RESUMEN
OBJECTIVES: Many reverse transcription polymerase chain reaction (RT-PCR) methods exist that can detect SARS-CoV-2 RNA in different matrices. RT-PCR is highly sensitive, although viral RNA may be detected long after active infection has taken place. SARS-CoV-2 proteins have shorter detection windows hence their detection might be more meaningful. Given salivary droplets represent a main source of transmission, we explored the detection of viral RNA and protein using four different detection platforms including SISCAPA peptide immunoaffinity liquid chromatography-mass spectrometry (SISCAPA-LC-MS) using polyclonal capture antibodies. METHODS: The SISCAPA-LC MS method was compared to RT-PCR, RT-loop-mediated isothermal amplification (RT-LAMP), and a lateral flow rapid antigen test (RAT) for the detection of virus material in the drool saliva of 102 patients hospitalised after infection with SARS-CoV-2. Cycle thresholds (Ct) of RT-PCR (E gene) were compared to RT-LAMP time-to-positive (TTP) (NE and Orf1a genes), RAT optical densitometry measurements (test line/control line ratio) and to SISCAPA-LC-MS for measurements of viral protein. RESULTS: SISCAPA-LC-MS showed low sensitivity (37.7â¯%) but high specificity (89.8â¯%). RAT showed lower sensitivity (24.5â¯%) and high specificity (100â¯%). RT-LAMP had high sensitivity (83.0â¯%) and specificity (100.0â¯%). At high initial viral RNA loads (<20 Ct), results obtained using SISCAPA-LC-MS correlated with RT-PCR (R2 0.57, p-value 0.002). CONCLUSIONS: Detection of SARS-CoV-2 nucleoprotein in saliva was less frequent than the detection of viral RNA. The SISCAPA-LC-MS method allowed processing of multiple samples in <150â¯min and was scalable, enabling high throughput.
Asunto(s)
COVID-19 , Espectrometría de Masas , Técnicas de Diagnóstico Molecular , ARN Viral , SARS-CoV-2 , Saliva , Humanos , Saliva/virología , Saliva/química , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/inmunología , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/virología , ARN Viral/análisis , Espectrometría de Masas/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Masculino , Sensibilidad y Especificidad , Femenino , Persona de Mediana Edad , Fosfoproteínas/análisis , Fosfoproteínas/inmunología , Proteínas de la Nucleocápside de Coronavirus/análisis , Proteínas de la Nucleocápside de Coronavirus/inmunología , Antígenos Virales/análisis , Antígenos Virales/inmunología , Adulto , Cromatografía Liquida/métodosRESUMEN
BACKGROUND: The British Antarctic bases offer a semiclosed environment for assessing the transmission and persistence of seasonal respiratory viruses. METHODS: Weekly swabbing was performed for respiratory pathogen surveillance (including SARS-CoV-2), at 2 British Antarctic Survey bases, during 2020: King Edward Point (KEP, 30 June to 29 September, 9 participants, 124 swabs) and Rothera (9 May to 6 June, 27 participants, 127 swabs). Symptom questionnaires were collected for any newly symptomatic cases that presented during this weekly swabbing period. RESULTS: At KEP, swabs tested positive for non-SARS-CoV-2 seasonal coronavirus (2), adenovirus (1), parainfluenza 3 (1), and respiratory syncytial virus B (1). At Rothera, swabs tested positive for non-SARS-CoV-2 seasonal coronavirus (3), adenovirus (2), parainfluenza 4 (1), and human metapneumovirus (1). All bacterial agents identified were considered to be colonizers and not pathogenic. CONCLUSIONS: At KEP, the timeline indicated that the parainfluenza 3 and adenovirus infections could have been linked to some of the symptomatic cases that presented. For the other viruses, the only other possible sources were the visiting ship crew members. At Rothera, the single symptomatic case presented too early for this to be linked to the subsequent viral detections, and the only other possible source could have been a single nonparticipating staff member.
Asunto(s)
Infecciones por Adenoviridae , COVID-19 , Infecciones por Paramyxoviridae , Infecciones del Sistema Respiratorio , Virus , Humanos , COVID-19/epidemiología , Pandemias , SARS-CoV-2 , Estudios Prospectivos , Regiones Antárticas , Infecciones por Paramyxoviridae/epidemiología , Encuestas y CuestionariosRESUMEN
BACKGROUND: Little is known about how asymptomatic testing as a method to control transmission of COVID-19 can be implemented, and the prevalence of asymptomatic infection within university populations. The objective of this study was to investigate how to effectively set-up and implement a COVID-19 testing programme using novel reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) technology and to quantify the scale of asymptomatic infection on a university campus. METHODS: An observational study to describe the set-up and implementation of a novel COVID-19 testing programme on a UK university campus between September and December 2020. RT-LAMP testing was used to identify asymptomatic cases. RESULTS: A total of 1,673 tests were performed using RT-LAMP during the study period, of which 9 were positive for COVID-19, giving an overall positivity rate of 0.54%, equivalent to a rate in the tested population of 538 cases per 100,000 over the duration of testing. All positive tests were found to be positive on RT-PCR testing, giving a false positive rate of 0%. CONCLUSIONS: This study shows that it is possible to rapidly setup a universal university testing programme for COVID-19 in collaboration with local healthcare providers using RT-LAMP testing. Positive results were comparable to those in the local population, though with a different peak of infection. Further research to inform the design of the testing programme includes focus groups of those who underwent testing and further interrogation of the demographics of those opting to be tested to identify potential access problems or inequalities.
Asunto(s)
Prueba de COVID-19 , COVID-19 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiología , SARS-CoV-2 , Infecciones Asintomáticas , Sensibilidad y Especificidad , Técnicas de Diagnóstico Molecular/métodos , Reino Unido/epidemiologíaAsunto(s)
COVID-19 , COVID-19/epidemiología , COVID-19/prevención & control , Humanos , Incidencia , SARS-CoV-2 , VacunaciónRESUMEN
We report an unusually high number of cases (n = 26) of parechovirus infections in the cerebrospinal fluid (CSF) of neonates and infants admitted with sepsis in the United Kingdom during 8 May to 2 August 2016. Although such infections in neonates and infants are well-documented, parechovirus has not been routinely included in many in-house and commercial PCR assays for CSF testing. Clinicians should consider routine parechovirus testing in young children presenting with sepsis.
Asunto(s)
Líquido Cefalorraquídeo/virología , Parechovirus/aislamiento & purificación , Infecciones por Picornaviridae/diagnóstico , Sepsis/epidemiología , Sepsis/virología , Femenino , Genotipo , Hospitalización , Humanos , Lactante , Recién Nacido , Tiempo de Internación/estadística & datos numéricos , Masculino , Parechovirus/genética , Infecciones por Picornaviridae/epidemiología , Infecciones por Picornaviridae/virología , ARN Viral , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Reino Unido/epidemiologíaRESUMEN
Outbreaks of COVID-19 in hospices for palliative care patients pose a unique and difficult situation. Staff, relatives and patients may be possible sources and recipients of infection. We present an outbreak of COVID-19 in a hospice setting, during the UK's first pandemic wave. During the outbreak period, 26 patients and 30 staff tested SARS-CoV-2 positive by laboratory-based RT-PCR testing. Most infected staff exhibited some mild, non-specific symptoms so affected staff members may not have voluntarily self-isolated or had themselves tested on this basis. Similarly, for infected patients, most became symptomatic and were then isolated. Additional, enhanced aerosol infection control measures were implemented, including opening of all windows where available; universal masking for all staff, including in non-clinical areas and taking breaks separately; screening for asymptomatic infection among staff and patients, with appropriate isolation (at home for staff) if infected; performing a ventilation survey of the hospice facility. After these measures were instigated, the numbers of COVID-19 cases decreased to zero over the following three weeks. This outbreak study demonstrated that an accurate understanding of the routes of infection for a new pathogen, as well as the nature of symptomatic versus asymptomatic infection and transmission, is crucial for controlling its spread.
RESUMEN
PURPOSE: To demonstrate the diagnostic performance of rapid SARS-CoV-2 RT-LAMP assays, comparing the performance of genomic versus sub-genomic sequence target with subsequent application in an asymptomatic screening population. METHODS: RT-LAMP diagnostic specificity (DSe) and sensitivity (DSe) was determined using 114 RT-PCR clinically positive and 88 RT-PCR clinically negative swab samples processed through the diagnostic RT-PCR service within the University Hospitals of Leicester NHS Trust. A swab-based RT-LAMP SARS-CoV-2 screening programme was subsequently made available to all staff and students at the University of Leicester (Autumn 2020), implemented to ISO 15189:2012 standards using NHS IT infrastructure and supported by University Hospital Leicester via confirmatory NHS diagnostic laboratory testing of RT-LAMP 'positive' samples. RESULTS: Validation samples reporting a Ct < 20 were detected at 100% DSe and DSp, reducing to 95% DSe (100% DSp) for all samples reporting a Ct < 30 (both genomic dual sub-genomic assays). Advisory screening identified nine positive cases in 1680 symptom free individuals (equivalent to 540 cases per 100,000) with results reported back to participants and feed into national statistics within 48 hours. CONCLUSION: This work demonstrates the utility of a rapid RT-LAMP assay for collapsing transmission of SARS-CoV-2 in an asymptomatic screening population.
Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiología , Humanos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , ARN Viral/genética , SARS-CoV-2/genética , Sensibilidad y EspecificidadRESUMEN
UK National Health Service (NHS) Clinical Virology Departments provide a repertoire of tests on clinical samples to detect the presence of viral genomic material or host immune responses to viral infection. In December 2019, a novel coronavirus (SARS-CoV-2) emerged which quickly developed into a global pandemic; NHS laboratories responded rapidly to upscale their testing capabilities. To date, there is little information on the impact of increased SARS-CoV-2 screening on non-SARS-CoV-2 testing within NHS laboratories. This report details the virology test requests received by the Leicester-based NHS Virology laboratory from January 2018 to May 2022. Data show that in spite of a dramatic increase in screening, along with multiple logistic and staffing issues, the Leicester Virology Department was mostly able to maintain the same level of service for non-respiratory virus testing while meeting the new increase in SARS-CoV-2 testing.
Asunto(s)
COVID-19 , Pandemias , Humanos , SARS-CoV-2 , Medicina Estatal , Prueba de COVID-19 , Laboratorios , Técnicas de Laboratorio Clínico , COVID-19/diagnóstico , COVID-19/epidemiología , Reino Unido/epidemiologíaRESUMEN
BACKGROUND: Human to human transmission of SARS-CoV-2 is driven by the respiratory route but little is known about the pattern and quantity of virus output from exhaled breath. We have previously shown that face-mask sampling (FMS) can detect exhaled tubercle bacilli and have adapted its use to quantify exhaled SARS-CoV-2 RNA in patients admitted to hospital with Coronavirus Disease-2019 (COVID-19). METHODS: Between May and December 2020, we took two concomitant FMS and nasopharyngeal samples (NPS) over two days, starting within 24 h of a routine virus positive NPS in patients hospitalised with COVID-19, at University Hospitals of Leicester NHS Trust, UK. Participants were asked to wear a modified duckbilled facemask for 30 min, followed by a nasopharyngeal swab. Demographic, clinical, and radiological data, as well as International Severe Acute Respiratory and emerging Infections Consortium (ISARIC) mortality and deterioration scores were obtained. Exposed masks were processed by removal, dissolution and analysis of sampling matrix strips fixed within the mask by RT-qPCR. Viral genome copy numbers were determined and results classified as Negative; Low: ≤999 copies; Medium: 1000-99,999 copies and High ≥ 100,000 copies per strip for FMS or per 100⯵l for NPS. RESULTS: 102 FMS and NPS were collected from 66 routinely positive patients; median age: 61 (IQR 49 - 77), of which FMS was positive in 38% of individuals and concomitant NPS was positive in 50%. Positive FMS viral loads varied over five orders of magnitude (<10-3.3 x 106 genome copies/strip); 21 (32%) patients were asymptomatic at the time of sampling. High FMS viral load was associated with respiratory symptoms at time of sampling and shorter interval between sampling and symptom onset (FMS High: median (IQR) 2 days (2-3) vs FMS Negative: 7 days (7-10), pâ¯=â¯0.002). On multivariable linear regression analysis, higher FMS viral loads were associated with higher ISARIC mortality (Medium FMS vs Negative FMS gave an adjusted coefficient of 15.7, 95% CI 3.7-27.7, pâ¯=â¯0.01) and deterioration scores (High FMS vs Negative FMS gave an adjusted coefficient of 37.6, 95% CI 14.0 to 61.3, pâ¯=â¯0.002), while NPS viral loads showed no significant association. CONCLUSION: We demonstrate a simple and effective method for detecting and quantifying exhaled SARS-CoV-2 in hospitalised patients with COVID-19. Higher FMS viral loads were more likely to be associated with developing severe disease compared to NPS viral loads. Similar to NPS, FMS viral load was highest in early disease and in those with active respiratory symptoms, highlighting the potential role of FMS in understanding infectivity.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Máscaras , Persona de Mediana Edad , ARN Viral , Carga ViralRESUMEN
The human pathogen Campylobacter jejuni has a classic heat shock response, showing induction of chaperones and proteases plus several unidentified proteins in response to a small increase in growth temperature. The genome contains two homologues to known heat shock response regulators, HrcA and HspR. Previous work has shown that HspR controls several heat-shock genes, but the hrcA regulon has not been defined. We have constructed single and double deletions of C. jejuni hrcA and hspR and analysed gene expression using microarrays. Only a small number of genes are controlled by these two regulators, and the two regulons overlap. Strains mutated in hspR, but not those mutated in hrcA, showed enhanced thermotolerance. Some genes previously identified as being downregulated in a strain lacking hspR showed no change in expression in our experiments.
Asunto(s)
Proteínas Bacterianas/metabolismo , Campylobacter jejuni/genética , Proteínas de Choque Térmico/metabolismo , Regulón , Proteínas Represoras/metabolismo , Proteínas Bacterianas/genética , Campylobacter jejuni/metabolismo , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Prueba de Complementación Genética , Proteínas de Choque Térmico/genética , Respuesta al Choque Térmico , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Bacteriano/genética , Proteínas Represoras/genéticaAsunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Pandemias , Prueba de COVID-19 , Técnicas de Laboratorio ClínicoRESUMEN
BACKGROUND/OBJECTIVES: Enteroviruses are the most common cause of aseptic or lymphocytic meningitis, particularly in children. With reports of unusually severe neurological disease in some patients infected with enterovirus D68 in North America, and a recent increase in the number of paediatric enterovirus meningitis cases presenting in this UK Midlands population, a retrospective regional surveillance study was performed. STUDY DESIGN: Cerebrospinal fluid (CSF) samples received were tested using the polymerase chain reaction (PCR) for HSV-1/2, VZV, enteroviruses and parechoviruses. Enterovirus PCR positive CSF samples were sent for further serotyping. A phylogenetic tree was constructed of the echovirus 30 VP1 sequences, where sufficient sample remained for sequencing. RESULTS: The number of enterovirus positive CSFs from each year were: 21 (2008), 7 (2011), 53 (2012), 58 (2013) and 31 (2014). Overall, 163 of the 170 serotyped enteroviruses belonged to the species B (echovirus 5, 6, 7, 9, 11, 13, 16, 17, 18, 21, 25, 30; coxsackie B1, B2, B3, B4, B5, A9), with only 7 belonging to species A (coxsackie A2, A6, A16 and enterovirus 71). Echovirus 30 was the predominant serotype overall, identified in 43 (25.3%) of samples, with a significantly higher proportion in the adult age group (37.3%) compared to the infant age group (12.3%). Phylogenetic analysis showed that these UK Midlands echovirus 30 VP1 sequences clustered most closely with those from Europe and China. CONCLUSION: This study showed a continued predominance of echovirus 30 as a cause of viral meningitis, particularly in adults, though more surveillance is needed.
Asunto(s)
Enterovirus Humano B , Infecciones por Enterovirus , Meningitis Viral , Adolescente , Adulto , Niño , Preescolar , Infecciones por Echovirus/epidemiología , Infecciones por Echovirus/virología , Enterovirus Humano B/clasificación , Enterovirus Humano B/genética , Infecciones por Enterovirus/epidemiología , Infecciones por Enterovirus/virología , Humanos , Lactante , Recién Nacido , Meningitis Viral/epidemiología , Meningitis Viral/virología , Filogenia , Reacción en Cadena de la Polimerasa , ARN Viral/líquido cefalorraquídeo , Reino Unido/epidemiología , Adulto JovenRESUMEN
Bodies found immersed in water can pose difficulties to the investigating authorities. Pathologists may be assisted with the diagnosis by the use of tests such as the analysis for diatoms or the levels of strontium in the blood, although there is a recognised level of uncertainty associated with these tests. Recent work from Japan has shown that using molecular approaches, most recently real-time polymerase chain reaction (PCR) assays with TaqMan probes for bacterioplankton, it is possible to undertake rapid, less laborious, high throughput tests to differentiate freshwater from marine bacterioplankton and in doing so provide a molecular diagnostic test to assist in the diagnosis of drowning. We report the experiences of a United Kingdom forensic pathology unit in the use of this PCR based system for the diagnosis of drowning. We applied this technique to 20 adult and child cadavers from 4 bath, 12 freshwater, 2 brackish and 2 salt water scenes both from within the United Kingdom and abroad. Drowning was concluded to be the cause of death in 16 of these 20 cases and the PCR method supported this conclusion in 12 of these 16 cases. The PCR did not provide evidence of drowning in the four cases where death was from other causes. We illustrate that this PCR method provides a rapid diagnostic supportive test for the diagnosis of drowning that can be applied to United Kingdom autopsy practice.