Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Magn Reson Med ; 86(3): 1674-1686, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33949713

RESUMEN

PURPOSE: Amplified MRI (aMRI) has been introduced as a new method of detecting and visualizing pulsatile brain motion in 2D. Here, we improve aMRI by introducing a novel 3D aMRI approach. METHODS: 3D aMRI was developed and tested for its ability to amplify sub-voxel motion in all three directions. In addition, 3D aMRI was qualitatively compared to 2D aMRI on multi-slice and 3D (volumetric) balanced steady-state free precession cine data and phase contrast (PC-MRI) acquired on healthy volunteers at 3T. Optical flow maps and 4D animations were produced from volumetric 3D aMRI data. RESULTS: 3D aMRI exhibits better image quality and fewer motion artifacts compared to 2D aMRI. The tissue motion was seen to match that of PC-MRI, with the predominant brain tissue displacement occurring in the cranial-caudal direction. Optical flow maps capture the brain tissue motion and display the physical change in shape of the ventricles by the relative movement of the surrounding tissues. The 4D animations show the complete brain tissue and cerebrospinal fluid (CSF) motion, helping to highlight the "piston-like" motion of the ventricles. CONCLUSIONS: Here, we introduce a novel 3D aMRI approach that enables one to visualize amplified cardiac- and CSF-induced brain motion in striking detail. 3D aMRI captures brain motion with better image quality than 2D aMRI and supports a larger amplification factor. The optical flow maps and 4D animations of 3D aMRI may open up exciting applications for neurological diseases that affect the biomechanics of the brain and brain fluids.


Asunto(s)
Imagenología Tridimensional , Imagen por Resonancia Magnética , Artefactos , Encéfalo/diagnóstico por imagen , Humanos , Movimiento
2.
Neuroradiology ; 63(2): 243-251, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32945913

RESUMEN

PURPOSE: 3D multi-echo gradient-recalled echo (ME-GRE) can simultaneously generate time-of-flight magnetic resonance angiography (pTOF) in addition to T2*-based susceptibility-weighted images (SWI). We assessed the clinical performance of pTOF generated from a 3D ME-GRE acquisition compared with conventional TOF-MRA (cTOF). METHODS: Eighty consecutive children were retrospectively identified who obtained 3D ME-GRE alongside cTOF. Two blinded readers independently assessed pTOF derived from 3D ME-GRE and compared them with cTOF. A 5-point Likert scale was used to rank lesion conspicuity and to assess for diagnostic confidence. RESULTS: Across 80 pediatric neurovascular pathologies, a similar number of lesions were reported on pTOF and cTOF (43-40%, respectively, p > 0.05). Rating of lesion conspicuity was higher with cTOF (4.5 ± 1.0) as compared with pTOF (4.0 ± 0.7), but this was not significantly different (p = 0.06). Diagnostic confidence was rated higher with cTOF (4.8 ± 0.5) than that of pTOF (3.7 ± 0.6; p < 0.001). Overall, the inter-rater agreement between two readers for lesion count on pTOF was classified as almost perfect (κ = 0.98, 96% CI 0.8-1.0). CONCLUSIONS: In this study, TOF-MRA simultaneously generated in addition to SWI from 3D MR-GRE can serve as a diagnostic adjunct, particularly for proximal vessel disease and when conventional TOF-MRA images are absent.


Asunto(s)
Trastornos Cerebrovasculares , Angiografía por Resonancia Magnética , Imagen por Resonancia Magnética , Trastornos Cerebrovasculares/diagnóstico por imagen , Niño , Humanos , Estudios Retrospectivos
3.
Brain Inj ; 35(6): 621-644, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33843389

RESUMEN

Traumatic brain injury (TBI) is a major public health problem. The majority of TBIs are in the form of mild TBI (also known as concussion) with sports-related concussion (SRC) receiving public attention in recent years.Here we have performed a systematic review of the literature on the use of Diffusion Tensor Imaging (DTI) on sports-related concussion and subconcussive injuries. Our review found different patterns of change in DTI parameters between concussed and subconcussed groups. The Fractional Anisotropy (FA) was either unchanged or increased for the concussion group, while the subconcussed group generally experienced a decrease in FA. A reverse pattern was observed for Mean Diffusivity (MD) - where the concussed group experienced a decrease in MD while the subconcussed group showed an increase in MD. However, in general, discrepancies were observed in the results reported in the literature - likely due to the huge variations in DTI acquisition parameters, and image processing and analysis methods used in these studies. This calls for more comprehensive and well-controlled studies in this field, including those that combine the advanced brain imaging with biomechancial modeling and kinematic sensors - to shed light on the underlying mechanisms behind the structural changes observed from the imaging studies.


Asunto(s)
Traumatismos en Atletas , Conmoción Encefálica , Anisotropía , Atletas , Traumatismos en Atletas/complicaciones , Traumatismos en Atletas/diagnóstico por imagen , Encéfalo , Conmoción Encefálica/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Imagen de Difusión Tensora , Humanos
4.
Radiology ; 297(2): 438-446, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32930651

RESUMEN

Background Iron oxide nanoparticles are an alternative contrast agent for MRI. Gadolinium deposition has raised safety concerns, but it is unknown whether ferumoxytol administration also deposits in the brain. Purpose To investigate whether there are signal intensity changes in the brain at multiecho gradient imaging following ferumoxytol exposure in children and young adults. Materials and Methods This retrospective case-control study included children and young adults, matched for age and sex, with brain arteriovenous malformations who received at least one dose of ferumoxytol from January 2014 to January 2018. In participants who underwent at least two brain MRI examinations (subgroup), the first and last available examinations were analyzed. Regions of interests were placed around deep gray structures on quantitative susceptibility mapping and R2* images. Mean susceptibility and R2* values of regions of interests were recorded. Measurements were assessed by linear regression analyses: a between-group comparison of ferumoxytol-exposed and unexposed participants and a within-group (subgroup) comparison before and after exposure. Results Seventeen participants (mean age ± standard deviation, 13 years ± 5; nine male) were in the ferumoxytol-exposed (case) group, 21 (mean age, 14 years ± 5; 11 male) were in the control group, and nine (mean age, 12 years ± 6; four male) were in the subgroup. The mean number of ferumoxytol administrations was 2 ± 1 (range, one to four). Mean susceptibility (in parts per million [ppm]) and R2* (in inverse seconds [sec-1]) values of the dentate (case participants: 0.06 ppm ± 0.04 and 23.87 sec-1 ± 4.13; control participants: 0.02 ppm ± 0.03 and 21.7 sec-1 ± 5.26), substantia nigrae (case participants: 0.08 ppm ± 0.06 and 27.46 sec-1 ± 5.58; control participants: 0.04 ppm ± 0.05 and 24.96 sec-1 ± 5.3), globus pallidi (case participants: 0.14 ppm ± 0.05 and 30.75 sec-1 ± 5.14; control participants: 0.08 ppm ± 0.07 and 28.82 sec-1 ± 6.62), putamina (case participants: 0.03 ppm ± 0.02 and 20.63 sec-1 ± 2.44; control participants: 0.02 ppm ± 0.02 and 19.65 sec-1 ± 3.6), caudate (case participants: -0.1 ppm ± 0.04 and 18.21 sec-1 ± 3.1; control participants: -0.06 ppm ± 0.05 and 18.83 sec-1 ± 3.32), and thalami (case participants: 0 ppm ± 0.03 and 16.49 sec-1 ± 3.6; control participants: 0.02 ppm ± 0.02 and 18.38 sec-1 ± 2.09) did not differ between groups (susceptibility, P = .21; R2*, P = .24). For the subgroup, the mean interval between the first and last ferumoxytol administration was 14 months ± 8 (range, 1-25 months). Mean susceptibility and R2* values of the dentate (first MRI: 0.06 ppm ± 0.05 and 25.78 sec-1 ± 5.9; last MRI: 0.06 ppm ± 0.02 and 25.55 sec-1 ± 4.71), substantia nigrae (first MRI: 0.06 ppm ± 0.06 and 28.26 sec-1 ± 9.56; last MRI: 0.07 ppm ± 0.06 and 25.65 sec-1 ± 6.37), globus pallidi (first MRI: 0.13 ppm ± 0.07 and 27.53 sec-1 ± 8.88; last MRI: 0.14 ppm ± 0.06 and 29.78 sec-1 ± 6.54), putamina (first MRI: 0.03 ppm ± 0.03 and 19.78 sec-1 ± 3.51; last MRI: 0.03 ppm ± 0.02 and 19.73 sec-1 ± 3.01), caudate (first MRI: -0.09 ppm ± 0.05 and 21.38 sec-1 ± 4.72; last MRI: -0.1 ppm ± 0.05 and 18.75 sec-1 ± 2.68), and thalami (first MRI: 0.01 ppm ± 0.02 and 17.65 sec-1 ± 5.16; last MRI: 0 ppm ± 0.02 and 15.32 sec-1 ± 2.49) did not differ between the first and last MRI examinations (susceptibility, P = .95; R2*, P = .54). Conclusion No overall significant differences were found in susceptibility and R2* values of deep gray structures to suggest retained iron in the brain between ferumoxytol-exposed and unexposed children and young adults with arteriovenous malformations and in those exposed to ferumoxytol over time. © RSNA, 2020.


Asunto(s)
Malformaciones Arteriovenosas/diagnóstico por imagen , Encéfalo/metabolismo , Medios de Contraste/administración & dosificación , Óxido Ferrosoférrico/administración & dosificación , Hierro/metabolismo , Imagen por Resonancia Magnética/métodos , Adolescente , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Humanos , Masculino , Estudios Retrospectivos , Adulto Joven
5.
J Magn Reson Imaging ; 51(3): 734-747, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31294898

RESUMEN

BACKGROUND: To maintain cerebral blood flow (CBF), cerebral blood vessels dilate and contract in response to blood supply through cerebrovascular reactivity (CR). PURPOSE: Cardiovascular (CV) disease is associated with increased stroke risk, but which risk factors specifically impact CR is unknown. STUDY TYPE: Prospective longitudinal. SUBJECTS: Fifty-three subjects undergoing carotid endarterectomy or stenting. FIELD STRENGTH/SEQUENCE: 3T, 3D pseudo-continuous arterial spin labeling (PCASL) ASL, and T1 3D fast spoiled gradient echo (FSPGR). ASSESSMENT: We evaluated group differences in CBF changes for multiple cardiovascular risk factors in patients undergoing carotid revascularization surgery. STATISTICAL TESTS: PRE (baseline), POST (48-hour postop), and 6MO (6 months postop) whole-brain CBF measurements, as 129 CBF maps from 53 subjects were modeled as within-subject analysis of variance (ANOVA). To identify CV risk factors associated with CBF change, the CBF change from PRE to POST, POST to 6MO, and PRE to 6MO were modeled as multiple linear regression with each CV risk factor as an independent variable. Statistical models were performed controlling for age on a voxel-by-voxel basis using SPM8. Significant clusters were reported if familywise error (FWE)-corrected cluster-level was P < 0.05, while the voxel-level significance threshold was set for P < 0.001. RESULTS: The entire group showed significant (cluster-level P < 0.001) CBF increase from PRE to POST, decrease from POST to 6MO, and no significant difference (all voxels with P > 0.001) from PRE to 6MO. Of multiple CV risk factors evaluated, only elevated systolic blood pressure (SBP, P = 0.001), chronic renal insufficiency (CRI, P = 0.026), and history of prior stroke (CVA, P < 0.001) predicted lower increases in CBF PRE to POST. Over POST to 6MO, obesity predicted lower (P > 0.001) and cholesterol greater CBF decrease (P > 0.001). DATA CONCLUSION: The CV risk factors of higher SBP, CRI, CVA, BMI, and cholesterol may indicate altered CR, and may warrant different stroke risk mitigation and special consideration for CBF change evaluation. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2020;51:734-747.


Asunto(s)
Enfermedades Cardiovasculares , Encéfalo , Enfermedades Cardiovasculares/diagnóstico por imagen , Circulación Cerebrovascular , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Imagen por Resonancia Magnética , Estudios Prospectivos , Factores de Riesgo , Marcadores de Spin
6.
NMR Biomed ; 32(4): e4056, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30730591

RESUMEN

Diffusion-weighted imaging, a contrast unique to MRI, is used for assessment of tissue microstructure in vivo. However, this exquisite sensitivity to finer scales far above imaging resolution comes at the cost of vulnerability to errors caused by sources of motion other than diffusion motion. Addressing the issue of motion has traditionally limited diffusion-weighted imaging to a few acquisition techniques and, as a consequence, to poorer spatial resolution than other MRI applications. Advances in MRI imaging methodology have allowed diffusion-weighted MRI to push to ever higher spatial resolution. In this review we focus on the pulse sequences and associated techniques under development that have pushed the limits of image quality and spatial resolution in diffusion-weighted MRI.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Algoritmos , Humanos , Marcadores de Spin
7.
Magn Reson Med ; 80(6): 2549-2559, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29845645

RESUMEN

PURPOSE: Amplified magnetic resonance imaging (aMRI) was recently introduced as a new brain motion detection and visualization method. The original aMRI approach used a video-processing algorithm, Eulerian video magnification (EVM), to amplify cardio-ballistic motion in retrospectively cardiac-gated MRI data. Here, we strive to improve aMRI by incorporating a phase-based motion amplification algorithm. METHODS: Phase-based aMRI was developed and tested for correct implementation and ability to amplify sub-voxel motions using digital phantom simulations. The image quality of phase-based aMRI was compared with EVM-based aMRI in healthy volunteers at 3T, and its amplified motion characteristics were compared with phase-contrast MRI. Data were also acquired on a patient with Chiari I malformation, and qualitative displacement maps were produced using free form deformation (FFD) of the aMRI output. RESULTS: Phantom simulations showed that phase-based aMRI has a linear dependence of amplified displacement on true displacement. Amplification was independent of temporal frequency, varying phantom intensity, Rician noise, and partial volume effect. Phase-based aMRI supported larger amplification factors than EVM-based aMRI and was less sensitive to noise and artifacts. Abnormal biomechanics were seen on FFD maps of the Chiari I malformation patient. CONCLUSION: Phase-based aMRI might be used in the future for quantitative analysis of minute changes in brain motion and may reveal subtle physiological variations of the brain as a result of pathology using processing of the fundamental harmonic or by selectively varying temporal harmonics. Preliminary data shows the potential of phase-based aMRI to qualitatively assess abnormal biomechanics in Chiari I malformation.


Asunto(s)
Malformación de Arnold-Chiari/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Adulto , Algoritmos , Ataxia Cerebelosa/diagnóstico por imagen , Preescolar , Simulación por Computador , Femenino , Foramen Magno/diagnóstico por imagen , Voluntarios Sanos , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Movimiento , Fantasmas de Imagen , Grabación en Video
8.
J Magn Reson Imaging ; 47(4): 1119-1132, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28792653

RESUMEN

PURPOSE: To compare performance of sequential and Hadamard-encoded pseudocontinuous arterial spin labeling (PCASL). MATERIALS AND METHODS: Monte Carlo simulations and in vivo experiments were performed in 10 healthy subjects. Field strength and sequence: 5-delay sequential (5-del. Seq.), 7-delay Hadamard-encoded (7-del. Had.), and a single-delay (1-del.) PCASL, without and with vascular crushing at 3.0T. The errors and variations of cerebral blood flow (CBF) and arterial transit time (ATT) from simulations and the CBF and ATT estimates and variations in gray matter (GM) with different ATT ranges were compared. Pairwise t-tests with Bonferroni correction were used. RESULTS: The simulations and in vivo experiments showed that 1-del. PCASL underestimated GM CBF due to insufficient postlabeling delay (PLD) (37.2 ± 8.1 vs. 47.3 ± 8.5 and 47.3 ± 9.0 ml/100g/min, P ≤ 6.5 × 10-6 ), while 5-del. Seq. and 7-del. Had. yielded comparable GM CBF (P ≥ 0.49). 5-del. Seq. was more reproducible for CBF (P = 4.7 × 10-4 ), while 7-del. Had. was more reproducible for ATT (P = 0.033). 5-del. Seq. was more prone to intravascular artifacts and yielded lower GM ATTs compared to 7-del. Had. without crushing (1.13 ± 0.18 vs. 1.23 ± 0.13 seconds, P = 2.3 × 10-3 ), but they gave comparable ATTs with crushing (P = 0.12). ATTs measured with crushing were longer than those without crushing (P ≤ 6.7 × 10-4 ), but CBF was not affected (P ≥ 0.16). CONCLUSION: The theoretical signal-to-noise ratio (SNR) gain through Hadamard encoding was confirmed experimentally. For 1-del., a PLD of 1.8 seconds is recommended for healthy subjects. With current parameters, 5-del. Seq. was more reproducible for CBF, and 7-del. Had. for ATT. Vascular crushing may help reduce variations in multidelay experiments without compromising tissue CBF or ATT measurements. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:1119-1132.


Asunto(s)
Circulación Cerebrovascular/fisiología , Imagen por Resonancia Magnética/métodos , Procesamiento de Señales Asistido por Computador , Adulto , Velocidad del Flujo Sanguíneo/fisiología , Simulación por Computador , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valores de Referencia , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Marcadores de Spin
9.
AJR Am J Roentgenol ; 210(2): 404-411, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29112472

RESUMEN

OBJECTIVE: New MRI sequences based on rapid radial acquisition have reduced gradient noise. The purpose of this study was to compare Silent T1-weighted and unenhanced MR angiography (MRA) against conventional sequences in a clinical population. MATERIALS AND METHODS: The study cohort consisted of 40 patients with suspected brain metastases (median age, 60 years; range, 23-91 years) who underwent T1-weighted contrast-enhanced MRI and 51 patients with suspected vascular lesions or cerebral ischemia (median age, 60 years; range, 16-94 years) who underwent unenhanced intracranial MRA. Three neuroradiologists reviewed the images blindly and rated several measures of image quality on a 5-point Likert scale. Reviewers recorded the number of enhancing lesions and whether Silent images were better than, worse than, or equivalent to conventional images. RESULTS: For T1-weighted MR images, ratings were slightly lower for Silent versus conventional images, except for diagnostic confidence. Although more lesions were detected on conventional images, this difference was not statistically significant; agreement was seen in 88% of cases. In 48% of cases, T1-weighted scans were deemed equivalent, but when a preference existed, it was usually for conventional images (38% vs 14%). Conventional MRA images were rated higher on all image quality metrics and were strongly preferred (reviewers preferred conventional images in 69% of cases, rated the images as equivalent in 27% of cases, and preferred Silent images in 4% of cases). In some cases, artifacts on Silent images caused reduced vessel caliber, vessel irregularities, and even absent vessels. CONCLUSION: Although conventional T1-weighted images were preferred overall, most Silent T1-weighted images were rated as equivalent to or better than conventional images and represent a potential alternative for imaging of noise-averse patients. Silent MRA scored significantly worse and could not be recommended at this time, suggesting that it requires additional refinement before routine clinical use.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Angiografía por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Medios de Contraste , Diagnóstico Diferencial , Femenino , Humanos , Aumento de la Imagen/métodos , Masculino , Meglumina/análogos & derivados , Persona de Mediana Edad , Compuestos Organometálicos
10.
Neuroimage ; 129: 117-132, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26774615

RESUMEN

Tractography is becoming an increasingly popular method to reconstruct white matter connections in vivo. The diffusion MRI data that tractography is based on requires a high angular resolution to resolve crossing fibers whereas high spatial resolution is required to distinguish kissing from crossing fibers. However, scan time increases with increasing spatial and angular resolutions, which can become infeasible in clinical settings. Here we investigated the trade-off between spatial and angular resolutions to determine which of these factors is most worth investing scan time in. We created a unique diffusion MRI dataset with 1.0 mm isotropic resolution and a high angular resolution (100 directions) using an advanced 3D diffusion-weighted multi-slab EPI acquisition. This dataset was reconstructed to create subsets of lower angular (75, 50, and 25 directions) and lower spatial (1.5, 2.0, and 2.5 mm) resolution. Using all subsets, we investigated the effects of angular and spatial resolutions in three fiber bundles-the corticospinal tract, arcuate fasciculus and corpus callosum-by analyzing the volumetric bundle overlap and anatomical correspondence between tracts. Our results indicate that the subsets of 25 and 50 directions provided inferior tract reconstructions compared with the datasets with 75 and 100 directions. Datasets with spatial resolutions of 1.0, 1.5, and 2.0 mm were comparable, while the lowest resolution (2.5 mm) datasets had discernible inferior quality. In conclusion, we found that angular resolution appeared to be more influential than spatial resolution in improving tractography results. Spatial resolutions higher than 2.0 mm only appear to benefit multi-fiber tractography methods if this is not at the cost of decreased angular resolution.


Asunto(s)
Mapeo Encefálico/métodos , Imagen de Difusión Tensora/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Encéfalo/ultraestructura , Humanos , Fibras Nerviosas/ultraestructura
11.
Magn Reson Med ; 75(6): 2245-54, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26888418

RESUMEN

PURPOSE: This work describes a new method called amplified MRI (aMRI), which uses Eulerian video magnification to amplify the subtle spatial variations in cardiac-gated brain MRI scans and enables better visualization of brain motion. METHODS: The aMRI method takes retrospective cardiac-gated cine MRI data as input, applies a spatial decomposition, followed by temporal filtering and frequency-selective amplification of the MRI cardiac-gated frames before synthesizing a motion-amplified cine data set. RESULTS: This approach reveals deformations of the brain parenchyma and displacements of arteries due to cardiac pulsatility, especially in the brainstem, cerebellum, and spinal cord. CONCLUSION: aMRI has the potential for widespread neuro- and non-neuro clinical use because it can amplify and characterize small, often barely perceptible motion and can visualize the biomechanical response of tissues using the heartbeat as an endogenous mechanical driver. Magn Reson Med 75:2245-2254, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Contracción Miocárdica/fisiología , Procesamiento de Señales Asistido por Computador , Adulto , Algoritmos , Electrocardiografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Movimiento/fisiología , Fotopletismografía , Grabación en Video
12.
Magn Reson Med ; 73(2): 605-13, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24691843

RESUMEN

PURPOSE: To propose a method for mitigating slab boundary artifacts in three-dimensional (3D) multislab diffusion imaging with no or minimal increases in scan time. METHODS: The multislab acquisition was treated as parallel imaging acquisition where the slab profiles acted as the traditional receiver sensitivity profiles. All the slabs were then reconstructed simultaneously along the slab direction using Cartesian-based sensitivity encoding (SENSE) reconstruction. The slab profile estimation was performed using either a Bloch simulation or a calibration scan. RESULTS: Both phantom and in vivo results showed negligible slab boundary artifacts after reconstruction using the proposed method. The performance of the proposed method is comparable to the state-of-the-art slab combination method without the scan time penalty that depends on the number of acquired volumes. The obtained g-factor map of the SENSE reconstruction problem showed a maximum g-factor of 1.7 in the region of interest. CONCLUSION: We proposed a novel method for mitigating slab boundary artifacts in 3D diffusion imaging by treating the multislab acquisition as a parallel imaging acquisition and reconstructing all slabs simultaneously using Cartesian SENSE. Unlike existing methods, the scan time increase, if any, does not scale with the number of image volumes acquired.


Asunto(s)
Artefactos , Encéfalo/anatomía & histología , Imagen de Difusión por Resonancia Magnética/métodos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Algoritmos , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
13.
J Magn Reson Imaging ; 41(5): 1447-53, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-24956237

RESUMEN

BACKGROUND: Susceptibility-weighted imaging (SWI) in neuroimaging can be challenging due to long scan times of three-dimensional (3D) gradient recalled echo (GRE), while faster techniques such as 3D interleaved echo-planar imaging (iEPI) are prone to motion artifacts. Here we outline and implement a 3D short-axis propeller echo-planar imaging (SAP-EPI) trajectory as a faster, motion-correctable approach for SWI. METHODS: Experiments were conducted on a 3T MRI system. The 3D SAP-EPI, 3D iEPI, and 3D GRE SWI scans were acquired on two volunteers. Controlled motion experiments were conducted to test the motion-correction capability of 3D SAP-EPI. The 3D SAP-EPI SWI data were acquired on two pediatric patients as a potential alternative to 2D GRE used clinically. RESULTS: The 3D GRE images had a better target resolution (0.47 × 0.94 × 2 mm, scan time = 5 min), iEPI and SAP-EPI images (resolution = 0.94 × 0.94 × 2 mm) were acquired in a faster scan time (1:52 min) with twice the brain coverage. SAP-EPI showed motion-correction capability and some immunity to undersampling from rejected data. CONCLUSION: While 3D SAP-EPI suffers from some geometric distortion, its short scan time and motion-correction capability suggest that SAP-EPI may be a useful alternative to GRE and iEPI for use in SWI, particularly in uncooperative patients.


Asunto(s)
Artefactos , Encéfalo/anatomía & histología , Imagen de Difusión por Resonancia Magnética/métodos , Imagen Eco-Planar/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Adulto , Algoritmos , Humanos , Aumento de la Imagen/métodos , Masculino , Movimiento (Física) , Imagen Multimodal/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
14.
Magn Reson Med ; 71(1): 83-94, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23447055

RESUMEN

PURPOSE: Previous studies in phantoms and animals using animal MR systems have shown promising results in using oscillating gradient spin echo (OGSE) diffusion acquisition to depict microstructure information. The OGSE approach has also been shown to be a sensitive biomarker of tumor treatment response and white matter-related diseases. Translating these studies to a human MR scanner faces multiple challenges due to the much weaker gradient system. The goals of this study are to optimize the OGSE acquisition for a human MR system and investigate its applicability in the in vivo human brain. METHODS: An analytical analysis of the OGSE modulation spectrum was provided. Based on this analysis and thorough simulation experiments, the OGSE acquisition was optimized in terms of diffusion waveform shape, waveform timing, and sequence timing-to achieve higher diffusion sensitivity and better sampling of the diffusion spectrum. RESULTS: The trapezoid-cosine waveform was found to be the optimal OGSE waveform. At the three employed peak encoding frequencies of 18 Hz, 44 Hz, and 63 Hz, the waveform polarity for the least blurry sampling of the diffusion spectrum was 90+/180-, 90+/180+, and 90+/180+, respectively. For the highest diffusion-to-noise ratio at 63 Hz, the b-value was 200 s/mm(2) and the echo time was 116 ms. Using the optimized sequence, a frequency dependence of the measured apparent diffusion coefficients was observed in white matter-dominant regions such as the corpus callosum. CONCLUSION: The obtained results demonstrate, for the first time, the potential of using an OGSE acquisition for investigating microstructure information on a human MR system.


Asunto(s)
Algoritmos , Encéfalo/anatomía & histología , Imagen de Difusión por Resonancia Magnética/métodos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Oscilometría/métodos , Humanos , Almacenamiento y Recuperación de la Información/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
15.
Sci Rep ; 14(1): 12604, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824230

RESUMEN

Pulse wave encephalopathy (PWE) is hypothesised to initiate many forms of dementia, motivating its identification and risk assessment. As candidate pulsatility based biomarkers for PWE, pulsatility index and pulsatility damping have been studied and, currently, do not adequately stratify risk due to variability in pulsatility and spatial bias. Here, we propose a locus-independent pulsatility transmission coefficient computed by spatially tracking pulsatility along vessels to characterise the brain pulse dynamics at a whole-organ level. Our preliminary analyses in a cohort of 20 subjects indicate that this measurement agrees with clinical observations relating blood pulsatility with age, heart rate, and sex, making it a suitable candidate to study the risk of PWE. We identified transmission differences between vascular regions perfused by the basilar and internal carotid arteries attributed to the identified dependence on cerebral blood flow, and some participants presented differences between the internal carotid perfused regions that were not related to flow or pulsatility burden, suggesting underlying mechanical differences. Large populational studies would benefit from retrospective pulsatility transmission analyses, providing a new comprehensive arterial description of the hemodynamic state in the brain. We provide a publicly available implementation of our tools to derive this coefficient, built into pre-existing open-source software.


Asunto(s)
Circulación Cerebrovascular , Imagen por Resonancia Magnética , Flujo Pulsátil , Humanos , Femenino , Masculino , Circulación Cerebrovascular/fisiología , Imagen por Resonancia Magnética/métodos , Anciano , Persona de Mediana Edad , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Encéfalo/irrigación sanguínea , Análisis de la Onda del Pulso/métodos , Arteria Carótida Interna/diagnóstico por imagen , Arteria Carótida Interna/fisiología , Arteria Basilar/diagnóstico por imagen , Arteria Basilar/fisiología , Adulto
16.
Diagnostics (Basel) ; 14(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38396456

RESUMEN

Background: Delayed Post-Hypoxic Leukoencephalopathy (DPHL), or Grinker's myelinopathy, is a syndrome in which extensive changes are seen in the white matter of the cerebral hemispheres with MRI weeks or months after a hypoxic episode. T2-weighted spin echo (T2-wSE) and/or T2-Fluid Attenuated Inversion Recovery (T2-FLAIR) images classically show diffuse hyperintensities in white matter which are thought to be near pathognomonic of the condition. The clinical features include Parkinsonism and akinetic mutism. DPHL is generally regarded as a rare condition. Methods and Results: Two cases of DPHL imaged with MRI nine months and two years after probable hypoxic episodes are described. No abnormalities were seen on the T2-FLAIR images with MRI, but very extensive changes were seen in the white matter of the cerebral and cerebellar hemisphere on divided Subtraction Inversion Recovery (dSIR) images. dSIR sequences may produce ten times the contrast of conventional inversion recovery (IR) sequences from small changes in T1. The clinical findings in both cases were of cognitive impairment without Parkinsonism or akinetic mutism. Conclusion: The classic features of DPHL may only represent the severe end of a spectrum of diseases in white matter following global hypoxic injury to the brain. The condition may be much more common than is generally thought but may not be recognized using conventional clinical and MRI criteria for diagnosis. Reappraisal of the syndrome of DPHL to include clinically less severe cases and to encompass recent advances in MRI is advocated.

17.
Tomography ; 10(7): 983-1013, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058046

RESUMEN

Ultra-high contrast (UHC) MRI describes forms of MRI in which little or no contrast is seen on conventional MRI images but very high contrast is seen with UHC techniques. One of these techniques uses the divided subtracted inversion recovery (dSIR) sequence, which, in modelling studies, can produce ten times the contrast of conventional inversion recovery (IR) sequences. When used in cases of mild traumatic brain injury (mTBI), the dSIR sequence frequently shows extensive abnormalities in white matter that appears normal when imaged with conventional T2-fluid-attenuated IR (T2-FLAIR) sequences. The changes are bilateral and symmetrical in white matter of the cerebral and cerebellar hemispheres. They partially spare the anterior and posterior central corpus callosum and peripheral white matter of the cerebral hemispheres and are described as the whiteout sign. In addition to mTBI, the whiteout sign has also been seen in methamphetamine use disorder and Grinker's myelinopathy (delayed post-hypoxic leukoencephalopathy) in the absence of abnormalities on T2-FLAIR images, and is a central component of post-insult leukoencephalopathy syndromes. This paper describes the concept of ultra-high contrast MRI, the whiteout sign, the theory underlying the use of dSIR sequences and post-insult leukoencephalopathy syndromes.


Asunto(s)
Leucoencefalopatías , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Leucoencefalopatías/diagnóstico por imagen , Lesiones Encefálicas/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
18.
J Neurointerv Surg ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38320850

RESUMEN

BACKGROUND: Abnormal intracranial aneurysm (IA) wall motion has been associated with IA growth and rupture. Recently, a new image processing algorithm called amplified Flow (aFlow) has been used to successfully track IA wall motion by combining the amplification of cine and four-dimensional (4D) Flow MRI. We sought to apply aFlow to assess wall motion as a potential marker of IA growth in a paired-wise analysis of patients with growing versus stable aneurysms. METHODS: In this retrospective case-control study, 10 patients with growing IAs and a matched cohort of 10 patients with stable IAs who had baseline 4D Flow MRI were included. The aFlow was used to amplify and extract IA wall displacements from 4D Flow MRI. The associations of aFlow parameters with commonly used risk factors and morphometric features were assessed using paired-wise univariate and multivariate analyses. RESULTS: aFlow quantitative results showed significantly (P=0.035) higher wall motion displacement depicted by mean±SD 90th% values of 2.34±0.72 in growing IAs versus 1.39±0.58 in stable IAs with an area under the curve of 0.85. There was also significantly (P<0.05) higher variability of wall deformation across IA geometry in growing versus stable IAs depicted by the dispersion variables including 121-150% larger standard deviation ([Formula: see text]) and 128-161% wider interquartile range [Formula: see text]. CONCLUSIONS: aFlow-derived quantitative assessment of IA wall motion showed greater wall motion and higher variability of wall deformation in growing versus stable IAs.

19.
AJR Am J Roentgenol ; 200(5): W437-43, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23617511

RESUMEN

OBJECTIVE: Readout-segmented echo-planar imaging (EPI) has been suggested as an alternative to single-shot EPI for diffusion-weighted imaging (DWI) with reduced distortion. However, clinical comparisons of readout-segmented EPI and EPI DWI are limited by unmatched imaging parameters and reconstruction procedures. Our goal was to compare the clinical utility of generalized autocalibrating partial parallel acquisition (GRAPPA)-accelerated readout-segmented EPI DWI with GRAPPA-accelerated EPI DWI for visualization of the pediatric brain in regions prone to distortion, such as the orbit, skull base, and posterior fossa. SUBJECTS AND METHODS: Thirty consecutive patients (mean age, 7.8 years) presenting with orbital, skull base, and posterior fossa neuropathologic abnormalities were scanned at 3 T. Images were obtained using GRAPPA-accelerated readout-segmented EPI and GRAPPA-accelerated EPI with an identical scanning time, acceleration factor, target resolution, and image postprocessing procedure. The two datasets were independently reviewed by two blinded neuroradiologists. Imaging studies were evaluated for resolution, signal-to-noise ratio (SNR), contrast, distortion, lesion conspicuity, and diagnostic confidence and graded using a 7-point Likert scale (1, nondiagnostic; 7, outstanding). RESULTS: There was good reader agreement in the scores (κ = 0.66; 95% CI, 0.54-0.78). The mean scores for EPI and readout-segmented EPI, respectively, were as follows: resolution, 5.0 and 6.0; SNR, 5.5 and 3.0; contrast, 3.7 and 3.2; distortion, 4.8 and 6.0; lesion conspicuity, 4.6 and 5.1; and diagnostic confidence, 4.7 and 5.4. Readout-segmented EPI was superior in resolution, distortion reduction, lesion conspicuity, and diagnostic confidence, whereas EPI scored better in SNR and contrast. Readout-segmented EPI was considered the better sequence overall in 85% of the cases. CONCLUSION: This study shows the benefits of improved resolution and reduced distortion of readout-segmented EPI in evaluating the orbit, skull base, and posterior fossa, sites of common neuropathologic abnormalities in children.


Asunto(s)
Encefalopatías/patología , Encéfalo/patología , Imagen Eco-Planar/métodos , Aumento de la Imagen/métodos , Adolescente , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Adulto Joven
20.
Quant Imaging Med Surg ; 13(10): 7304-7337, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37869282

RESUMEN

This review describes targeted magnetic resonance imaging (tMRI) of small changes in the T1 and the spatial properties of normal or near normal appearing white or gray matter in disease of the brain. It employs divided subtracted inversion recovery (dSIR) and divided reverse subtracted inversion recovery (drSIR) sequences to increase the contrast produced by small changes in T1 by up to 15 times compared to conventional T1-weighted inversion recovery (IR) sequences such as magnetization prepared-rapid acquisition gradient echo (MP-RAGE). This increase in contrast can be used to reveal disease with only small changes in T1 in normal appearing white or gray matter that is not apparent on conventional MP-RAGE, T2-weighted spin echo (T2-wSE) and/or fluid attenuated inversion recovery (T2-FLAIR) images. The small changes in T1 or T2 in disease are insufficient to produce useful contrast with conventional sequences. To produce high contrast dSIR and drSIR sequences typically need to be targeted for the nulling TI of normal white or gray matter, as well as for the sign and size of the change in T1 in these tissues in disease. The dSIR sequence also shows high signal boundaries between white and gray matter. dSIR and drSIR are essentially T1 maps. There is a nearly linear relationship between signal and T1 in the middle domain (mD) of the two sequences which includes T1s between the nulling T1s of the two acquired IR sequences. The drSIR sequence is also very sensitive to reductions in T1 produced by Gadolinium based contrast agents (GBCAs), and when used with rigid body registration to align three-dimensional (3D) isotropic pre and post GBCA images may be of considerable value in showing subtle GBCA enhancement. In serial MRI studies performed at different times, the high signal boundaries generated by dSIR and drSIR sequences can be used with rigid body registration of 3D isotropic images to demonstrate contrast arising from small changes in T1 (without or with GBCA enhancement) as well as small changes in the spatial properties of normal tissues and lesions, such as their site, shape, size and surface. Applications of the sequences in cases of multiple sclerosis (MS) and methamphetamine dependency are illustrated. Using targeted narrow mD dSIR sequences, widespread abnormalities were seen in areas of normal appearing white matter shown with conventional T2-wSE and T2-FLAIR sequences. Understanding of the features of dSIR and drSIR images is facilitated by the use of their T1-bipolar filters; to explain their targeting, signal, contrast, boundaries, T1 mapping and GBCA enhancement. Targeted MRI (tMRI) using dSIR and drSIR sequences may substantially improve clinical MRI of the brain by providing unequivocal demonstration of abnormalities that are not seen with conventional sequences.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA