Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Adv Exp Med Biol ; 1390: 109-122, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36107315

RESUMEN

Nuclear receptors play a central role in both energy metabolism and cardiomyocyte death and survival in the heart. Recent evidence suggests they may also influence cardiomyocyte endowment. Although several members of the nuclear receptor family play key roles in heart maturation (including thyroid hormone receptors) and cardiac metabolism, here, the focus will be on the corticosteroid receptors, the glucocorticoid receptor (GR) and mineralocorticoid receptor (MR). The heart is an important target for the actions of corticosteroids, yet the homeostatic role of GR and MR in the healthy heart has been elusive. However, MR antagonists are important in the treatment of heart failure, a condition associated with mitochondrial dysfunction and energy failure in cardiomyocytes leading to mitochondria-initiated cardiomyocyte death (Ingwall and Weiss, Circ Res 95:135-145, 2014; Ingwall , Cardiovasc Res 81:412-419, 2009; Zhou and Tian , J Clin Invest 128:3716-3726, 2018). In contrast, animal studies suggest GR activation in cardiomyocytes has a cardioprotective role, including in heart failure.


Asunto(s)
Insuficiencia Cardíaca , Receptores de Mineralocorticoides , Animales , Insuficiencia Cardíaca/metabolismo , Miocitos Cardíacos/metabolismo , Receptores de Glucocorticoides/fisiología , Receptores de Hormona Tiroidea/metabolismo
2.
Neuroendocrinology ; 109(3): 257-265, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30884491

RESUMEN

Developmental exposure to stress hormones, i.e. glucocorticoids, is central to the process of prenatal programming of later-life health. Glucocorticoid overexposure, through stress or exogenous glucocorticoids, results in a reduced birthweight, as well as affective and neuropsychiatric outcomes in adults, combined with altered hypothalamus-pituitary-adrenal (HPA) axis activity. As such, glucocorticoids are tightly regulated during development through the presence of the metabolizing enzyme 11ß-hydroxysteroid dehydrogenase type 2 (HSD2). HSD2 is highly expressed in 2 hubs during development, i.e. the placenta and the fetus itself, protecting the fetus from inappropriate glucocorticoid exposure early in gestation. Through manipulation of HSD2 expression in the mouse placenta and fetal tissues, we are able to determine the relative contribution of glucocorticoid exposure in each compartment. Feto-placental HSD2 deletion resulted in a reduced birthweight and the development of anxiety- and depression-like behaviours in adult mice. The placenta itself is altered by glucocorticoid overexposure, which causes reduced placental weight and vascular arborisation. Furthermore, altered flow and resistance in the umbilical vessels and modification of fetal heart function and development are observed. However, brain-specific HSD2 removal (HSD2BKO) also generated adult phenotypes of depressive-like behaviour and memory deficits, demonstrating the importance of fetal brain HSD2 expression in development. In this review we will discuss potential mechanisms underpinning early-life programming of adult neuropsychiatric disorders and the novel therapeutic potential of statins.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 2/metabolismo , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Cognición/fisiología , Emociones/fisiología , Glucocorticoides/metabolismo , Animales , Femenino , Humanos , Embarazo , Efectos Tardíos de la Exposición Prenatal
3.
Proc Natl Acad Sci U S A ; 113(22): 6265-70, 2016 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-27185937

RESUMEN

Fetoplacental glucocorticoid overexposure is a significant mechanism underlying fetal growth restriction and the programming of adverse health outcomes in the adult. Placental glucocorticoid inactivation by 11ß-hydroxysteroid dehydrogenase type 2 (11ß-HSD2) plays a key role. We previously discovered that Hsd11b2(-/-) mice, lacking 11ß-HSD2, show marked underdevelopment of the placental vasculature. We now explore the consequences for fetal cardiovascular development and whether this is reversible. We studied Hsd11b2(+/+), Hsd11b2(+/-), and Hsd11b2(-/-) littermates from heterozygous (Hsd11b(+/-)) matings at embryonic day (E)14.5 and E17.5, where all three genotypes were present to control for maternal effects. Using high-resolution ultrasound, we found that umbilical vein blood velocity in Hsd11b2(-/-) fetuses did not undergo the normal gestational increase seen in Hsd11b2(+/+) littermates. Similarly, the resistance index in the umbilical artery did not show the normal gestational decline. Surprisingly, given that 11ß-HSD2 absence is predicted to initiate early maturation, the E/A wave ratio was reduced at E17.5 in Hsd11b2(-/-) fetuses, suggesting impaired cardiac function. Pravastatin administration from E6.5, which increases placental vascular endothelial growth factor A and, thus, vascularization, increased placental fetal capillary volume, ameliorated the aberrant umbilical cord velocity, normalized fetal weight, and improved the cardiac function of Hsd11b2(-/-) fetuses. This improved cardiac function occurred despite persisting indications of increased glucocorticoid exposure in the Hsd11b2(-/-) fetal heart. Thus, the pravastatin-induced enhancement of fetal capillaries within the placenta and the resultant hemodynamic changes correspond with restored fetal cardiac function. Statins may represent a useful therapeutic approach to intrauterine growth retardation due to placental vascular hypofunction.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 2/fisiología , Retardo del Crecimiento Fetal/prevención & control , Glucocorticoides/metabolismo , Cardiopatías/prevención & control , Enfermedades Placentarias/prevención & control , Pravastatina/farmacología , Animales , Anticolesterolemiantes/farmacología , Femenino , Retardo del Crecimiento Fetal/metabolismo , Retardo del Crecimiento Fetal/patología , Cardiopatías/metabolismo , Cardiopatías/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedades Placentarias/metabolismo , Enfermedades Placentarias/patología , Embarazo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
4.
Neurobiol Learn Mem ; 155: 287-296, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30138691

RESUMEN

Depression-associated cognitive impairments persist after remission from affective symptoms of major depressive disorder (MDD), decreasing quality of life and increasing risk of relapse in patients. Conventional antidepressants are ineffective in restoring cognitive functions. Therefore, novel antidepressants with improved efficacy for ameliorating cognitive symptoms are required. For tailoring such antidepressants, translational animal models are in demand. The chronic mild stress (CMS) model is a well-validated preclinical model of depression and known for eliciting the MDD core symptom "anhedonia" in stress-susceptible rats. Thus, cognitive performance was assessed in rats susceptible (depressive-like) or resilient to CMS and in unchallenged controls. The rodent analogue of the human touchscreen Paired-Associates Learning (PAL) task was used for cognitive assessment. Both stress groups exhibited a lack of response inhibition compared to controls while only the depressive-like group was impaired in task acquisition. The results indicate that cognitive deficits specifically associate with the anhedonic-like state rather than being a general consequence of stress exposure. Hence, we propose that the application of a translational touchscreen task on the etiologically valid CMS model, displaying depression-associated cognitive impairments, provides a novel platform for pro-cognitive and clinically pertinent antidepressant drug screening.


Asunto(s)
Disfunción Cognitiva/psicología , Depresión/psicología , Aprendizaje por Asociación de Pares , Resiliencia Psicológica , Estrés Psicológico/psicología , Anhedonia , Animales , Disfunción Cognitiva/etiología , Condicionamiento Operante , Depresión/complicaciones , Trastorno Depresivo Mayor/complicaciones , Trastorno Depresivo Mayor/psicología , Modelos Animales de Enfermedad , Masculino , Ratas Long-Evans , Estrés Psicológico/complicaciones
5.
Brain Behav Immun ; 69: 223-234, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29162555

RESUMEN

Chronically elevated glucocorticoid levels impair cognition and are pro-inflammatory in the brain. Deficiency or inhibition of 11ß-hydroxysteroid dehydrogenase type-1 (11ß-HSD1), which converts inactive into active glucocorticoids, protects against glucocorticoid-associated chronic stress- or age-related cognitive impairment. Here, we hypothesised that 11ß-HSD1 deficiency attenuates the brain cytokine response to inflammation. Because inflammation is associated with altered energy metabolism, we also examined the effects of 11ß-HSD1 deficiency upon hippocampal energy metabolism. Inflammation was induced in 11ß-HSD1 deficient (Hsd11b1Del/Del) and C57BL/6 control mice by intraperitoneal injection of lipopolysaccharide (LPS). LPS reduced circulating neutrophil and monocyte numbers and increased plasma corticosterone levels equally in C57BL/6 and Hsd11b1Del/Del mice, suggesting a similar peripheral inflammatory response. However, the induction of pro-inflammatory cytokine mRNAs in the hippocampus was attenuated in Hsd11b1Del/Del mice. Principal component analysis of mRNA expression revealed a distinct metabolic response to LPS in hippocampus of Hsd11b1Del/Del mice. Expression of Pfkfb3 and Ldha, key contributors to the Warburg effect, showed greater induction in Hsd11b1Del/Del mice. Consistent with increased glycolytic flux, levels of 3-phosphoglyceraldehyde and dihydroxyacetone phosphate were reduced in hippocampus of LPS injected Hsd11b1Del/Del mice. Expression of Sdha and Sdhb, encoding subunits of succinate dehydrogenase/complex II that determines mitochondrial reserve respiratory capacity, was induced specifically in hippocampus of LPS injected Hsd11b1Del/Del mice, together with increased levels of its product, fumarate. These data suggest 11ß-HSD1 deficiency attenuates the hippocampal pro-inflammatory response to LPS, associated with increased capacity for aerobic glycolysis and mitochondrial ATP generation. This may provide better metabolic support and be neuroprotective during systemic inflammation or aging.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/genética , Metabolismo Energético/fisiología , Hipocampo/metabolismo , Inflamación/genética , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Corticosterona/sangre , Hipocampo/efectos de los fármacos , Conducta de Enfermedad/efectos de los fármacos , Conducta de Enfermedad/fisiología , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Monocitos/metabolismo , Neutrófilos/metabolismo
6.
Circulation ; 133(14): 1360-70, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26951843

RESUMEN

BACKGROUND: The hypertensive syndrome of Apparent Mineralocorticoid Excess is caused by loss-of-function mutations in the gene encoding 11ß-hydroxysteroid dehydrogenase type 2 (11ßHSD2), allowing inappropriate activation of the mineralocorticoid receptor by endogenous glucocorticoid. Hypertension is attributed to sodium retention in the distal nephron, but 11ßHSD2 is also expressed in the brain. However, the central contribution to Apparent Mineralocorticoid Excess and other hypertensive states is often overlooked and is unresolved. We therefore used a Cre-Lox strategy to generate 11ßHSD2 brain-specific knockout (Hsd11b2.BKO) mice, measuring blood pressure and salt appetite in adults. METHODS AND RESULTS: Basal blood pressure, electrolytes, and circulating corticosteroids were unaffected in Hsd11b2.BKO mice. When offered saline to drink, Hsd11b2.BKO mice consumed 3 times more sodium than controls and became hypertensive. Salt appetite was inhibited by spironolactone. Control mice fed the same daily sodium intake remained normotensive, showing the intrinsic salt resistance of the background strain. Dexamethasone suppressed endogenous glucocorticoid and abolished the salt-induced blood pressure differential between genotypes. Salt sensitivity in Hsd11b2.BKO mice was not caused by impaired renal sodium excretion or volume expansion; pressor responses to phenylephrine were enhanced and baroreflexes impaired in these animals. CONCLUSIONS: Reduced 11ßHSD2 activity in the brain does not intrinsically cause hypertension, but it promotes a hunger for salt and a transition from salt resistance to salt sensitivity. Our data suggest that 11ßHSD2-positive neurons integrate salt appetite and the blood pressure response to dietary sodium through a mineralocorticoid receptor-dependent pathway. Therefore, central mineralocorticoid receptor antagonism could increase compliance to low-sodium regimens and help blood pressure management in cardiovascular disease.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 2/metabolismo , Ansia/fisiología , Hipertensión/genética , Síndrome de Exceso Aparente de Mineralocorticoides/fisiopatología , Proteínas del Tejido Nervioso/deficiencia , Receptores de Mineralocorticoides/fisiología , Cloruro de Sodio Dietético/toxicidad , Núcleo Solitario/enzimología , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 2/genética , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 2/fisiología , Animales , Barorreflejo/efectos de los fármacos , Corticosterona/sangre , Dexametasona/farmacología , Conducta de Ingestión de Líquido , Genes Sintéticos , Hipertensión/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Síndrome de Exceso Aparente de Mineralocorticoides/tratamiento farmacológico , Síndrome de Exceso Aparente de Mineralocorticoides/genética , Antagonistas de Receptores de Mineralocorticoides/uso terapéutico , Nefronas/fisiopatología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Nestina/genética , Neuronas/fisiología , Potasio/orina , ARN Mensajero/biosíntesis , Reflejo Anormal , Núcleo Solitario/fisiopatología , Espironolactona/farmacología
7.
Hum Mol Genet ; 22(16): 3269-82, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23595884

RESUMEN

Glucocorticoids are vital for the structural and functional maturation of foetal organs, yet excessive foetal exposure is detrimental to adult cardiovascular health. To elucidate the role of glucocorticoid signalling in late-gestation cardiovascular maturation, we have generated mice with conditional disruption of glucocorticoid receptor (GR) in cardiomyocytes and vascular smooth muscle cells using smooth muscle protein 22-driven Cre recombinase (SMGRKO mice) and compared them with mice with global deficiency in GR (GR(-/-)). Echocardiography shows impaired heart function in both SMGRKO and GR(-/-) mice at embryonic day (E)17.5, associated with generalized oedema. Cardiac ultrastructure is markedly disrupted in both SMGRKO and GR(-/-) mice at E17.5, with short, disorganized myofibrils and cardiomyocytes that fail to align in the compact myocardium. Failure to induce critical genes involved in contractile function, calcium handling and energy metabolism underpins this common phenotype. However, although hearts of GR(-/-) mice are smaller, with 22% reduced ventricular volume at E17.5, SMGRKO hearts are normally sized. Moreover, while levels of mRNA encoding atrial natriuretic peptide are reduced in E17.5 GR(-/-) hearts, they are normal in foetal SMGRKO hearts. These data demonstrate that structural, functional and biochemical maturation of the foetal heart is dependent on glucocorticoid signalling within cardiomyocytes and vascular smooth muscle, though some aspects of heart maturation (size, ANP expression) are independent of GR at these key sites.


Asunto(s)
Corazón Fetal/crecimiento & desarrollo , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Transducción de Señal , Animales , Corticosterona/sangre , Corticosterona/fisiología , Corazón Fetal/fisiología , Corazón/embriología , Corazón/fisiología , Ratones , Ratones Transgénicos , Músculo Liso Vascular/embriología , Músculo Liso Vascular/metabolismo , Contracción Miocárdica , Miocardio/ultraestructura , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Miofibrillas/ultraestructura
8.
Eur J Neurosci ; 42(5): 2125-34, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25943794

RESUMEN

Functional magnetic resonance imaging (fMRI) of learned behaviour in 'awake rodents' provides the opportunity for translational preclinical studies into the influence of pharmacological and genetic manipulations on brain function. fMRI has recently been employed to investigate learned behaviour in awake rats. Here, this methodology is translated to mice, so that future fMRI studies may exploit the vast number of genetically modified mouse lines that are available. One group of mice was conditioned to associate a flashing light (conditioned stimulus, CS) with foot shock (PG; paired group), and another group of mice received foot shock and flashing light explicitly unpaired (UG; unpaired group). The blood oxygen level-dependent signal (proxy for neuronal activation) in response to the CS was measured 24 h later in awake mice from the PG and UG using fMRI. The amygdala, implicated in fear processing, was activated to a greater degree in the PG than in the UG in response to the CS. Additionally, the nucleus accumbens was activated in the UG in response to the CS. Because the CS signalled an absence of foot shock in the UG, it is possible that this region is involved in processing the safety aspect of the CS. To conclude, the first use of fMRI to visualise brain activation in awake mice that are completing a learned emotional task is reported. This work paves the way for future preclinical fMRI studies to investigate genetic and environmental influences on brain function in transgenic mouse models of disease and aging.


Asunto(s)
Aprendizaje por Asociación/fisiología , Encéfalo/fisiología , Condicionamiento Psicológico/fisiología , Miedo/fisiología , Imagen por Resonancia Magnética/métodos , Animales , Mapeo Encefálico , Circulación Cerebrovascular/fisiología , Electrochoque , Estudios de Factibilidad , Pie , Masculino , Ratones Endogámicos C57BL , Movimiento (Física) , Vías Nerviosas/fisiología , Oxígeno/sangre , Estimulación Luminosa , Procesamiento de Señales Asistido por Computador , Percepción Visual/fisiología , Vigilia
9.
Hippocampus ; 24(6): 684-92, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24677338

RESUMEN

The chances of developing psychiatric disorders in adulthood are increased when stress is experienced early in life. In particular, stress experienced in the childhood or 'prepubertal' phase is associated with the later development of disorders such as depression, anxiety, post-traumatic stress disorder, and psychosis. Relatively little is known about the biological basis of this effect, but one hypothesis is that prepubertal stress produces long-lasting changes in brain development, particularly in stress sensitive regions such as the hippocampus, leaving an individual vulnerable to disorders in adulthood. In this study, we used an animal model of prepubertal stress to investigate the hypothesis that prepubertal stress induces alterations in hippocampal function in adulthood. Male and female rats were exposed to a brief, variable prepubertal stress protocol (postnatal days 25-27), and their performance in two distinct hippocampal-dependent tasks (contextual fear and spatial navigation) was compared with controls in adulthood. Prepubertal stress significantly impaired contextual fear responses in males and enhanced performance in spatial navigation in females. These results demonstrate that exposure to a brief period of stress in the prepubertal phase alters hippocampal-dependent behaviors in adulthood in a sex-specific manner.


Asunto(s)
Hipocampo/crecimiento & desarrollo , Hipocampo/fisiopatología , Caracteres Sexuales , Estrés Psicológico/fisiopatología , Animales , Peso Corporal , Condicionamiento Psicológico/fisiología , Modelos Animales de Enfermedad , Miedo , Femenino , Reacción Cataléptica de Congelación , Masculino , Pruebas Neuropsicológicas , Ratas , Ratas Endogámicas , Memoria Espacial/fisiología , Navegación Espacial/fisiología
10.
Eur J Neurosci ; 40(11): 3663-73, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25257581

RESUMEN

The 5-hydroxytryptamine2C (5-HT)2C receptor is widely implicated in the aetiology of affective and eating disorders as well as regulation of the hypothalamo-pituitary-adrenal axis. Signalling through this receptor is regulated by A-to-I RNA editing, affecting three amino acids in the protein sequence, with unedited transcripts encoding a receptor (INI) that, in vitro, is hyperactive compared with edited isoforms. Targeted alteration (knock-in) of the Htr2c gene to generate 'INI' mice with no alternate splicing, solely expressing the full-length unedited isoform, did not produce an overt metabolic phenotype or altered anxiety behaviour, but did display reduced depressive-like and fear-associated behaviours. INI mice exhibited a hyperactive hypothalamo-pituitary-adrenal axis, with increased nadir plasma corticosterone and corticotrophin-releasing hormone expression in the hypothalamus but responded normally to chronic stress and showed normal circadian activity and activity in a novel environment. The circadian patterns of 5-HT2C receptor mRNA and mbii52, a snoRNA known to regulate RNA editing and RNA splicing of 5-HT2C receptor pre-mRNA, were altered in INI mice compared with wild-type control mice. Moreover, levels of 5-HT1A receptor mRNA were increased in the hippocampus of INI mice. These gene expression changes may underpin the neuroendocrine and behavioural changes observed in INI mice. However, the phenotype of INI mice was not consistent with a globally hyperactive INI receptor encoded by the unedited transcript in the absence of alternate splicing. Hence, the in vivo outcome of RNA editing may be neuronal cell type specific.


Asunto(s)
Afecto/fisiología , Hormona Liberadora de Corticotropina/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Receptor de Serotonina 5-HT2C/metabolismo , Empalme Alternativo , Animales , Ritmo Circadiano/fisiología , Corticosterona/sangre , Depresión/genética , Depresión/metabolismo , Miedo/fisiología , Técnicas de Sustitución del Gen , Masculino , Memoria/fisiología , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/fisiología , Edición de ARN , ARN Mensajero/metabolismo , ARN Nucleolar Pequeño/metabolismo , Receptor de Serotonina 5-HT1A/metabolismo , Receptor de Serotonina 5-HT2C/genética , Estrés Psicológico/genética , Estrés Psicológico/metabolismo
11.
FASEB J ; 26(5): 1866-74, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22321728

RESUMEN

Fetal growth restriction associates with increased risk of adult cardiometabolic and neuropsychiatric disorders. Both maternal malnutrition [notably a low-protein (LP) diet] and stress/glucocorticoid exposure reduce fetal growth and cause persisting abnormalities (programming) in adult offspring. Deficiency of placental 11ß-hydroxysteroid dehydrogenase-2 (11ß-HSD2), which inactivates glucocorticoids, is reduced by an LP diet and has been proposed as a unifying mechanism. Here, we explored the importance of glucocorticoids and placental 11ß-HSD2 in dietary programming. Pregnant mice were fed a control or isocaloric LP diet throughout gestation. The LP diet first elevated fetal glucocorticoid levels, then reduced placental growth, and finally decreased fetal weight near term by 17%. Whereas the LP diet reduced placental 11ß-HSD2 activity near term by ∼25%, consistent with previous reports, activity was increased between 20 and 40% at earlier ages, implying that glucocorticoid overexposure in LP fetuses occurs via 11ß-HSD2-independent mechanisms. Consistent with this, heterozygous 11ß-HSD2(+/-) crosses showed that although both LP and 11ß-HSD2 deficiency reduced fetal growth, LP indeed acted independently of 11ß-HSD2. Instead, the LP diet induced the fetal hypothalamic-pituitary-adrenal axis per se. Thus, maternal malnutrition and placental 11ß-HSD2 deficiency act via distinct processes to retard fetal growth, both involving fetoplacental overexposure to glucocorticoids but from distinct sources.


Asunto(s)
Desarrollo Fetal , Glucocorticoides/fisiología , Estado Nutricional , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 2/metabolismo , Animales , Secuencia de Bases , Corticosterona/sangre , Cartilla de ADN , Femenino , Hibridación in Situ , Exposición Materna , Ratones , Ratones Endogámicos C57BL , Placenta/enzimología , Embarazo
12.
Cardiovasc Res ; 119(8): 1740-1750, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-36368681

RESUMEN

AIMS: High salt intake is common and contributes to poor cardiovascular health. Urinary sodium excretion correlates directly with glucocorticoid excretion in humans and experimental animals. We hypothesized that high salt intake activates the hypothalamic-pituitary-adrenal axis activation and leads to sustained glucocorticoid excess. METHODS AND RESULTS: In male C57BL/6 mice, high salt intake for 2-8 weeks caused an increase in diurnal peak levels of plasma corticosterone. After 2 weeks, high salt increased Crh and Pomc mRNA abundance in the hypothalamus and anterior pituitary, consistent with basal hypothalamic-pituitary-adrenal axis activation. Additionally, high salt intake amplified glucocorticoid response to restraint stress, indicative of enhanced axis sensitivity. The binding capacity of Corticosteroid-Binding Globulin was reduced and its encoding mRNA downregulated in the liver. In the hippocampus and anterior pituitary, Fkbp5 mRNA levels were increased, indicating increased glucocorticoid exposure. The mRNA expression of the glucocorticoid-regenerating enzyme, 11ß-hydroxysteroid dehydrogenase Type 1, was increased in these brain areas and in the liver. Sustained high salt intake activated a water conservation response by the kidney, increasing plasma levels of the vasopressin surrogate, copeptin. Increased mRNA abundance of Tonebp and Avpr1b in the anterior pituitary suggested that vasopressin signalling contributes to hypothalamic-pituitary-adrenal axis activation by high salt diet. CONCLUSION: Chronic high salt intake amplifies basal and stress-induced glucocorticoid levels and resets glucocorticoid biology centrally, peripherally and within cells.


Asunto(s)
Glucocorticoides , Sistema Hipotálamo-Hipofisario , Humanos , Ratones , Animales , Masculino , Glucocorticoides/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Cloruro de Sodio Dietético , Sistema Hipófiso-Suprarrenal/metabolismo , Ratones Endogámicos C57BL , Vasopresinas/genética , Vasopresinas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
13.
Front Neuroendocrinol ; 32(3): 265-86, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21144857

RESUMEN

Glucocorticoids have profound effects on brain development and adult CNS function. Excess or insufficient glucocorticoids cause myriad abnormalities from development to ageing. The actions of glucocorticoids within cells are determined not only by blood steroid levels and target cell receptor density, but also by intracellular metabolism by 11ß-hydroxysteroid dehydrogenases (11ß-HSD). 11ß-HSD1 regenerates active glucocorticoids from their inactive 11-keto derivatives and is widely expressed throughout the adult CNS. Elevated hippocampal and neocortical 11ß-HSD1 is observed with ageing and causes cognitive decline; its deficiency prevents the emergence of cognitive defects with age. Conversely, 11ß-HSD2 is a dehydrogenase, inactivating glucocorticoids. The major central effects of 11ß-HSD2 occur in development, as expression of 11ß-HSD2 is high in fetal brain and placenta. Deficient feto-placental 11ß-HSD2 results in a life-long phenotype of anxiety and cardiometabolic disorders, consistent with early life glucocorticoid programming.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 2/metabolismo , Encéfalo/enzimología , Glucocorticoides/metabolismo , Envejecimiento/fisiología , Animales , Encéfalo/anatomía & histología , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Regulación Enzimológica de la Expresión Génica , Glucocorticoides/farmacología , Humanos , Isoenzimas/metabolismo , Transducción de Señal/fisiología
14.
Neuroendocrinology ; 95(1): 47-55, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22042385

RESUMEN

Fetal glucocorticoid exposure is a key mechanism proposed to underlie prenatal 'programming' of adult affective behaviours such as depression and anxiety. Indeed, the glucocorticoid metabolising enzyme 11ß-hydroxysteroid dehydrogenase type 2 (11ß-HSD2), which is highly expressed in the placenta and the developing fetus, acts as a protective barrier from the high maternal glucocorticoids which may alter developmental trajectories. The programmed changes resulting from maternal stress or bypass or from the inhibition of 11ß-HSD2 are frequently associated with alterations in the hypothalamic-pituitary-adrenal (HPA) axis. Hence, circulating glucocorticoid levels are increased either basally or in response to stress accompanied by CNS region-specific modulations in the expression of both corticosteroid receptors (mineralocorticoid and glucocorticoid receptors). Furthermore, early-life glucocorticoid exposure also affects serotonergic and catecholamine pathways within the brain, with changes in both associated neurotransmitters and receptors. Indeed, global removal of 11ß-HSD2, an enzyme that inactivates glucocorticoids, increases anxiety- and depressive-like behaviour in mice; however, in this case the phenotype is not accompanied by overt perturbation in the HPA axis but, intriguingly, alterations in serotonergic and catecholamine pathways are maintained in this programming model. This review addresses one of the potential adverse effects of glucocorticoid overexposure in utero, i.e. increased incidence of affective behaviours, and the mechanisms underlying these behaviours including alteration of the HPA axis and serotonergic and catecholamine pathways.


Asunto(s)
Catecolaminas/fisiología , Glucocorticoides/efectos adversos , Trastornos del Humor/epidemiología , Efectos Tardíos de la Exposición Prenatal , Serotonina/fisiología , Adulto , Animales , Femenino , Desarrollo Fetal/fisiología , Humanos , Incidencia , Ratones , Modelos Animales , Trastornos del Humor/fisiopatología , Embarazo , Factores de Riesgo , Transducción de Señal/fisiología
15.
J Neurosci ; 30(20): 6916-20, 2010 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-20484633

RESUMEN

Increased neuronal glucocorticoid exposure may underlie interindividual variation in cognitive function with aging in rodents and humans. 11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) catalyzes the regeneration of active glucocorticoids within cells (in brain and other tissues), thus amplifying steroid action. We examined whether 11beta-HSD1 plays a role in the pathogenesis of cognitive deficits associated with aging in male C57BL/6J mice. We show that 11beta-HSD1 levels increase with age in CA3 hippocampus and parietal cortex, correlating with impaired cognitive performance in the water maze. In contrast, neither circulating corticosterone levels nor tissue corticosteroid receptor expression correlates with cognition. 11beta-HSD1 elevation appears causal, since aging (18 months) male transgenic mice with forebrain-specific 11beta-HSD1 overexpression ( approximately 50% in hippocampus) exhibit premature age-associated cognitive decline in the absence of altered circulating glucocorticoid levels or other behavioral (affective) deficits. Thus, excess 11beta-HSD1 in forebrain is a cause of as well as a therapeutic target in memory impairments with aging.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/genética , Envejecimiento , Regulación de la Expresión Génica/fisiología , Hipocampo/metabolismo , Trastornos de la Memoria/genética , Lóbulo Parietal/metabolismo , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Factores de Edad , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Masculino , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , ARN Mensajero/metabolismo
16.
Sci Rep ; 11(1): 9113, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33907240

RESUMEN

Depression-associated cognitive impairments are among the most prevalent and persistent symptoms during remission from a depressive episode and a major risk factor for relapse. Consequently, development of antidepressant drugs, which also alleviate cognitive impairments, is vital. One such potential antidepressant is vortioxetine that has been postulated to exhibit both antidepressant and pro-cognitive effects. Hence, we tested vortioxetine for combined antidepressant and pro-cognitive effects in male Long-Evans rats exposed to the chronic mild stress (CMS) paradigm. This well-established CMS paradigm evokes cognitive deficits in addition to anhedonia, a core symptom of depression. Learning and memory performance was assessed in the translational touchscreen version of the paired-associates learning task. To identify the mechanistic underpinning of the neurobehavioural results, transcriptional profiling of genes involved in the stress response, neuronal plasticity and genes of broad relevance in neuropsychiatric pathologies were assessed. Vortioxetine substantially relieved the anhedonic-like state in the CMS rats and promoted acquisition of the cognitive test independent of hedonic phenotype, potentially due to an altered cognitive strategy. Minor alterations in gene expression profiling in prefrontal cortex and hippocampus were found. In summary, our findings suggest that vortioxetine exhibits an antidepressant effect as well as behavioural changes in a translational learning task.


Asunto(s)
Antidepresivos/farmacología , Cognición/efectos de los fármacos , Vortioxetina/farmacología , Anhedonia/efectos de los fármacos , Animales , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/fisiología , Expresión Génica/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Aprendizaje , Masculino , Ratas Long-Evans , Estrés Fisiológico
17.
Epigenetics Chromatin ; 14(1): 31, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34193254

RESUMEN

Exposure to early life stress (ELS) during childhood or prenatally increases the risk of future psychiatric disorders. The effect of stress exposure during the neonatal period is less well understood. In preterm infants, exposure to invasive procedures is associated with altered brain development and future stress responses suggesting that the neonatal period could be a key time for the programming of mental health. Previous studies suggest that ELS affects the hypothalamic epigenome, making it a good candidate to mediate these effects. In this study, we used a mouse model of early life stress (modified maternal separation; MMS). We hypothesised MMS would affect the hypothalamic transcriptome and DNA methylome, and impact on adult behaviour. MMS involved repeated stimulation of pups for 1.5 h/day, whilst separated from their mother, from postnatal day (P) 4-6. 3'mRNA sequencing and DNA methylation immunoprecipitation (meDIP) sequencing were performed on hypothalamic tissue at P6. Behaviour was assessed with the elevated plus, open field mazes and in-cage monitoring at 3-4 months of age. MMS was only associated with subtle changes in gene expression, but there were widespread alterations in DNA methylation. Notably, differentially methylated regions were enriched for synapse-associated loci. MMS resulted in hyperactivity in the elevated plus and open field mazes, but in-cage monitoring revealed that this was not representative of habitual hyperactivity. ELS has marked effects on DNA methylation in the hypothalamus in early life and results in stress-specific hyperactivity in young adulthood. These results have implications for the understanding of ELS-mediated effects on brain development.


Asunto(s)
Experiencias Adversas de la Infancia , Metilación de ADN , Adulto , Animales , Humanos , Hipotálamo , Recién Nacido , Recien Nacido Prematuro , Privación Materna , Ratones , Adulto Joven
18.
J Clin Invest ; 117(4): 1058-67, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17380204

RESUMEN

Prenatal stress or glucocorticoid administration has persisting "programming" effects on offspring in rodents and other model species. Multiple doses of glucocorticoids are in widespread use in obstetric practice. To examine the clinical relevance of glucocorticoid programming, we gave 50, 120, or 200 microg/kg/d of dexamethasone (dex50, dex120, or dex200) orally from mid-term to a singleton-bearing nonhuman primate, Chlorocebus aethiops (African vervet). Dexamethasone dose-dependently reduced maternal cortisol levels without effecting maternal blood pressure, glucose, electrolytes, or weight gain. Birth weight was unaffected by any dexamethasone dose, although postnatal growth was attenuated after dex120 and dex200. At 8 months of age, dex120 and dex200 offspring showed impaired glucose tolerance and hyperinsulinemia, with reduced (approximately 25%) pancreatic beta cell number at 12 months. Dex120 and dex200 offspring had increased systolic and diastolic blood pressures at 12 months. Mild stress produced an exaggerated cortisol response in dex200 offspring, implying hypothalamic-pituitary-adrenal axis programming. The data are compatible with the extrapolation of the glucocorticoid programming hypothesis to primates and indicate that repeated glucocorticoid therapy and perhaps chronic stress in humans may have long-term effects.


Asunto(s)
Dexametasona/farmacología , Corazón/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/fisiología , Miocardio/metabolismo , Efectos Tardíos de la Exposición Prenatal , Animales , Chlorocebus aethiops , Femenino , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Modelos Animales , Embarazo
19.
Eur J Neurosci ; 30(2): 299-306, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19614978

RESUMEN

The 5-HT(2C) receptor has been implicated in mood and eating disorders. In general, it is accepted that 5-HT(2C) receptor agonists increase anxiety behaviours and induce hypophagia. However, pharmacological analysis of the roles of these receptors is hampered by the lack of selective ligands and the complex regulation of receptor isoforms and expression levels. Therefore, the exact role of 5-HT(2C) receptors in mood disorders remain controversial, some suggesting agonists and others suggesting antagonists may be efficacious antidepressants, while there is general agreement that antagonists are beneficial anxiolytics. In order to test the hypothesis that increased 5-HT(2C) receptor expression, and thus increased 5-HT(2C) receptor signalling, is causative in mood disorders, we have undertaken a transgenic approach, directly altering the 5-HT(2C) receptor number in the forebrain and evaluating the consequences on behaviour. Transgenic mice overexpressing 5-HT(2C) receptors under the control of the CaMKIIalpha promoter (C2CR mice) have elevated 5-HT(2C) receptor mRNA levels in cerebral cortex and limbic areas (including the hippocampus and amygdala), but normal levels in the hypothalamus, resulting in > 100% increase in the number of 5-HT(2C) ligand binding sites in the forebrain. The C2CR mice show increased anxiety-like behaviour in the elevated plus-maze, decreased wheel-running behaviour and reduced activity in a novel environment. These behaviours were observed in the C2CR mice without stimulation by exogenous ligands. Our findings support a role for 5-HT(2C) receptor signalling in anxiety disorders. The C2CR mouse model offers a novel and effective approach for studying disorders associated with 5-HT(2C) receptors.


Asunto(s)
Ansiedad/metabolismo , Expresión Génica , Actividad Motora/fisiología , Prosencéfalo/fisiología , Receptor de Serotonina 5-HT2C/biosíntesis , Animales , Ansiedad/genética , Células COS , Chlorocebus aethiops , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Ratas , Receptor de Serotonina 5-HT2C/genética
20.
Br J Haematol ; 146(2): 185-92, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19438469

RESUMEN

Circadian (c. 24 h) rhythms of physiology are entrained to either the environmental light-dark cycle or the timing of food intake. In the current work the hypothesis that rhythms of platelet turnover in mammals are circadian and entrained by food intake was explored in mice. Mice were entrained to 12 h light-dark cycles and given either ad libitum (AL) or restricted access (RF) to food during the light phase. Blood and megakaryocytes were then collected from mice every 4 h for 24 h. It was found that total and reticulated platelet numbers, plasma thrombopoietin (TPO) concentration and the mean size of mature megakaryocytes were circadian but not entrained by food intake. In contrast, a circadian rhythm in the expression of Arnt1 in megakaryocytes was entrained by food. Although not circadian, the expression in megakaryocytes of Nfe2, Gata1, Itga2b and Tubb1 expression was downregulated by RF, whereas Ccnd1 was not significantly affected by the feeding protocol. It is concluded that circadian rhythms of total platelet number, reticulated platelet number and plasma TPO concentration are entrained by the light-dark cycle rather than the timing of food intake. These findings imply that circadian clock gene expression regulates platelet turnover in mammals.


Asunto(s)
Plaquetas/fisiología , Ritmo Circadiano/fisiología , Conducta Alimentaria/fisiología , Megacariocitos/fisiología , Estimulación Luminosa , Trombopoyetina/metabolismo , Análisis de Varianza , Animales , Proteínas Portadoras/metabolismo , Ciclina D1/metabolismo , Proteínas Fetales/metabolismo , Expresión Génica , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos , Recuento de Plaquetas , Trombopoyesis/fisiología , Factores de Tiempo , Factores de Transcripción/metabolismo , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA