Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurosci Lett ; 684: 109-114, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30003938

RESUMEN

RNA binding proteins are a diverse class of proteins that regulate all aspects of RNA metabolism. Accumulating studies indicate that heterogeneous nuclear ribonucleoproteins are associated with cellular adaptations in response to drugs of abuse. We recently mapped and validated heterogeneous nuclear ribonucleoprotein H1 (Hnrnph1) as a quantitative trait gene underlying differential behavioral sensitivity to methamphetamine. The molecular mechanisms by which hnRNP H1 alters methamphetamine behaviors are unknown but could involve pre- and/or post-synaptic changes in protein localization and function. Methamphetamine initiates post-synaptic D1 dopamine receptor signaling indirectly by binding to pre-synaptic dopamine transporters and vesicular monoamine transporters of midbrain dopaminergic neurons which triggers reverse transport and accumulation of dopamine at the synapse. Here, we examined changes in neuronal localization of hnRNP H in primary rat cortical neurons that express dopamine receptors that can be modulated by the D1 or D2 dopamine receptor agonists SKF38393 and (-)-Quinpirole HCl, respectively. Basal immunostaining of hnRNP H was localized primarily to the nucleus. D1 dopamine receptor activation induced an increase in hnRNP H nuclear immunostaining as detected by immunocytochemistry with a C-domain directed antibody containing epitope near the glycine-rich domain but not with an N-domain specific antibody. Although there was no change in hnRNP H protein in the nucleus or cytoplasm, there was a decrease in Hnrnph1 transcript following D1 receptor stimulation. Taken together, these results suggest that D1 receptor activation increases availability of the hnRNP H C-terminal epitope, which could potentially reflect changes in protein-protein interactions. Thus, D1 receptor signaling could represent a key molecular post-synaptic event linking Hnrnph1 polymorphisms to drug-induced behavior.


Asunto(s)
Agonistas de Dopamina/farmacología , Neuronas Dopaminérgicas/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/metabolismo , Receptores de Dopamina D1/metabolismo , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/farmacología , Animales , Células Cultivadas , Neuronas Dopaminérgicas/química , Neuronas Dopaminérgicas/efectos de los fármacos , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/análisis , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/análisis
2.
Toxicology ; 283(1): 1-7, 2011 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-21277931

RESUMEN

General anaesthetics are proposed to cause unconsciousness by modulating neuronal excitability in the mammalian brain through mechanisms that include enhancement of inhibitory GABA(A) receptor currents and suppression of excitatory glutamate receptor responses. Both intravenous and volatile agents may produce neurotoxic effects during early postnatal rodent brain development through similar mechanisms. In the following study, we investigated anaesthetic cytotoxicity in primary cortical neurones and glia from postnatal day 2-8 mice. Cultures at 4-20 days in vitro were exposed to combinations of ketamine (100 µM to 3 mM), nitrous oxide (75%, v/v) and/or isoflurane (1.5-5%, v/v) for 6-12 h. Neuronal survival and cell death were measured via microtubule associated protein 2 immunoassay and lactate dehydrogenase release assays, respectively. Clinically relevant anaesthetic concentrations of ketamine, nitrous oxide and isoflurane had no significant neurotoxic effects individually or when given as anaesthetic cocktails, even with up to 12 h exposure. This lack of neurotoxicity was observed regardless of whether cultures were prepared from postnatal day 0-2 or day 8 mice, and was also unaffected by number of days in vitro (DIV 4-20). Significant neurotoxic effects were only observed at supraclinical concentrations (e.g. 1-3 mM ketamine). Our study suggests that neurotoxicity previously reported in vivo is not due to direct cytotoxicity of anaesthetic agents, but results from other impacts of the anaesthetised state during early brain development.


Asunto(s)
Anestésicos Generales/toxicidad , Corteza Cerebral/efectos de los fármacos , Isoflurano/toxicidad , Ketamina/toxicidad , Neuronas/efectos de los fármacos , Óxido Nitroso/toxicidad , Animales , Animales Recién Nacidos , Supervivencia Celular/efectos de los fármacos , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/metabolismo , N-Metilaspartato/metabolismo , Neuronas/citología , Neuronas/metabolismo , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA