19.7, interquartile range = 9.5-34.8 ng/mL; p < 0.05). Patients with plasma levels of mitochondrial DNA in the highest quartile (mitochondrial DNA > 38.2 ng/mL) had a 2.6-fold higher risk (p < 0.001) of dying, independently of age, gender, diagnosis, and acute physiology and chronic health evaluation II score. Mitochondrial DNA improved the c-statistic of acute physiology and chronic health evaluation II score (p < 0.05) and showed enhancement in individual risk prediction indicated by a net reclassification improvement of 32.3% (p < 0.05). Stratification of patients according to toll-like receptor-9 expression above/below median demonstrated that only patients with high expression of toll-like receptor-9 showed an increased risk associated with increased mitochondrial DNA levels (odds ratio, 2.7; p < 0.01), whereas circulating mitochondrial DNA was not associated with mortality in patients with low toll-like receptor-9 expression (odds ratio, 1.1; p = 0.98). CONCLUSIONS: Circulating levels of mitochondrial DNA at ICU admission predict mortality in critically ill patients. This association was in particular present in patients with elevated toll-like receptor-9 expression.


Asunto(s)
Enfermedad Crítica/mortalidad , ADN Mitocondrial/biosíntesis , Unidades de Cuidados Intensivos/estadística & datos numéricos , Receptor Toll-Like 9/biosíntesis , APACHE , Factores de Edad , Anciano , Femenino , Citometría de Flujo , Mortalidad Hospitalaria , Hospitales Universitarios , Humanos , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Valor Predictivo de las Pruebas , Estudios Prospectivos , Reacción en Cadena en Tiempo Real de la Polimerasa , Índice de Severidad de la Enfermedad , Factores Sexuales
12.
J Thromb Haemost ; 22(1): 188-198, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37748582

RESUMEN

BACKGROUND: During infection, neutrophil extracellular traps (NETs) are associated with severity of pulmonary diseases such as acute respiratory disease syndrome. NETs induce subsequent immune responses, are directly cytotoxic to pulmonary cells, and are highly procoagulant. Anticoagulation treatment was shown to reduce in-hospital mortality, indicating thromboinflammatory complications. However, data are sparsely available on the involvement of NETs in secondary events after virus clearance, which can lead to persistent lung damage and postacute sequelae with chronic fatigue and dyspnea. OBJECTIVES: This study focuses on late-phase events using a murine model of viral lung infection with postacute sequelae after virus resolution. METHODS: C57BL/6JRj mice were infected intranasally with the betacoronavirus murine coronavirus (MCoV, strain MHV-A95), and tissue samples were collected after 2, 4, and 10 days. For NET modulation, mice were pretreated with OM-85 or GSK484 and DNase I were administered intraperitoneally between days 2 to 5 and days 4 to 7, respectively. RESULTS: Rapid, platelet-attributed thrombus formation was followed by a second, late phase of thromboinflammation. This phase was characterized by negligible virus titers but pronounced tissue damage, apoptosis, oxidative DNA damage, and presence of NETs. Inhibition of NETs during the acute phase did not impact virus burden but decreased lung cell apoptosis by 67% and oxidative stress by 94%. Prevention of neutrophil activation by immune training before virus infection reduced damage by 75%, NETs by 31%, and pulmonary thrombi by 93%. CONCLUSION: NETs are detrimental inducers of tissue damage during respiratory virus infection but do not contribute to virus clearance.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Trampas Extracelulares , Trombosis , Animales , Ratones , Neutrófilos , Tromboinflamación , Modelos Animales de Enfermedad , Inflamación/complicaciones , Trombosis/complicaciones , Ratones Endogámicos C57BL , Pulmón , Infecciones por Coronavirus/complicaciones
13.
Biochim Biophys Acta Mol Basis Dis ; 1869(3): 166616, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36513287

RESUMEN

Atherosclerosis is a chronic, inflammatory disease of the vessel wall where triggered immune cells bind to inflamed endothelium, extravasate and sustain local inflammation. Leukocyte adhesion and extravasation are mediated by adhesion molecules expressed by activated endothelial cells, like intercellular adhesion molecule 1 (ICAM-1). Extracellular adherence protein (Eap) from Staphylococcus aureus binds to a plethora of extracellular matrix proteins, including ICAM-1 and its ligands macrophage-1 antigen (Mac-1, αMß2) and lymphocyte function-associated antigen 1 (LFA-1, αLß2), thereby disrupting the interaction between leukocytes and endothelial cells. We aimed to use Eap to inhibit the interaction of leukocytes with activated endothelial cells in settings of developing and established atherosclerosis in apolipoprotein E (ApoE) deficient mice on high-fat diet. In developing atherosclerosis, Eap treatment reduced circulating platelet-neutrophil aggregates as well as infiltration of T cells and neutrophils into the growing plaque, accompanied by reduced formation of neutrophil extracellular traps (NETs). However, plaque size did not change. Intervention treatment with Eap of already established plaques did not result in cellular or morphological plaque changes, whereas T cell infiltration was increased and thereby again modulated by Eap. We conclude that although Eap leads to cellular changes in developing plaques, clinical implications might be limited as patients are usually treated at a more advanced stage of disease progression. Hence, usage of Eap might be an interesting mechanistic tool for cellular infiltration during plaque development in basic research but not a clinical target.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Ratones , Animales , Molécula 1 de Adhesión Intercelular/genética , Staphylococcus aureus/metabolismo , Células Endoteliales/metabolismo , Antígeno-1 Asociado a Función de Linfocito/genética , Fenotipo
14.
ESC Heart Fail ; 10(4): 2375-2385, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37190856

RESUMEN

AIMS: Ischaemia-reperfusion injury (IRI) following myocardial infarction remains a challenging topic in acute cardiac care and consecutively arising heart failure represents a severe long-term consequence. The extent of neutrophil infiltration and neutrophil-mediated cellular damage are thought to be aggravating factors enhancing primary tissue injury. Toll-like receptor 9 was found to be involved in neutrophil activation as well as chemotaxis and may represent a target in modulating IRI, aspects we aimed to illuminate by pharmacological inhibition of the receptor. METHODS AND RESULTS: Forty-nine male adult Sprague-Dawley rats were used. IRI was induced by occlusion of the left coronary artery and subsequent snare removal after 30 min. Oligonucleotide (ODN) 2088, a toll-like receptor 9 (TLR9) antagonist, control-ODN, or DNase, were administered at the time of reperfusion and over 24 h via a mini-osmotic pump. The hearts were harvested 24 h or 4 weeks after left coronary artery occlusion and immunohistochemical staining was performed. Echocardiography was done after 1 and 4 weeks to determine ventricular function. Inhibition of TLR9 by ODN 2088 led to left ventricular wall thinning (P = 0.003) in association with drastically enhanced neutrophil infiltration (P = 0.005) and increased markers of tissue damage. Additionally, an up-regulation of the chemotactic receptor CXCR2 (P = 0.046) was found after TLR9 inhibition. No such effects were observed in control-ODN or DNase-treated animals. We did not observe changes in monocyte content or subset distribution, hinting towards neutrophils as the primary mediators of the exerted tissue injury. CONCLUSIONS: Our data indicate a TLR9-dependent, negative regulation of neutrophil infiltration. Blockage of TLR9 appears to prevent the down-regulation of CXCR2, followed by an uncontrolled migration of neutrophils towards the area of infarction and the exertion of disproportional tissue injury resulting in potential aneurysm formation. In comparison with previous studies conducted in TLR-/- mice, we deliberately chose a transient pharmacological inhibition of TLR9 to highlight effects occurring in the first 24 h following IRI.


Asunto(s)
Infarto del Miocardio , Receptor Toll-Like 9 , Ratas , Ratones , Masculino , Animales , Receptor Toll-Like 9/uso terapéutico , Ratas Sprague-Dawley , Infarto del Miocardio/tratamiento farmacológico , Corazón , Vasos Coronarios
15.
J Innate Immun ; 14(4): 293-305, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34775384

RESUMEN

Training of the innate immune system with orally ingested bacterial extracts was demonstrated to have beneficial effects on infection clearance and disease outcome. The aim of our study was to identify cellular and molecular processes responsible for these immunological benefits. We used a murine coronavirus (MCoV) A59 mouse model treated with the immune activating bacterial extract Broncho-Vaxom (BV) OM-85. Tissue samples were analysed with qPCR, RNA sequencing, histology, and flow cytometry. After BV OM-85 treatment, interstitial macrophages accumulated in lung tissue leading to a faster response of type I interferon (IFN) signalling after MCoV infection resulting in overall lung tissue protection. Moreover, RNA sequencing showed that lung tissue from mice receiving BV OM-85 resembled an intermediate stage between healthy and viral infected lung tissue at day 4, indicating a faster return to normal tissue homoeostasis. The pharmacologic effect was mimicked by adoptively transferring naive lung macrophages into lungs from recipient mice before virus infection. The beneficial effect of BV OM-85 was abolished when inhibiting initial type I IFN signalling. Overall, our data suggest that BV OM-85 enhances lung macrophages allowing for a faster IFN response towards a viral challenge as part of the oral-induced innate immune system training.


Asunto(s)
Adyuvantes Inmunológicos , Betacoronavirus , Animales , Bacterias , Inmunidad Innata , Pulmón , Macrófagos , Ratones
16.
Curr Opin Infect Dis ; 24(3): 259-64, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21378564

RESUMEN

PURPOSE OF REVIEW: Inflammation is a key component in cardiovascular disease. Controlling inflammatory events and their subsequent processes holds the potential for novel therapeutic treatment options. Cytokines are the propagators of inflammation. In this review we will discuss important cytokines including IL-6, TNF-α, MCP-1, fractalkine, M-CSF and GDF-15, and their effect on cardiac outcome. RECENT FINDINGS: Recent studies have shed light on the role of IL-6 in cardiovascular disease. Long-term IL-6 levels are highly associated with coronary heart disease. Molecular studies indicate that a permanent prolongation of STAT signaling in cardiac myocytes might be a potential reason for the detrimental effects of IL-6. TNF-α was long considered to have detrimental effects on myocardial function but recent studies show cardioprotective mechanisms for TNF-α. Macrophage modulating cytokines emerge as interesting molecular targets to treat cardiovascular disease. Especially, the two different subtypes of monocytes, a pro-inflammatory and a reparative subset, and their different chemotactic properties might be possible drug targets. Finally, we discuss GDF-15, which emerges as a novel biomarker in cardiovascular disease reflecting information from several pathological pathways. SUMMARY: Cytokines are the main proximal mediators of inflammation and hold the potential of being good molecular targets for novel treatment regimes. Cytokines might be valuable biomarkers, adding information about the pathologic pathways in cardiovascular disease.


Asunto(s)
Cardiomiopatías/mortalidad , Cardiomiopatías/patología , Citocinas/toxicidad , Inflamación/patología , Cardiomiopatías/inducido químicamente , Citocinas/inmunología , Humanos , Inflamación/inmunología , Resultado del Tratamiento
17.
Basic Res Cardiol ; 106(2): 217-31, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21174212

RESUMEN

The pleiotropic cytokine oncostatin M (OSM), a member of the glycoprotein (gp)130 ligand family, plays a key role in inflammation and cardiovascular disease. As inflammation precedes and accompanies pathological angiogenesis, we investigated the effect of OSM and other gp130 ligands on vascular endothelial growth factor (VEGF) production in human vascular smooth muscle cells (SMC). Human coronary artery SMC (HCASMC) and human aortic SMC (HASMC) were treated with different gp130 ligands. VEGF protein was determined by ELISA. Specific mRNA was detected by RT-PCR. Western blotting was performed for signal transducers and activators of transcription1 (STAT1), STAT3, Akt and p38 mitogen-activated protein kinase (p38 MAPK). OSM mRNA and VEGF mRNA expression was analyzed in human carotid endaterectomy specimens from 15 patients. OSM increased VEGF production in both HCASMC and HASMC derived from different donors. OSM upregulated VEGF and OSM receptor-specific mRNA in these cells. STAT3 inhibitor WP1066, p38 MAPK inhibitors SB-202190 and BIRB 0796, extracellular signal-regulated kinase1/2 (Erk1/2) inhibitor U0126, and phosphatidylinositol 3-kinase (PI3K) inhibitors LY-294002 and PI-103 reduced OSM-induced VEGF synthesis. We found OSM expression in human atherosclerotic lesions where OSM mRNA correlated with VEGF mRNA expression. Interferon-γ (IFN-γ), but not IL-4 or IL-10, reduced OSM-induced VEGF production in vascular SMC. Our findings that OSM, which is present in human atherosclerotic lesions and correlates with VEGF expression, stimulates production of VEGF by human coronary artery and aortic SMC indicate that OSM could contribute to plaque angiogenesis and destabilization. IFN-γ reduced OSM-induced VEGF production by vascular SMC.


Asunto(s)
Interferón gamma/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Oncostatina M/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Adulto , Anciano , Aterosclerosis/metabolismo , Células Cultivadas , Vasos Coronarios/metabolismo , Femenino , Humanos , Interleucina-10/metabolismo , Interleucina-4/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , ARN Mensajero/metabolismo , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT3/metabolismo , Regulación hacia Arriba , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
18.
Mol Ther Nucleic Acids ; 26: 1228-1239, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34853722

RESUMEN

We have previously shown that treatment with third-generation antisense oligonucleotides against miR-494-3p (3GA-494) reduces atherosclerotic plaque progression and stabilizes lesions, both in early and established plaques, with reduced macrophage content in established plaques. Within the plaque, different subtypes of macrophages are present. Here, we aimed to investigate whether miR-494-3p directly influences macrophage polarization and activation. Human macrophages were polarized into either proinflammatory M1 or anti-inflammatory M2 macrophages and simultaneously treated with 3GA-494 or a control antisense (3GA-ctrl). We show that 3GA-494 treatment inhibited miR-494-3p in M1 macrophages and dampened M1 polarization, while in M2 macrophages miR-494-3p expression was induced and M2 polarization enhanced. The proinflammatory marker CCR2 was reduced in 3GA-494-treated atherosclerosis-prone mice. Pathway enrichment analysis predicted an overlap between miR-494-3p target genes in macrophage polarization and Wnt signaling. We demonstrate that miR-494-3p regulates expression levels of multiple Wnt signaling components, such as LRP6 and TBL1X. Wnt signaling appears activated upon treatment with 3GA-494, both in cultured M1 macrophages and in plaques of hypercholesterolemic mice. Taken together, 3GA-494 treatment dampened M1 polarization, at least in part via activated Wnt signaling, while M2 polarization was enhanced, which is both favorable in reducing atherosclerotic plaque formation and increasing plaque stability.

19.
Am J Cancer Res ; 11(12): 6042-6059, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35018241

RESUMEN

Recent data suggest that the disease-associated microenvironment, known as the leukemic stem cell (LSC) niche, is substantially involved in drug resistance of LSC in BCR-ABL1+ chronic myeloid leukemia (CML). Attacking the LSC niche in CML may thus be an effective approach to overcome drug resistance. We have recently shown that osteoblasts are a major site of niche-mediated LSC resistance against second- and third-generation tyrosine kinase inhibitors (TKI) in CML. In the present study, we screened for drugs that are capable of suppressing the growth and viability of osteoblasts and/or other niche cells and can thereby overcome TKI resistance of CML LSC. Proliferation was analyzed by determining 3H-thymidine uptake in niche-related cells, and apoptosis was measured by Annexin-V/DAPI-staining and flow cytometry. We found that the dual PI3 kinase (PI3K) and mTOR inhibitor BEZ235 and the selective pan-PI3K inhibitor copanlisib suppress proliferation of primary osteoblasts (BEZ235 IC50: 0.05 µM; copanlisib IC50: 0.05 µM), the osteoblast cell line CAL-72 (BEZ235 IC50: 0.5 µM; copanlisib IC50: 1 µM), primary umbilical vein-derived endothelial cells (BEZ235 IC50: 0.5 µM; copanlisib IC50: 0.5 µM), and the vascular endothelial cell line HMEC-1 (BEZ235 IC50: 1 µM; copanlisib IC50: 1 µM), whereas no comparable effects were seen with the mTOR inhibitor rapamycin. Furthermore, we show that BEZ235 and copanlisib cooperate with nilotinib and ponatinib in suppressing proliferation and survival of osteoblasts and endothelial cells. Finally, BEZ235 and copanlisib were found to overcome osteoblast-mediated resistance against nilotinib and ponatinib in K562 cells, KU812 cells and primary CD34+/CD38- CML LSC. Together, targeting osteoblastic niche cells through PI3K inhibition may be a new effective approach to overcome niche-induced TKI resistance in CML. Whether this approach can be translated into clinical application and can counteract drug resistance of LSC in patients with CML remains to be determined in clinical trials.

20.
Genes (Basel) ; 12(8)2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34440358

RESUMEN

BACKGROUND: Fabry disease is a hereditary genetic defect resulting in reduced activity of the enzyme α-galactosidase-A and the accumulation of globotriaosylceramide (Gb3) in body fluids and cells. Gb3 accumulation was especially reported for the vascular endothelium in several organs. METHODS: Three Fabry disease patients were screened using a micro-RNA screen. An in vitro approach in human endothelial cells was used to determine miRNA regulation by Gb3. RESULTS: In a micro-RNA screen of three Fabry patients undergoing enzyme replacement therapy, we found that miRNAs let-7a and let-7d were significantly increased after therapy. We demonstrate in vitro in endothelial cells that Gb3 induced activation of NF-κB and activated downstream targets. In addition, NF-κB activity directly reduced let-7a and let-7d miRNA expression as inhibiting NF-kB nuclear entry abolished the Gb3 effects. CONCLUSION: We suggest that let-7a and let-7d are potential markers for enzyme activity and inflammation in Fabry disease patients.


Asunto(s)
Enfermedad de Fabry/genética , Enfermedad de Fabry/metabolismo , MicroARNs/genética , Trihexosilceramidas/metabolismo , Adulto , Células Cultivadas , Células Endoteliales/metabolismo , Terapia de Reemplazo Enzimático , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , FN-kappa B/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA