RESUMEN
Rationale: There are limited therapeutic options for patients with coronavirus disease (COVID-19)-related acute respiratory distress syndrome with inflammation-mediated lung injury. Mesenchymal stromal cells offer promise as immunomodulatory agents. Objectives: Evaluation of efficacy and safety of allogeneic mesenchymal cells in mechanically-ventilated patients with moderate or severe COVID-19-induced respiratory failure. Methods: Patients were randomized to two infusions of 2 million cells/kg or sham infusions, in addition to the standard of care. We hypothesized that cell therapy would be superior to sham control for the primary endpoint of 30-day mortality. The key secondary endpoint was ventilator-free survival within 60 days, accounting for deaths and withdrawals in a ranked analysis. Measurements and Main Results: At the third interim analysis, the data and safety monitoring board recommended that the trial halt enrollment as the prespecified mortality reduction from 40% to 23% was unlikely to be achieved (n = 222 out of planned 300). Thirty-day mortality was 37.5% (42/112) in cell recipients versus 42.7% (47/110) in control patients (relative risk [RR], 0.88; 95% confidence interval, 0.64-1.21; P = 0.43). There were no significant differences in days alive off ventilation within 60 days (median rank, 117.3 [interquartile range, 60.0-169.5] in cell patients and 102.0 [interquartile range, 54.0-162.5] in control subjects; higher is better). Resolution or improvement of acute respiratory distress syndrome at 30 days was observed in 51/104 (49.0%) cell recipients and 46/106 (43.4%) control patients (odds ratio, 1.36; 95% confidence interval, 0.57-3.21). There were no infusion-related toxicities and overall serious adverse events over 30 days were similar. Conclusions: Mesenchymal cells, while safe, did not improve 30-day survival or 60-day ventilator-free days in patients with moderate and/or severe COVID-19-related acute respiratory distress syndrome.
Asunto(s)
COVID-19 , Células Madre Mesenquimatosas , Síndrome de Dificultad Respiratoria , Humanos , COVID-19/terapia , SARS-CoV-2 , Pulmón , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/tratamiento farmacológicoRESUMEN
OBJECTIVE: To design and establish a prospective biospecimen repository that integrates multi-omics assays with clinical data to study mechanisms of controlled injury and healing. BACKGROUND: Elective surgery is an opportunity to understand both the systemic and focal responses accompanying controlled and well-characterized injury to the human body. The overarching goal of this ongoing project is to define stereotypical responses to surgical injury, with the translational purpose of identifying targetable pathways involved in healing and resilience, and variations indicative of aberrant peri-operative outcomes. METHODS: Clinical data from the electronic medical record combined with large-scale biological data sets derived from blood, urine, fecal matter, and tissue samples are collected prospectively through the peri-operative period on patients undergoing 14 surgeries chosen to represent a range of injury locations and intensities. Specimens are subjected to genomic, transcriptomic, proteomic, and metabolomic assays to describe their genetic, metabolic, immunologic, and microbiome profiles, providing a multidimensional landscape of the human response to injury. RESULTS: The highly multiplexed data generated includes changes in over 28,000 mRNA transcripts, 100 plasma metabolites, 200 urine metabolites, and 400 proteins over the longitudinal course of surgery and recovery. In our initial pilot dataset, we demonstrate the feasibility of collecting high quality multi-omic data at pre- and postoperative time points and are already seeing evidence of physiologic perturbation between timepoints. CONCLUSIONS: This repository allows for longitudinal, state-of-the-art geno-mic, transcriptomic, proteomic, metabolomic, immunologic, and clinical data collection and provides a rich and stable infrastructure on which to fuel further biomedical discovery.
Asunto(s)
Biología Computacional , Proteómica , Genómica , Humanos , Metabolómica , Estudios Prospectivos , Proteómica/métodosRESUMEN
Abdominal wall transplantation (AWT) was introduced in 1999 in the context of reconstruction of complex abdominal wall defects in conjunction with visceral organ transplantation. As of recently, 38 cases of total AWT have been performed worldwide, about half of which were performed in the United States. While AWT is technically feasible, one of the major challenges presenting to the reconstructive surgeon is time to revascularization of the donor abdominal wall (AW), given the immediate proximity of the visceral organ and AWT. The authors report a novel AW revascularization technique during a synchronous small bowel and AWT in a 37-year-old man.
Asunto(s)
Pared Abdominal/irrigación sanguínea , Fístula Intestinal/terapia , Intestino Delgado/trasplante , Trasplante de Órganos , Síndrome del Intestino Corto/terapia , Alotrasplante Compuesto Vascularizado , Adulto , Humanos , Fístula Intestinal/patología , Masculino , Pronóstico , Síndrome del Intestino Corto/patologíaRESUMEN
Nanoparticle biodistribution in vivo is an essential component to the success of nanoparticle-based drug delivery systems. Previous studies with fluorescently labeled expansile nanoparticles, or "eNPs", demonstrated a high specificity of eNPs to tumors that is achieved through a materials-based targeting strategy. However, fluorescent labeling techniques are primarily qualitative in nature and the gold-standard for quantitative evaluation of biodistribution is through radiolabeling. In this manuscript, we synthesize 14C-labeled eNPs to quantitatively evaluate the biodistribution of these particles in a murine model of intraperitoneal mesothelioma via liquid scintillation counting. The results demonstrate a strong specificity of eNPs for tumors that lasts one to 2 weeks postinjection with an overall delivery efficiency to the tumor tissue of 30% of the injected dose which is congruent with prior reports of preclinical efficacy of the technology. Importantly, the route of administration is essential to the eNP's material-based targeting strategy with intraperitoneal administration leading to tumoral accumulation while, in contrast, intravenous administration leads to rapid clearance via the reticuloendothelial system and low tumoral accumulation. A comparison against nanoparticle delivery systems published over the past decade shows that the 30% tumoral delivery efficiency of the eNP is significantly higher than the 0.7% median delivery efficiency of other systems with sufficient quantitative data to define this metric. These results lay a foundation for targeting intraperitoneal tumors and encourage efforts to explore alternative, nonintravenous routes, of delivery to accelerate the translation of nanoparticle therapies to the clinic.
Asunto(s)
Mesotelioma Maligno , Mesotelioma , Nanopartículas , Ratones , Humanos , Animales , Distribución Tisular , Mesotelioma Maligno/tratamiento farmacológico , Inyecciones IntraperitonealesRESUMEN
One of the foremost challenges in translating nanoparticle technologies to the clinic is the requirement to produce materials on a large-scale. Scaling nanoparticle production methods is often non-trivial, and the success of these endeavors is frequently governed by whether or not an intermediate level of production, i.e., "pilot-scale" production, can be achieved. Pilot-scale production at the one-liter scale serves as a proof-of-concept that large-scale production will be possible. Here, we describe the pilot-scale production of the expansile nanoparticle (eNP) technology including verification of activity and efficacy following scaleup. We describe the challenges of sonication-based emulsification procedures and how these were overcome by use of a Microfluidizer technology. We also describe the problem-solving process that led to pre-polymerization of the nanoparticle polymer-a fundamental change from the lab-scale and previously published methods. Furthermore, we demonstrate good control over particle diameter, polydispersity and drug loading and the ability to sterilize the particles via filtration using this method. To facilitate long-term storage of these larger quantities of particles, we investigated six lyoprotectants and determined that sucrose is the most compatible with the current system. Lastly, we demonstrate that these changes to the manufacturing method do not adversely affect the swelling functionality of the particles, their highly specific localization to tumors, their non-toxicity in vivo or their efficacy in treating established intraperitoneal mesothelioma xenografts.
Asunto(s)
Mesotelioma Maligno , Mesotelioma , Nanopartículas , Humanos , Polímeros , SonicaciónRESUMEN
Inflammatory breast cancer (IBC) is an understudied and aggressive form of breast cancer with a poor prognosis, accounting for 2-6% of new breast cancer diagnoses but 10% of all breast cancer-related deaths in the United States. Currently there are no therapeutic regimens developed specifically for IBC, and it is critical to recognize that all aspects of treating IBC - including staging, diagnosis, and therapy - are vastly different than other breast cancers. In December 2014, under the umbrella of an interdisciplinary initiative supported by the Duke School of Medicine, researchers, clinicians, research administrators, and patient advocates formed the Duke Consortium for IBC to address the needs of patients in North Carolina (an ethnically and economically diverse state with 100 counties) and across the Southeastern United States. The primary goal of this group is to translate research into action and improve both awareness and patient care through collaborations with local, national and international IBC programs. The consortium held its inaugural meeting on Feb 28, 2018, which also marked Rare Disease Day and convened national research experts, clinicians, patients, advocates, government representatives, foundation leaders, staff, and trainees. The meeting focused on new developments and challenges in the clinical management of IBC, research challenges and opportunities, and an interactive session to garner input from patients, advocates, and community partners that would inform a strategic plan toward continuing improvements in IBC patient care, research, and education.
RESUMEN
JNJ-28871063 is a potent and highly selective pan-ErbB kinase inhibitor from a novel aminopyrimidine oxime structural class that blocks the proliferation of epidermal growth factor receptor (EGFR; ErbB1)- and ErbB2-overexpressing cells but does not affect the growth of non-ErbB-overexpressing cells. Treatment of human cancer cells with JNJ-28871063 inhibited phosphorylation of functionally important tyrosine residues in both EGFR and ErbB2 and blocked downstream signal transduction pathways responsible for proliferation and survival. A single dose of compound reduced phosphorylation of ErbB2 receptors in tumor-bearing mice, demonstrating target suppression in vivo. Tissue distribution studies show that JNJ-28871063 crosses the blood-brain barrier and penetrates into tumors, where it is able to accumulate to higher levels than those found in the plasma. JNJ-28871063 showed oral antitumor activity in human tumor xenograft models that overexpress EGFR and ErbB2. In an intracranial ErbB2-overexpressing tumor model, JNJ-28871063 extended survival relative to untreated animals. The brain is a primary site of metastasis for EGFR-overexpressing lung cancers and ErbB2-overexpressing breast cancers. Therefore, the ability to penetrate into the brain could be an advantage over existing therapies such as trastuzumab (Herceptin) and cetuximab (Erbitux), which are antibodies and do not cross the blood-brain barrier. These results show that JNJ-28871063 is orally bioavailable, has activity against EGFR and ErbB2-dependent tumor xenografts, and can penetrate into the brain and inhibit ErbB2-overexpressing tumor growth.
Asunto(s)
Antineoplásicos/uso terapéutico , Barrera Hematoencefálica/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Inhibidores Enzimáticos/uso terapéutico , Morfolinas/química , Morfolinas/uso terapéutico , Pirimidinas/química , Pirimidinas/uso terapéutico , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Barrera Hematoencefálica/enzimología , Neoplasias Encefálicas/enzimología , Línea Celular Tumoral , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Humanos , Ratones , Ratones Desnudos , Ratones SCID , Morfolinas/farmacología , Pirimidinas/farmacología , Quinazolinas/química , Quinazolinas/farmacología , Quinazolinas/uso terapéutico , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto/métodosRESUMEN
Preclinical efficacy of i.v. IT-101, a nanoparticulate conjugate of 20(S)-camptothecin and a cyclodextrin-based polymer, was investigated in several mouse xenografts. The effects of different multiple dosing schedules on tumor growth of LS174T colon carcinoma xenografts are elucidated. All multiple dosing schedules administered over 15 to 19 days resulted in enhanced efficacy compared with untreated or single-dose groups. Further improvements in antitumor efficacy were not observed when the dosing frequency was increased from three weekly doses to five doses at 4-day intervals or 5 days of daily dosing followed by 2 days without dosing repeated in three cycles using similar cumulative doses. This observation was attributed to the extended release characteristics of camptothecin from the polymer. Antitumor efficacy was further evaluated in mice bearing six different s.c. xenografts (LS174T and HT29 colorectal cancer, H1299 non-small-cell lung cancer, H69 small-cell lung cancer, Panc-1 pancreatic cancer, and MDA-MB-231 breast cancer) and one disseminated xenograft (TC71-luc Ewing's sarcoma). In all cases, a single treatment cycle of three weekly doses of IT-101 resulted in a significant antitumor effect. Complete tumor regression was observed in all animals bearing H1299 tumors and in the majority of animals with disseminated Ewing's sarcoma tumors. Importantly, IT-101 is effective in a number of tumors that are resistant to treatment with irinotecan (MDA-MB-231, Panc-1, and HT29), consistent with the hypothesis that polymeric drug conjugates may be able to overcome certain kinds of multidrug resistance. Taken together, these results indicate that IT-101 has good tolerability and antitumor activity against a wide range of tumors.
Asunto(s)
Camptotecina/uso terapéutico , Ciclodextrinas/química , Modelos Animales de Enfermedad , Polímeros/química , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Neoplasias de la Mama/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Células Pequeñas/tratamiento farmacológico , Neoplasias Colorrectales/tratamiento farmacológico , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Ratones Desnudos , Nanotecnología , Neoplasias Pancreáticas/tratamiento farmacológico , Sarcoma de Ewing/tratamiento farmacológico , Células Tumorales CultivadasRESUMEN
Modulation of aberrant cell cycle regulation is a potential therapeutic strategy applicable to a wide range of tumor types. JNJ-7706621 is a novel cell cycle inhibitor that showed potent inhibition of several cyclin-dependent kinases (CDK) and Aurora kinases and selectively blocked proliferation of tumor cells of various origins but was about 10-fold less effective at inhibiting normal human cell growth in vitro. In human cancer cells, treatment with JNJ-7706621 inhibited cell growth independent of p53, retinoblastoma, or P-glycoprotein status; activated apoptosis; and reduced colony formation. At low concentrations, JNJ-7706621 slowed the growth of cells and at higher concentrations induced cytotoxicity. Inhibition of CDK1 kinase activity, altered CDK1 phosphorylation status, and interference with downstream substrates such as retinoblastoma were also shown in human tumor cells following drug treatment. Flow cytometric analysis of DNA content showed that JNJ-7706621 delayed progression through G1 and arrested the cell cycle at the G2-M phase. Additional cellular effects due to inhibition of Aurora kinases included endoreduplication and inhibition of histone H3 phosphorylation. In a human tumor xenograft model, several intermittent dosing schedules were identified that produced significant antitumor activity. There was a direct correlation between total cumulative dose given and antitumor effect regardless of the dosing schedule. These results show the therapeutic potential of this novel cell cycle inhibitor and support clinical evaluation of JNJ-7706621.
Asunto(s)
Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Triazoles/farmacología , Animales , Aurora Quinasas , Línea Celular Tumoral , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Células Endoteliales/enzimología , Femenino , Células HeLa , Humanos , Melanoma/tratamiento farmacológico , Melanoma/enzimología , Ratones , Ratones Desnudos , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Two closely related diaryl acylsulfonamides were recently reported as potent antitumor agents against a broad spectrum of human tumor xenografts (colon, lung, breast, ovary, and prostate) in nude mice. Especially intriguing was their activity against colorectal cancer xenografts. In this paper, rapid parallel synthesis along with traditional medicinal chemistry techniques were used to quickly delineate the structure-activity relationships of the substitution patterns in both phenyl rings of the acylsufonamide anti-proliferative scaffold. Although the molecular target of the compounds remains unclear, we determined that the vascular endothelial growth factor-dependent human umbilical vein endothelial cells assay in combination with a soft agar disk diffusion assay allowed for optimization of potency in the series. The pharmacokinetic properties and in vivo activity in an HCT116 xenograft model are reported for representative compounds.
Asunto(s)
Antineoplásicos/síntesis química , Sulfonamidas/síntesis química , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , División Celular/efectos de los fármacos , Línea Celular , Ensayos de Selección de Medicamentos Antitumorales , Endotelio Vascular/citología , Endotelio Vascular/efectos de los fármacos , Femenino , Semivida , Humanos , Técnicas In Vitro , Ratones , Ratones Desnudos , Relación Estructura-Actividad Cuantitativa , Ratas , Ratas Endogámicas F344 , Sulfonamidas/química , Sulfonamidas/farmacología , Trasplante Heterólogo , Venas Umbilicales/citología , Factor A de Crecimiento Endotelial Vascular/farmacología , Factor A de Crecimiento Endotelial Vascular/fisiologíaRESUMEN
GEM 231, a second-generation antisense oligonucleotide targeted against the RIalpha subunit of protein kinase A (PKA) was co-administered with the chemotherapeutic agent irinotecan, a topoisomerase-I inhibitor, to study the antitumor efficacy of the combination in nude mice bearing various human tumor xenografts. The combination treatment of GEM 231 and irinotecan produced enhanced and prolonged tumor-growth inhibition, compared with irinotecan monotherapy, against human colon (HCT-116), pancreas (Panc-1), prostate (PC3) and lung (SKMES) tumors in mice. The extent of tumor-growth inhibition, however, varied among the different tumor models studied. The tumor-growth inhibition depended on the dose of GEM 231 co-administered with irinotecan. The combination of GEM 231 (20 mg/kg, i.p., 5 days on 2 days off x 7) and irinotecan (50 mg/kg, i.v., qwk x 3) produced significantly longer tumor-growth delay than did irinotecan administered alone. Importantly, the co-administration of irinotecan and GEM 231 did not result in higher toxicity compared with monotherapies in the several tumor models tested. These results suggest that the use of irinotecan in combination with GEM 231 may increase the therapeutic index of irinotecan in cancer patients.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Camptotecina/análogos & derivados , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Neoplasias Experimentales/tratamiento farmacológico , Oligonucleótidos Antisentido/uso terapéutico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Peso Corporal/efectos de los fármacos , Camptotecina/administración & dosificación , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Irinotecán , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Oligonucleótidos/administración & dosificación , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Tasa de Supervivencia , Resultado del TratamientoRESUMEN
PURPOSE: Corticorelin acetate (CrA) is a synthetic form of corticotropin-releasing factor undergoing clinical trials in the treatment of peritumoral brain edema (PBE). We sought to investigate preclinically its potential as an antitumor agent against human solid tumors and to assess its ability to enhance the therapeutic activity of bevacizumab (BEV) in these same models. METHODS: The in vivo efficacy of CrA as a single agent and in combination with the antiangiogenic agent, BEV, was examined in two preclinical human tumor models, the MX-1 breast and Colo-205 colon carcinomas. These models were selected based on their known sensitivity to BEV and were tumor types in which BEV has been approved for clinical use. The corneal micropocket assay was also performed to assess the antiangiogenic activity of CrA relative to BEV. The exposure level of CrA in the mouse using a typical preclinical regimen was measured so as to compare it to reported clinical exposure levels. RESULTS: CrA was active as a single agent in the MX-1 breast carcinoma, but did not exhibit statistically significant activity as a single agent in the Colo-205 colon carcinoma under the doses and schedules used in the study. When BEV, which was active or near active in both the MX-1 and Colo-205 models, was administered concomitantly with CrA, therapeutic outcomes were observed that were significantly better than those obtained using either monotherapy. These therapeutic potentiations using CrA plus BEV were obtained in the absence of any observable increase in toxicities. CrA was active in the corneal micropocket assay, producing a substantial (>70%) inhibition of neovascularization. A representative CrA regimen in mice produced an exposure within eightfold of human exposure determined at one-half the current clinical dose. CONCLUSIONS: The application of CrA for the treatment of PBE likely involves its activity as an antiangiogenic agent, which may be one possible mechanism to explain its observed preclinical antitumor activity. That activity, as well as its ability to provide an enhanced therapeutic outcome when given in conjunction with BEV in the absence of increased toxicity, supports the use of CrA clinically as other than a replacement therapy for dexamethasone in PBE.
Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias del Colon/tratamiento farmacológico , Hormona Liberadora de Corticotropina/uso terapéutico , Inhibidores de la Angiogénesis/administración & dosificación , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales Humanizados , Antineoplásicos/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Bevacizumab , Hormona Liberadora de Corticotropina/administración & dosificación , Hormona Liberadora de Corticotropina/farmacocinética , Femenino , Humanos , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Trasplante HeterólogoRESUMEN
Animal models have contributed significantly to our understanding of the underlying biological mechanisms of Alzheimer's disease (AD). As a result, over 300 interventions have been investigated and reported to mitigate pathological phenotypes or improve behavior in AD animal models or both. To date, however, very few of these findings have resulted in target validation in humans or successful translation to disease-modifying therapies. Challenges in translating preclinical studies to clinical trials include the inability of animal models to recapitulate the human disease, variations in breeding and colony maintenance, lack of standards in design, conduct and analysis of animal trials, and publication bias due to under-reporting of negative results in the scientific literature. The quality of animal model research on novel therapeutics can be improved by bringing the rigor of human clinical trials to animal studies. Research communities in several disease areas have developed recommendations for the conduct and reporting of preclinical studies in order to increase their validity, reproducibility, and predictive value. To address these issues in the AD community, the Alzheimer's Drug Discovery Foundation partnered with Charles River Discovery Services (Morrisville, NC, USA) and Cerebricon Ltd. (Kuopio, Finland) to convene an expert advisory panel of academic, industry, and government scientists to make recommendations on best practices for animal studies testing investigational AD therapies. The panel produced recommendations regarding the measurement, analysis, and reporting of relevant AD targets, th choice of animal model, quality control measures for breeding and colony maintenance, and preclinical animal study design. Major considerations to incorporate into preclinical study design include a priori hypotheses, pharmacokinetics-pharmacodynamics studies prior to proof-of-concept testing, biomarker measurements, sample size determination, and power analysis. The panel also recommended distinguishing between pilot 'exploratory' animal studies and more extensive 'therapeutic' studies to guide interpretation. Finally, the panel proposed infrastructure and resource development, such as the establishment of a public data repository in which both positive animal studies and negative ones could be reported. By promoting best practices, these recommendations can improve the methodological quality and predictive value of AD animal studies and make the translation to human clinical trials more efficient and reliable.
RESUMEN
PURPOSE: Inhibition of the vascular endothelial growth factor (VEGF) axis is the basis of all currently approved antiangiogenic therapies. In preclinical models, anti-VEGF blocking antibodies have shown broad efficacy that is dependent on both tumor context and treatment duration. We aimed to characterize this activity and to evaluate the effects of discontinuation of treatment on the dynamics of tumor regrowth. EXPERIMENTAL DESIGN: We evaluated the effects of anti-VEGF treatment on tumor growth and survival in 30 xenograft models and in genetic mouse models of cancer. Histologic analysis was used to evaluate the effects of treatment on tumor vasculature. We used a variety of treatment regimens to allow analysis of the effects of treatment duration and cessation on growth rate, survival, and vascular density. RESULTS: Preclinical tumor models were characterized for their varied dependence on VEGF, thereby defining models for testing other agents that may complement or augment anti-VEGF therapy. We also found that longer exposure to anti-VEGF monoclonal antibodies delayed tumor growth and extended survival in established tumors from both cell transplants and genetic tumor models and prevented regrowth of a subset of residual tumors following cytoablative therapy. Discontinuation of anti-VEGF in established tumors resulted in regrowth at a rate slower than that in control-treated animals, with no evidence of accelerated tumor growth or rebound. However, more rapid regrowth was observed following discontinuation of certain chemotherapies. Concurrent administration of anti-VEGF seemed to normalize these accelerated growth rates. CONCLUSIONS: In diverse preclinical models, continuous VEGF suppression provides maximal benefit as a single agent, combined with chemotherapy, or as maintenance therapy once chemotherapy has been stopped.
Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Neoplasias Experimentales/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Inhibidores de la Angiogénesis/farmacocinética , Animales , Anticuerpos Monoclonales/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Línea Celular Tumoral , Reacciones Cruzadas , Humanos , Ratones , Neovascularización Patológica/tratamiento farmacológico , Resultado del Tratamiento , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
An i.v. formulation of rubitecan (9-nitrocamptothecin) was evaluated in five human solid tumor xenograft models. Rubitecan in IDD-P, a particulate suspension of the insoluble analog, produced significant tumor growth delay in athymic nude mice bearing A375 melanoma, and MX-1 breast, SKMES non-small-cell lung, Panc-1 pancreatic and HT29 colon carcinomas. The activity of i.v. rubitecan was similar or somewhat superior to those of i.p. regimens with the reference drugs, irinotecan and topotecan. Tumor sensitivity to rubitecan in IDD-P was MX-1>A375>SKMES >Panc-1>HT29. Some complete regression responses were seen with MX-1, A375 and SKMES tumors treated with 2.5 mg/kg on a schedule of two 5-day dosing cycles separated by 2 drug-free days. In nude mice, the MTD of rubitecan in IDD-P lies between 2 and 2.5 mg/kg on this schedule; antitumor efficacy was achieved with doses between 2.5 and 1.25 mg/kg. Dosing with 6.6 mg/kg rubitecan in IDD-P on intermittent schedules (4- or 7-day intervals) was tolerated, but less efficacious, when tested in the A375 model. The good responses obtained with rubitecan in IDD-P suggest it could be used clinically in circumstances where an i.v. formulation offers advantages to oral or aerosol formulations.
Asunto(s)
Antineoplásicos/uso terapéutico , Camptotecina/análogos & derivados , Camptotecina/uso terapéutico , Sistemas de Liberación de Medicamentos , Neoplasias Experimentales/tratamiento farmacológico , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/toxicidad , Camptotecina/administración & dosificación , Camptotecina/toxicidad , Cápsulas , Esquema de Medicación , Humanos , Inyecciones Intravenosas , Dosis Máxima Tolerada , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Tamaño de la Partícula , Resultado del Tratamiento , Células Tumorales CultivadasRESUMEN
Inhibition of angiogenesis may have wide use in the treatment of cancer; however, this approach alone will not cause tumor regression but may only slow the growth of solid tumors. The clinical potential of antiangiogenic agents may be increased by combining them with conventional chemotherapeutics. 4-[4-(1-Amino-1-methylethyl)phenyl]-2-[4-(2-morpholin-4-yl-ethyl)phenylamino]pyrimidine-5-carbonitrile (JNJ-17029259) represents a novel structural class of 5-cyanopyrimidines that are orally available, selective, nanomolar inhibitors of the vascular endothelial growth factor receptor-2 (VEGF-R2) and other tyrosine kinases involved in angiogenesis, such as platelet-derived growth factor receptor, fibroblast growth factor receptor, VEGF-R1, and VEGF-R3, but have little activity on other kinase families. At nanomolar levels, JNJ-17029259 blocks VEGF-stimulated mitogen-activated protein kinase signaling, proliferation/migration, and VEGF-R2 phosphorylation in human endothelial cells; inhibits the formation of vascular sprouting in the rat aortic ring model of angiogenesis; and interferes with the development of new veins and arteries in the chorioallantoic membrane assay. At higher concentrations of 1 to 3 microM, this compound shows antiproliferative activity on cells that may contribute to its antitumor effects. JNJ-17029259 delays the growth of a wide range of human tumor xenografts in nude mice when administered orally as single-agent therapy. Histological examination revealed that the tumors have evidence of reduced vascularity after treatment. In addition, JNJ-17029259 enhances the effects of the conventional chemotherapeutic drugs doxorubicin and paclitaxel in xenograft models when administered orally in combination therapy. An orally available angiogenesis inhibitor that can be used in conjunction with standard chemotherapeutic agents to augment their activity may have therapeutic benefit in stopping the progression of cancer and preventing metastasis.