Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
J Biol Inorg Chem ; 29(4): 427-439, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38796812

RESUMEN

Chlorothalonil (2,4,5,6-tetrachloroisophthalonitrile; TPN) is an environmentally persistent fungicide that sees heavy use in the USA and is highly toxic to aquatic species and birds, as well as a probable human carcinogen. The chlorothalonil dehalogenase from Pseudomonas sp. CTN-3 (Chd, UniProtKB C9EBR5) degrades TPN to its less toxic 4-OH-TPN analog making it an exciting candidate for the development of a bioremediation process for TPN; however, little is currently known about its catalytic mechanism. Therefore, an active site residue histidine-114 (His114) which forms a hydrogen bond with the Zn(II)-bound water/hydroxide and has been suggested to be the active site acid/base, was substituted by an Ala residue. Surprisingly, ChdH114A exhibited catalytic activity with a kcat value of 1.07 s-1, ~ 5% of wild-type (WT) Chd, and a KM of 32 µM. Thus, His114 is catalytically important but not essential. The electronic and structural aspects of the WT Chd and ChdH114A active sites were examined using UV-Vis and EPR spectroscopy on the catalytically competent Co(II)-substituted enzyme as well as all-atomistic molecular dynamics (MD) simulations. Combination of these data suggest His114 can quickly and reversibly move nearly 2 Å between one conformation that facilitates catalysis and another that enables product egress and active site recharge. In light of experimental and computational data on ChdH114A, Asn216 appears to play a role in substrate binding and preorganization of the transition-state while Asp116 likely facilitates the deprotonation of the Zn(II)-bound water in the absence of His114. Based on these data, an updated proposed catalytic mechanism for Chd is presented.


Asunto(s)
Histidina , Nitrilos , Pseudomonas , Pseudomonas/enzimología , Pseudomonas/metabolismo , Nitrilos/metabolismo , Nitrilos/química , Histidina/química , Histidina/metabolismo , Hidrólisis , Biocatálisis , Dominio Catalítico , Fungicidas Industriales/química , Fungicidas Industriales/metabolismo , Halogenación , Hidrolasas/metabolismo , Hidrolasas/química
2.
Bioorg Med Chem Lett ; 83: 129177, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36764468

RESUMEN

Based on a hit from a high-throughput screen, a series of phenyltetrazole amides was synthesized and assayed for inhibitory potency against DapE from Haemophilus influenzae (HiDapE). The inhibitory potency was modest but confirmed, with the most potent analog containing an aminothiazole moiety displaying an IC50 = 50.2 ± 5.0 µM. Docking reveals a potential binding mode wherein the amide carbonyl bridges both zinc atoms in the active site, and the tetrazole forms key hydrogen bonds with Arg330.


Asunto(s)
Antibacterianos , Zinc , Antibacterianos/farmacología , Dominio Catalítico , Ácido Diaminopimélico/química , Ácido Diaminopimélico/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/metabolismo , Zinc/química , Tetrazoles/química
3.
Biochemistry ; 60(49): 3771-3782, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34843221

RESUMEN

A new method to trap catalytic intermediate species was employed with Fe-type nitrile hydratase from Rhodococcus equi TG328-2 (ReNHase). ReNHase was incubated with substrates in a 23% (w/w) NaCl/H2O eutectic system that remained liquid at -20 °C, thereby permitting the observation of transient species that were present at electron paramagnetic resonance (EPR)-detectable levels in samples frozen while in the steady state. FeIII-EPR signals from the resting enzyme were unaffected by the presence of 23% NaCl, and the catalytic activity was ∼55% that in the absence of NaCl at the optimum pH of 7.5. The reaction of ReNHase in the eutectic system at -20 °C with the substrates acetonitrile or benzonitrile induced significant changes in the EPR spectra. A previously unobserved signal with highly rhombic g-values (g1 = 2.31) was observed during the steady state but did not persist beyond the exhaustion of the substrate, indicating that it arises from a catalytically competent intermediate. Distinct signals due to product complexes provide a detailed mechanism for product release, the rate-limiting step of the reaction. Assignment of the observed EPR signals was facilitated by density functional theory calculations, which provided candidate structures and g-values for various proposed ReNHase intermediates. Collectively, these results provide new insights into the catalytic mechanism of NHase and offer a new approach for isolating and characterizing EPR-active intermediates in metalloenzymes.


Asunto(s)
Acetonitrilos/química , Proteínas Bacterianas/química , Hidroliasas/química , Hierro/química , Nitrilos/química , Rhodococcus equi/química , Acetonitrilos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biocatálisis , Dominio Catalítico , Frío , Disolventes Eutécticos Profundos/química , Teoría Funcional de la Densidad , Espectroscopía de Resonancia por Spin del Electrón , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Hidroliasas/genética , Hidroliasas/metabolismo , Concentración de Iones de Hidrógeno , Hierro/metabolismo , Cinética , Nitrilos/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhodococcus equi/enzimología , Cloruro de Sodio/química , Especificidad por Sustrato , Agua/química
4.
Biochemistry ; 60(12): 908-917, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33721990

RESUMEN

We report the atomic-resolution (1.3 Å) X-ray crystal structure of an open conformation of the dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE, EC 3.5.1.18) from Neisseria meningitidis. This structure [Protein Data Bank (PDB) entry 5UEJ] contains two bound sulfate ions in the active site that mimic the binding of the terminal carboxylates of the N-succinyl-l,l-diaminopimelic acid (l,l-SDAP) substrate. We demonstrated inhibition of DapE by sulfate (IC50 = 13.8 ± 2.8 mM). Comparison with other DapE structures in the PDB demonstrates the flexibility of the interdomain connections of this protein. This high-resolution structure was then utilized as the starting point for targeted molecular dynamics experiments revealing the conformational change from the open form to the closed form that occurs when DapE binds l,l-SDAP and cleaves the amide bond. These simulations demonstrated closure from the open to the closed conformation, the change in RMS throughout the closure, and the independence in the movement of the two DapE subunits. This conformational change occurred in two phases with the catalytic domains moving toward the dimerization domains first, followed by a rotation of catalytic domains relative to the dimerization domains. Although there were no targeting forces, the substrate moved closer to the active site and bound more tightly during the closure event.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/química , Inhibidores Enzimáticos/farmacología , Simulación de Dinámica Molecular , Sulfatos/farmacología , Amidohidrolasas/metabolismo , Cristalografía por Rayos X , Neisseria meningitidis/enzimología
5.
J Biol Chem ; 295(26): 8668-8677, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32358058

RESUMEN

Cleavage of aromatic carbon-chlorine bonds is critical for the degradation of toxic industrial compounds. Here, we solved the X-ray crystal structure of chlorothalonil dehalogenase (Chd) from Pseudomonas sp. CTN-3, with 15 of its N-terminal residues truncated (ChdT), using single-wavelength anomalous dispersion refined to 1.96 Å resolution. Chd has low sequence identity (<15%) compared with all other proteins whose structures are currently available, and to the best of our knowledge, we present the first structure of a Zn(II)-dependent aromatic dehalogenase that does not require a coenzyme. ChdT forms a "head-to-tail" homodimer, formed between two α-helices from each monomer, with three Zn(II)-binding sites, two of which occupy the active sites, whereas the third anchors a structural site at the homodimer interface. The catalytic Zn(II) ions are solvent-accessible via a large hydrophobic (8.5 × 17.8 Å) opening to bulk solvent and two hydrophilic branched channels. Each active-site Zn(II) ion resides in a distorted trigonal bipyramid geometry with His117, His257, Asp116, Asn216, and a water/hydroxide as ligands. A conserved His residue, His114, is hydrogen-bonded to the Zn(II)-bound water/hydroxide and likely functions as the general acid-base. We examined substrate binding by docking chlorothalonil (2,4,5,6-tetrachloroisophtalonitrile, TPN) into the hydrophobic channel and observed that the most energetically favorable pose includes a TPN orientation that coordinates to the active-site Zn(II) ions via a CN and that maximizes a π-π interaction with Trp227 On the basis of these results, along with previously reported kinetics data, we propose a refined catalytic mechanism for Chd-mediated TPN dehalogenation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fungicidas Industriales/metabolismo , Hidrolasas/metabolismo , Nitrilos/metabolismo , Pseudomonas/enzimología , Proteínas Bacterianas/química , Biodegradación Ambiental , Dominio Catalítico , Cristalografía por Rayos X , Halogenación , Hidrolasas/química , Hidrólisis , Simulación del Acoplamiento Molecular , Conformación Proteica , Pseudomonas/química , Pseudomonas/metabolismo , Especificidad por Sustrato
6.
Inorg Chem ; 60(8): 5432-5435, 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33779143

RESUMEN

The metal binding motif of all nitrile hydratases (NHases, EC 4.2.1.84) is highly conserved (CXXCSCX) in the α-subunit. Accordingly, an eight amino acid peptide (VCTLCSCY), based on the metal binding motif of the Co-type NHase from Pseudonocardia thermophilia (PtNHase), was synthesized and shown to coordinate Fe(II) under anaerobic conditions. Parallel-mode EPR data on the mononuclear Fe(II)-peptide complex confirmed an integer-spin signal at g' ∼ 9, indicating an S = 2 system with unusually small axial ZFS, D = 0.29 cm-1 Exposure to air yielded a transient high-spin EPR signal most consistent with an intermediate/admixed S = 3/2 spin state, while the integer-spin signal was extinguished. Prolonged exposure to air resulted in the observation of EPR signals at g = 2.04, 2.16, and 2.20, consistent with the formation of a low-spin Fe(III)-peptide complex with electronic and structural similarity to the NHase from Rhodococcus equi TG328-2 (ReNHase). Coupled with MS data, these data support a progression for iron oxidation in NHases that proceeds from a reduced high spin to an oxidized high spin followed by formation of an oxidized low-spin iron center, something that heretofore has not been observed.


Asunto(s)
Compuestos Férricos/metabolismo , Hidroliasas/metabolismo , Sitios de Unión , Compuestos Férricos/química , Hidroliasas/química , Estructura Molecular , Pseudonocardia/enzimología , Rhodococcus equi/enzimología
7.
J Biol Chem ; 294(36): 13411-13420, 2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31331935

RESUMEN

Chlorothalonil (2,4,5,6-tetrachloroisophtalonitrile; TPN) is one of the most commonly used fungicides in the United States. Given TPN's widespread use, general toxicity, and potential carcinogenicity, its biodegradation has garnered significant attention. Here, we developed a direct spectrophotometric assay for the Zn(II)-dependent, chlorothalonil-hydrolyzing dehalogenase from Pseudomonas sp. CTN-3 (Chd), enabling determination of its metal-binding properties; pH dependence of the kinetic parameters kcat, Km , and kcat/Km ; and solvent isotope effects. We found that a single Zn(II) ion binds a Chd monomer with a Kd of 0.17 µm, consistent with inductively coupled plasma MS data for the as-isolated Chd dimer. We observed that Chd was maximally active toward chlorothalonil in the pH range 7.0-9.0, and fits of these data yielded a pKES1 of 5.4 ± 0.2, a pKES2 of 9.9 ± 0.1 (k'cat = 24 ± 2 s-1), a pKE1 of 5.4 ± 0.3, and a pKE2 of 9.5 ± 0.1 (k'cat/k' m = 220 ± 10 s-1 mm-1). Proton inventory studies indicated that one proton is transferred in the rate-limiting step of the reaction at pD 7.0. Fits of UV-visible stopped-flow data suggested a three-step model and provided apparent rate constants for intermediate formation (i.e. a k'2 of 35.2 ± 0.1 s-1) and product release (i.e. a k'3 of 1.1 ± 0.2 s-1), indicating that product release is the slow step in catalysis. On the basis of these results, along with those previously reported, we propose a mechanism for Chd catalysis.


Asunto(s)
Fungicidas Industriales/metabolismo , Hidrolasas/metabolismo , Nitrilos/metabolismo , Pseudomonas/enzimología , Biocatálisis , Fungicidas Industriales/química , Hidrólisis , Estructura Molecular , Nitrilos/química
8.
J Biol Inorg Chem ; 25(6): 903-911, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32812122

RESUMEN

An Fe-type nitrile hydratase α(ɛ) protein complex from Rhodococcus equi TG328-2 (ReNHase) was discovered and shown by MALDI-TOF to form a 1:1 complex. As isolated, the α(ɛ) protein complex exhibited no detectable NHase activity even in the presence of iron. The addition of the ReNHase ß-subunit and Fe(II) to the ReNHase apo-α(ε) complex, provided an enzyme with a kcat value of 0.7 ± 0.1 s-1 using acrylonitrile as the substrate, indicating that the ß-subunit is important for the reconstitution of NHase activity. The addition of the reducing agent TCEP enhanced the activity by more than 50% (kcat of 1.7 ± 0.2 s-1). As the (ɛ) protein was previously shown to bind and hydrolyze GTP, the addition of GTP to the as-purified α(ε) complex provided a kcat value of 1.1 ± 0.2 s-1, in the presence of Fe(II) and ß-subunit. The addition of TCEP to this combination further enhanced the activity (kcat of 2.1 ± 0.3 s-1). Apo α-subunit was expressed in purified and added to the (ɛ) protein and ß-subunits plus Fe(II) and TCEP resulting in a kcat value of 0.7 ± 0.2 s-1 suggesting an α(ɛ) complex can form in vitro. The addition of GTP to this sample increased the observed rate of nitrile hydration by ~ 30%, while TCEP free samples exhibited no activity. Taken together, these data provide insight into the role of the (ɛ) protein and the newly discovered α(ɛ) complex in NHase metallocenter assembly.


Asunto(s)
Proteínas Bacterianas/química , Hidroliasas/química , Hierro/química , Rhodococcus equi/enzimología , Acrilonitrilo/química , Catálisis , Activación Enzimática , Hidrólisis , Cinética , Unión Proteica , Conformación Proteica , Rhodococcus equi/genética
9.
J Biol Inorg Chem ; 24(7): 1105-1113, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31549242

RESUMEN

Nitrile hydratase (NHase) is a non-heme iron-containing enzyme that has applications in commodity chemical synthesis, pharmaceutical intermediate synthesis, and reclamation of nitrile-(bromoxynil) contaminated land. Mechanistic study of the enzyme has been complicated by the expression of multiple overlapping Fe(III) EPR signals. The individual signals were recently assigned to distinct chemical species with the assistance of DFT calculations. Here, the origins and evolution of the EPR signals from cells overexpressing the enzyme were investigated, with the aims of optimizing the preparation of homogeneous samples of NHase for study and investigating the application of E. coli overexpressing the enzyme for "green" chemistry. It was revealed that nitrile hydratase forms two sets of inactive complexes in vivo over time. One is due to reversible complexation with endogenous carboxylic acids, while the second is due to irreversibly inactivating oxidation of an essential cysteine sulfenic acid. It was shown that the homogeneity of preparations can be improved by employing an anaerobic protocol. The ability of the substrates acrylonitrile and acetonitrile to be taken up by cells and hydrated to the corresponding amides by NHase was demonstrated by EPR identification of the product complexes of NHase in intact cells. The inhibitors butyric acid and butane boronic acid were also taken up by E. coli and formed complexes with NHase in vivo, indicating that care must be taken with environmental variables when attempting microbially assisted synthesis and reclamation.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón , Hidroliasas/química , Hidroliasas/metabolismo , Hierro/química , Anaerobiosis , Rhodococcus equi/enzimología
10.
Biochemistry ; 57(5): 574-584, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29272107

RESUMEN

The X-ray crystal structure of the dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase from Haemophilus influenzae (HiDapE) bound by the products of hydrolysis, succinic acid and l,l-DAP, was determined at 1.95 Å. Surprisingly, the structure bound to the products revealed that HiDapE undergoes a significant conformational change in which the catalytic domain rotates ∼50° and shifts ∼10.1 Å (as measured at the position of the Zn atoms) relative to the dimerization domain. This heretofore unobserved closed conformation revealed significant movements within the catalytic domain compared to that of wild-type HiDapE, which results in effectively closing off access to the dinuclear Zn(II) active site with the succinate carboxylate moiety bridging the dinculear Zn(II) cluster in a µ-1,3 fashion forming a bis(µ-carboxylato)dizinc(II) core with a Zn-Zn distance of 3.8 Å. Surprisingly, His194.B, which is located on the dimerization domain of the opposing chain ∼10.1 Å from the dinuclear Zn(II) active site, forms a hydrogen bond (2.9 Å) with the oxygen atom of succinic acid bound to Zn2, forming an oxyanion hole. As the closed structure forms upon substrate binding, the movement of His194.B by more than ∼10 Å is critical, based on site-directed mutagenesis data, for activation of the scissile carbonyl carbon of the substrate for nucleophilic attack by a hydroxide nucleophile. Employing the HiDapE product-bound structure as the starting point, a reverse engineering approach called product-based transition-state modeling provided structural models for each major catalytic step. These data provide insight into the catalytic reaction mechanism and also the future design of new, potent inhibitors of DapE enzymes.


Asunto(s)
Amidohidrolasas/química , Proteínas Bacterianas/química , Haemophilus influenzae/enzimología , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Ácido Diaminopimélico/metabolismo , Dimerización , Haemophilus influenzae/genética , Enlace de Hidrógeno , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Neisseria meningitidis/enzimología , Neisseria meningitidis/genética , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/química , Rotación , Especificidad por Sustrato , Ácido Succínico/metabolismo , Zinc/química
11.
Arch Biochem Biophys ; 657: 1-7, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30205086

RESUMEN

The functional roles of the (His)17 region and an insert region in the eukaryotic nitrile hydratase (NHase, EC 4.2.1.84) from Monosiga brevicollis (MbNHase), were examined. Two deletion mutants, MbNHaseΔ238-257 and MbNHaseΔ219-272, were prepared in which the (His)17 sequence and the entire insert region were removed. Each of these MbNHase enzymes provided an α2ß2 heterotetramer, identical to that observed for prokaryotic NHases and contains their full complement of cobalt ions. Deletion of the (His)17 motif provides an MbNHase enzyme that is ∼55% as active as the WT enzyme when expressed in the absence of the Co-type activator (ε) protein from Pseudonocardia thermophila JCM 3095 (PtNHaseact) but ∼28% more active when expressed in the presence of PtNHaseact. MbNHaseΔ219-272 exhibits ∼55% and ∼89% of WT activity, respectively, when expressed in the absence or presence of PtNHaseact. Proteolytic cleavage of MbNHase provides an α2ß2 heterotetramer that is modestly more active compared to WT MbNHase (kcat = 163 ±â€¯4 vs 131 ±â€¯3 s-1). Combination of these data establish that neither the (His)17 nor the insert region are required for metallocentre assembly and maturation, suggesting that Co-type eukaryotic NHases utilize a different mechanism for metal ion incorporation and post-translational activation compared to prokaryotic NHases.


Asunto(s)
Coanoflagelados/enzimología , Hidroliasas/química , Metaloproteínas/química , Subunidades de Proteína/química , Secuencia de Aminoácidos , Dominio Catalítico , Cobalto/química , Hidroliasas/genética , Hidroliasas/aislamiento & purificación , Cinética , Metaloproteínas/genética , Metaloproteínas/aislamiento & purificación , Mutación , Procesamiento Proteico-Postraduccional , Subunidades de Proteína/genética , Subunidades de Proteína/aislamiento & purificación , Proteolisis , Alineación de Secuencia
12.
Biochem J ; 474(2): 247-258, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27807009

RESUMEN

The Fe-type nitrile hydratase activator protein from Rhodococcus equi TG328-2 (ReNHase TG328-2) was successfully expressed and purified. Sequence analysis and homology modeling suggest that it is a G3E P-loop guanosine triphosphatase (GTPase) within the COG0523 subfamily. Kinetic studies revealed that the Fe-type activator protein is capable of hydrolyzing GTP to GDP with a kcat value of 1.2 × 10-3 s-1 and a Km value of 40 µM in the presence of 5 mM MgCl2 in 50 mM 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid at a pH of 8.0. The addition of divalent metal ions, such as Co(II), which binds to the ReNHase TG328-2 activator protein with a Kd of 2.9 µM, accelerated the rate of GTP hydrolysis, suggesting that GTP hydrolysis is potentially connected to the proposed metal chaperone function of the ReNHase TG328-2 activator protein. Circular dichroism data reveal a significant conformational change upon the addition of GTP, which may be linked to the interconnectivity of the cofactor binding sites, resulting in an activator protein that can be recognized and can bind to the NHase α-subunit. A combination of these data establishes, for the first time, that the ReNHase TG328-2 activator protein falls into the COG0523 subfamily of G3E P-loop GTPases, many of which play a role in metal homeostasis processes.


Asunto(s)
Proteínas Bacterianas/química , GTP Fosfohidrolasas/química , Guanosina Trifosfato/química , Hidroliasas/química , Hierro/química , Rhodococcus equi/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Expresión Génica , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Hidroliasas/genética , Hidroliasas/metabolismo , Hidrólisis , Hierro/metabolismo , Cinética , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhodococcus equi/enzimología , Alineación de Secuencia , Homología Estructural de Proteína , Especificidad por Sustrato
13.
Biochemistry ; 56(24): 3068-3077, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28520398

RESUMEN

Iron-type nitrile hydratases (NHases) contain an Fe(III) ion coordinated in a characteristic "claw setting" by an axial cysteine thiolate, two equatorial peptide nitrogens, the sulfur atoms of equatorial cysteine-sulfenic and cysteine-sulfinic acids, and an axial water/hydroxyl moiety. The cysteine-sulfenic acid is susceptible to oxidation, and the enzyme is traditionally prepared using butyric acid as an oxidative protectant. The as-prepared enzyme exhibits a complex electron paramagnetic resonance (EPR) spectrum due to multiple low-spin (S = 1/2) Fe(III) species. Four distinct signals can be assigned to the resting active state, the active state bound to butyric acid, an oxidized Fe(III)-bis(sulfinic acid) form, and an oxidized complex with butyric acid. A combination of comparison with earlier work, development of methods to elicit individual signals, and design and application of a novel density functional theory method for reproducing g tensors to unprecedentedly high precision was used to assign the signals. These species account for the previously reported EPR spectra from Fe-NHases, including spectra observed upon addition of substrates. Completely new EPR signals were observed upon addition of inhibitory boronic acids, and the distinctive g1 features of these signals were replicated in the steady state with the slow substrate acetonitrile. This latter signal constitutes the first EPR signal from a catalytic intermediate of NHase and is assigned to a key intermediate in the proposed catalytic cycle. Earlier, apparently contradictory, electron nuclear double resonance reports are reconsidered in the context of this work.


Asunto(s)
Hidroliasas/química , Resonancia Magnética Nuclear Biomolecular , Teoría Cuántica , Rhodococcus equi/enzimología , Hidroliasas/metabolismo , Conformación Proteica
14.
Biochim Biophys Acta Proteins Proteom ; 1865(1): 107-112, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27693250

RESUMEN

Nitrile hydratase (NHase), an industrially important enzyme that catalyzes the hydration of nitriles to their corresponding amides, has only been characterized from prokaryotic microbes. The putative NHase from the eukaryotic unicellular choanoflagellate organism Monosiga brevicollis (MbNHase) was heterologously expressed in Escherichia coli. The resulting enzyme expressed as a single polypeptide with fused α- and ß-subunits linked by a seventeen-histidine region. Size-exclusion chromatography indicated that MbNHase exists primarily as an (αß)2 homodimer in solution, analogous to the α2ß2 homotetramer architecture observed for prokaryotic NHases. The NHase enzyme contained its full complement of Co(III) and was fully functional without the co-expression of an activator protein or E. coli GroES/EL molecular chaperones. The homology model of MbNHase was developed identifying Cys400, Cys403, and Cys405 as active site ligands. The results presented here provide the first experimental data for a mature and active eukaryotic NHase with fused subunits. Since this new member of the NHase family is expressed from a single gene without the requirement of an activator protein, it represents an alternative biocatalyst for industrial syntheses of important amide compounds.


Asunto(s)
Coanoflagelados/enzimología , Cobalto/química , Hidroliasas/química , Metaloproteínas/química , Proteínas Protozoarias/química , Secuencia de Aminoácidos , Coanoflagelados/genética , Cristalografía por Rayos X , Hidroliasas/genética , Metaloproteínas/genética , Modelos Moleculares , Conformación Proteica en Lámina beta , Proteínas Protozoarias/genética , Espectrofotometría Ultravioleta
15.
Biochemistry ; 54(31): 4834-44, 2015 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-26186504

RESUMEN

Binding of the competitive inhibitor L-captopril to the dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase from Neisseria meningitidis (NmDapE) was examined by kinetic, spectroscopic, and crystallographic methods. L-Captopril, an angiotensin-converting enzyme (ACE) inhibitor, was previously shown to be a potent inhibitor of the DapE from Haemophilus influenzae (HiDapE) with an IC50 of 3.3 µM and a measured Ki of 1.8 µM and displayed a dose-responsive antibiotic activity toward Escherichia coli. L-Captopril is also a competitive inhibitor of NmDapE with a Ki of 2.8 µM. To examine the nature of the interaction of L-captopril with the dinuclear active site of DapE, we have obtained electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) data for the enzymatically hyperactive Co(II)-substituted forms of both HiDapE and NmDapE. EPR and MCD data indicate that the two Co(II) ions in DapE are antiferromagnetically coupled, yielding an S = 0 ground state, and suggest a thiolate bridge between the two metal ions. Verification of a thiolate-bridged dinuclear complex was obtained by determining the three-dimensional X-ray crystal structure of NmDapE in complex with L-captopril at 1.8 Å resolution. Combination of these data provides new insights into binding of L-captopril to the active site of DapE enzymes as well as important inhibitor-active site residue interaction's. Such information is critical for the design of new, potent inhibitors of DapE enzymes.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/química , Proteínas Bacterianas , Captopril/química , Liasas , Neisseria meningitidis/enzimología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Dominio Catalítico , Dicroismo Circular , Cristalografía por Rayos X , Liasas/antagonistas & inhibidores , Liasas/química
16.
J Biol Inorg Chem ; 20(5): 885-94, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26077812

RESUMEN

A strictly conserved active site arginine residue (αR157) and two histidine residues (αH80 and αH81) located near the active site of the Fe-type nitrile hydratase from Comamonas testosteroni Ni1 (CtNHase), were mutated. These mutant enzymes were examined for their ability to bind iron and hydrate acrylonitrile. For the αR157A mutant, the residual activity (k cat = 10 ± 2 s(-1)) accounts for less than 1% of the wild-type activity (k cat = 1100 ± 30 s(-1)) while the K m value is nearly unchanged at 205 ± 10 mM. On the other hand, mutation of the active site pocket αH80 and αH81 residues to alanine resulted in enzymes with k cat values of 220 ± 40 and 77 ± 13 s(-1), respectively, and K m values of 187 ± 11 and 179 ± 18 mM. The double mutant (αH80A/αH81A) was also prepared and provided an enzyme with a k cat value of 132 ± 3 s(-1) and a K m value of 213 ± 61 mM. These data indicate that all three residues are catalytically important, but not essential. X-ray crystal structures of the αH80A/αH81A, αH80W/αH81W, and αR157A mutant CtNHase enzymes were solved to 2.0, 2.8, and 2.5 Å resolutions, respectively. In each mutant enzyme, hydrogen-bonding interactions crucial for the catalytic function of the αCys(104)-SOH ligand are disrupted. Disruption of these hydrogen bonding interactions likely alters the nucleophilicity of the sulfenic acid oxygen and the Lewis acidity of the active site Fe(III) ion.


Asunto(s)
Biocatálisis , Comamonas testosteroni/enzimología , Hidroliasas/química , Hidroliasas/metabolismo , Hierro/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Hidroliasas/genética , Enlace de Hidrógeno , Hierro/química , Datos de Secuencia Molecular , Mutación , Alineación de Secuencia
17.
J Biol Chem ; 288(22): 15532-6, 2013 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-23589282

RESUMEN

Stopped-flow kinetic data were obtained for the iron-type nitrile hydratase from Rhodococcus equi TG328-2 (ReNHase) using methacrylonitrile as the substrate. Multiple turnover experiments suggest a three-step kinetic model that allows for the reversible binding of substrate, the presence of an intermediate, and the formation of product. Microscopic rate constants determined from these data are in good agreement with steady state data confirming that the stopped-flow method used was appropriate for the reaction. Single turnover stopped-flow experiments were used to identify catalytic intermediates. These data were globally fit confirming a three-step kinetic model. Independent absorption spectra acquired between 0.005 and 0.5 s of the reaction reveal a significant increase in absorbance at 375, 460, and 550 nm along with the hypsochromic shift of an Fe(3+)←S ligand-to-metal charge transfer band from 700 to 650 nm. The observed UV-visible absorption bands for the Fe(3+)-nitrile intermediate species are similar to low spin Fe(3+)-enzyme and model complexes bound by NO or N3((-)). These data provide spectroscopic evidence for the direct coordination of the nitrile substrate to the nitrile hydratase active site low spin Fe(3+) center.


Asunto(s)
Proteínas Bacterianas/química , Hidroliasas/química , Modelos Químicos , Rhodococcus equi/enzimología , Proteínas Bacterianas/metabolismo , Catálisis , Dominio Catalítico , Hidroliasas/metabolismo , Cinética
18.
Anal Biochem ; 467: 4-13, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25205653

RESUMEN

Thirteen mono-N-acyl derivatives of 2,6-diaminopimelic acid (DAP)-new potential inhibitors of the dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE; EC 3.5.1.18)-were analyzed and characterized by infrared (IR) and nuclear magnetic resonance (NMR) spectroscopies and two capillary electromigration methods: capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC). Structural features of DAP derivatives were characterized by IR and NMR spectroscopies, whereas CZE and MEKC were applied to evaluate their purity and to investigate their electromigration properties. Effective electrophoretic mobilities of these compounds were determined by CZE in acidic and alkaline background electrolytes (BGEs) and by MEKC in acidic and alkaline BGEs containing a pseudostationary phase of anionic detergent sodium dodecyl sulfate (SDS) or cationic detergent cetyltrimethylammonium bromide (CTAB). The best separation of DAP derivatives, including diastereomers of some of them, was achieved by MEKC in an acidic BGE (500 mM acetic acid [pH 2.54] and 60mM SDS). All DAP derivatives were examined for their ability to inhibit catalytic activity of DapE from Haemophilus influenzae (HiDapE) and ArgE from Escherichia coli (EcArgE). None of these DAP derivatives worked as an effective inhibitor of HiDapE, but one derivative-N-fumaryl, Me-ester-DAP-was found to be a moderate inhibitor of EcArgE, thereby providing a promising lead structure for further studies on ArgE inhibitors.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Ácido Diaminopimélico/química , Electroforesis Capilar/métodos , Inhibidores Enzimáticos/farmacología , Espectroscopía de Resonancia Magnética/métodos , Espectrofotometría Infrarroja/métodos , Inhibidores Enzimáticos/química , Escherichia coli/enzimología , Haemophilus influenzae/enzimología
19.
J Biol Inorg Chem ; 18(2): 155-163, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23223968

RESUMEN

In this review, we summarize the recent literature on dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) enzymes, with an emphasis on structure-function studies that provide insight into the catalytic mechanism. Crystallographic data have also provided insight into residues that might be involved in substrate and hence inhibitor recognition and binding. These data have led to the design and synthesis of several new DapE inhibitors, which are described along with what is known about how inhibitors interact with the active site of DapE enzymes, including the efficacy of a moderately strong DapE inhibitor.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Bacterias/enzimología , Proteínas Bacterianas/antagonistas & inhibidores , Lisina/biosíntesis , Amidohidrolasas/química , Antibacterianos/química , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Proteínas Bacterianas/química , Dominio Catalítico , Farmacorresistencia Bacteriana , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Modelos Moleculares , Unión Proteica
20.
ACS Environ Au ; 3(6): 361-369, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38028742

RESUMEN

Triazine hydrolase fromArthrobacter aurescens TC1 (TrzN) was successfully immobilized on mesoporous silica nanomaterials (MSNs) for the first time. For both nonfunctionalized MSNs and MSNs functionalized with Zn(II), three pore sizes were evaluated for their ability to immobilize wild-type TrzN: Mobile composition of matter no. 41 (small, 3 nm pores), mesoporous silica nanoparticle material with 10 nm pore diameter (MSN-10) (medium, 6-12 nm pores), and pore-expanded MSN-10 (large, 15-30 nm pores). Of these six TrzN:MSN biomaterials, it was shown that TrzN:MSN-10 was the most active (3.8 ± 0.4 × 10-5 U/mg) toward the hydrolysis of a 50 µM atrazine solution at 25 °C. The TrzN:MSN-10 biomaterial was then coated in chitosan (TrzN:MSN-10:Chit) as chitosan has been shown to increase stability in extreme conditions such as low/high pH, heat shock, and the presence of organic solvents. TrzN:MSN-10:Chit was shown to be a superior TrzN biomaterial to TrzN:MSN-10 as it exhibited higher activity under all storage conditions, in the presence of 20% MeOH, at low and high pH values, and at elevated temperatures up to 80 °C. Finally, the TrzN:MSN-10:Chit biomaterial was shown to be fully active in river water, which establishes it as a functional biomaterial under actual field conditions. A combination of these data indicate that the TrzN:MSN-10:Chit biomaterial exhibited the best overall catalytic profile making it a promising biocatalyst for the bioremediation of atrazine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA