RESUMEN
PURPOSE: The aim of this work is to develop an ω-3 fatty acid fraction mapping method at 3 T based on a chemical shift encoding model, to assess its performance in a phantom and in vitro study, and to further demonstrate its feasibility in vivo. METHODS: A signal model was heuristically derived based on spectral appearance and theoretical considerations of the corresponding molecular structures to differentiate between ω-3 and non-ω-3 fatty acid substituents in triacylglycerols in addition to the number of double bonds (ndb), the number of methylene-interrupted double bonds (nmidb), and the mean fatty acid chain length (CL). First, the signal model was validated using single-voxel spectroscopy and a time-interleaved multi-echo gradient-echo (TIMGRE) sequence in gas chromatography-mass spectrometry (GC-MS)-calibrated oil phantoms. Second, the TIMGRE-based method was validated in vitro in 21 adipose tissue samples with corresponding GC-MS measurements. Third, an in vivo feasibility study was performed for the TIMGRE-based method in the gluteal region of two healthy volunteers. Phantom and in vitro data was analyzed using a Bland-Altman analysis. RESULTS: Compared with GC-MS, MRS showed in the phantom study significant correlations in estimating the ω-3 fraction (p < 0.001), ndb (p < 0.001), nmidb (p < 0.001), and CL (p = 0.001); MRI showed in the phantom study significant correlations (all p < 0.001) for the ω-3 fraction, ndb, and nmidb, but no correlation for CL. Also in the in vitro study, significant correlations (all p < 0.001) between MRI and GC-MS were observed for the ω-3 fraction, ndb, and nmidb, but not for CL. An exemplary ROI measurement in vivo in the gluteal subcutaneous adipose tissue yielded (mean ± standard deviation) 0.8% ± 1.9% ω-3 fraction. CONCLUSION: The present study demonstrated strong correlations between gradient-echo imaging-based ω-3 fatty acid fraction mapping and GC-MS in the phantom and in vitro study. Furthermore, feasibility was demonstrated for characterizing adipose tissue in vivo.
Asunto(s)
Ácidos Grasos Omega-3 , Estudios de Factibilidad , Imagen por Resonancia Magnética , Fantasmas de Imagen , Ácidos Grasos Omega-3/química , Humanos , Imagen por Resonancia Magnética/métodos , Adulto , Femenino , Masculino , Tejido Adiposo/diagnóstico por imagen , Tejido Adiposo/química , Cromatografía de Gases y Espectrometría de MasasRESUMEN
OBJECTIVE: Cell diameter, area, and volume are established quantitative measures of adipocyte size. However, these different adipocyte sizing parameters have not yet been directly compared regarding their distributions. Therefore, the study aimed to investigate how these adipocyte size measures differ in their distribution and assessed their correlation with anthropometry and laboratory chemistry. In addition, we were interested to investigate the relationship between fat cell size and adipocyte mitochondrial respiratory chain capacity. METHODS: Subcutaneous and visceral histology-based adipocyte size estimates from 188 individuals were analyzed by applying a panel of parameters to describe the underlying cell population. Histology-based adipocyte diameter distributions were compared with adipocyte diameter distributions from collagenase digestion. Associations of mean adipocyte size with body mass index (BMI), glucose, HbA1C, blood lipids as well as mature adipocyte mitochondrial respiration were investigated. RESULTS: All adipocyte area estimates derived from adipose tissue histology were not normally distributed, but rather characterized by positive skewness. The shape of the size distribution depends on the adipocyte sizing parameter and on the method used to determine adipocyte size. Despite different distribution shapes histology-derived adipocyte area, diameter, volume, and surface area consistently showed positive correlations with BMI. Furthermore, associations between adipocyte sizing parameters and glucose, HbA1C, or HDL specifically in the visceral adipose depot were revealed. Increasing subcutaneous adipocyte diameter was negatively correlated with adipocyte mitochondrial respiration. CONCLUSIONS: Despite different underlying size distributions, the correlation with obesity-related traits was consistent across adipocyte sizing parameters. Decreased mitochondrial respiratory capacity with increasing subcutaneous adipocyte diameter could display a novel link between adipocyte hypertrophy and adipose tissue function.
Asunto(s)
Adipocitos/clasificación , Obesidad/fisiopatología , Pesos y Medidas/normas , Adipocitos/fisiología , Tejido Adiposo/metabolismo , Adulto , Índice de Masa Corporal , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias/fisiología , Pesos y Medidas/instrumentaciónRESUMEN
PURPOSE: To develop a methodology for probing lipid droplet sizes with a clinical system based on a diffusion-weighted stimulated echo-prepared turbo spin-echo sequence and to validate the methodology in water-fat emulsions and show its applicability in ex vivo adipose-tissue samples. METHODS: A diffusion-weighted stimulated echo-prepared preparation was combined with a single-shot turbo spin-echo readout for measurements at different b-values and diffusion times. The droplet size was estimated with an analytical expression, and three fitting approaches were compared: magnitude-based spatial averaging with voxel-wise residual minimization, complex-based spatial averaging with voxel-wise residual minimization, and complex-based spatial averaging with neighborhood-regularized residual minimization. Simulations were performed to characterize the fitting residual landscape and the approaches' noise performance. The applicability was assessed in oil-in-water emulsions in comparison with laser deflection and in ten human white adipose tissue samples in comparison with histology. RESULTS: The fitting residual landscape showed a minimum valley with increasing extent as the droplet size increased. In phantoms, a very good agreement of the mean droplet size was observed between the diffusion-weighted MRI-based and the laser deflection measurements, showing the best performance with complex-based spatial averaging with neighborhood-regularized residual minimization processing (R2 /P: 0.971/0.014). In the human adipose-tissue samples, complex-based spatial averaging with neighborhood-regularized residual minimization processing showed a significant correlation (R2 /P: 0.531/0.017) compared with histology. CONCLUSION: The proposed acquisition and parameter-estimation methodology was able to probe restricted diffusion effects in lipid droplets. The methodology was validated using phantoms, and its feasibility in measuring an apparent lipid droplet size was demonstrated ex vivo in white adipose tissue.
Asunto(s)
Imagen de Difusión por Resonancia Magnética , Gotas Lipídicas , Tejido Adiposo/diagnóstico por imagen , Difusión , Humanos , Fantasmas de ImagenRESUMEN
Genetic studies have recently highlighted the importance of fat distribution, as well as overall adiposity, in the pathogenesis of obesity-associated diseases. Using a large study (n = 1,288) from 4 independent cohorts, we aimed to investigate the relationship between mean adipocyte area and obesity-related traits, and identify genetic factors associated with adipocyte cell size. To perform the first large-scale study of automatic adipocyte phenotyping using both histological and genetic data, we developed a deep learning-based method, the Adipocyte U-Net, to rapidly derive mean adipocyte area estimates from histology images. We validate our method using three state-of-the-art approaches; CellProfiler, Adiposoft and floating adipocytes fractions, all run blindly on two external cohorts. We observe high concordance between our method and the state-of-the-art approaches (Adipocyte U-net vs. CellProfiler: R2visceral = 0.94, P < 2.2 × 10-16, R2subcutaneous = 0.91, P < 2.2 × 10-16), and faster run times (10,000 images: 6mins vs 3.5hrs). We applied the Adipocyte U-Net to 4 cohorts with histology, genetic, and phenotypic data (total N = 820). After meta-analysis, we found that mean adipocyte area positively correlated with body mass index (BMI) (Psubq = 8.13 × 10-69, ßsubq = 0.45; Pvisc = 2.5 × 10-55, ßvisc = 0.49; average R2 across cohorts = 0.49) and that adipocytes in subcutaneous depots are larger than their visceral counterparts (Pmeta = 9.8 × 10-7). Lastly, we performed the largest GWAS and subsequent meta-analysis of mean adipocyte area and intra-individual adipocyte variation (N = 820). Despite having twice the number of samples than any similar study, we found no genome-wide significant associations, suggesting that larger sample sizes and a homogenous collection of adipose tissue are likely needed to identify robust genetic associations.
Asunto(s)
Adipocitos , Aprendizaje Automático , Obesidad , Adipocitos/clasificación , Adipocitos/citología , Tejido Adiposo/fisiología , Adulto , Índice de Masa Corporal , Tamaño de la Célula , Biología Computacional/métodos , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Redes Neurales de la Computación , Obesidad/epidemiología , Obesidad/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genéticaRESUMEN
PURPOSE: The in vivo probing of restricted diffusion effects in large lipid droplets on a clinical MR scanner remains a major challenge due to the need for high b-values and long diffusion times. This work proposes a methodology to probe mean lipid droplet sizes using diffusion-weighted MRS (DW-MRS) at 3T. METHODS: An analytical expression for restricted diffusion was used. Simulations were performed to evaluate the noise performance and the influence of particle size distribution. To validate the method, oil-in-water emulsions were prepared and examined using DW-MRS, laser deflection and light microscopy. The tibia bone marrow was scanned in volunteers to test the method repeatability and characterize microstructural differences at different locations. RESULTS: The simulations showed accurate and precise droplet size estimation when a sufficient SNR is reached with minor dependence on the size distribution. In phantoms, a good correlation between the measured droplet sizes by DW-MRS and by laser deflection (R2 = 0.98; P = 0.01) and microscopy (R2 = 0.99; P < 0.01) measurements was obtained. A mean coefficient of variation of 11.5 % was found for the lipid droplet diameter in vivo. The average diameter was smaller at a proximal (50.1 ± 7.3 µm) compared with a distal tibia location (61.1 ± 6.8 µm) (P < 0.01). CONCLUSION: The presented methods were able to probe restricted diffusion effects in lipid droplets using DW-MRS and to estimate lipid droplet size. The methodology was validated using phantoms and the in vivo feasibility in bone marrow was shown based on a good repeatability and findings in agreement with literature.
Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Gotas Lipídicas/química , Procesamiento de Señales Asistido por Computador , Tejido Adiposo/diagnóstico por imagen , Adulto , Médula Ósea/diagnóstico por imagen , Simulación por Computador , Humanos , Tamaño de la Partícula , Fantasmas de Imagen , Tibia/diagnóstico por imagenRESUMEN
Cold-induced lipolysis is widely studied as a potential therapeutic strategy to combat metabolic disease, but its effect on lipid homeostasis in humans remains largely unclear. Blood plasma comprises an enormous repertoire in lipids allowing insights into whole body lipid homeostasis. So far, reported results originate from studies carried out with small numbers of male participants. Here, the blood plasma's lipidome of 78 male and 93 female volunteers, who were exposed to cold below the shivering threshold for 2 h, was quantified by comprehensive lipidomics using high-resolution mass spectrometry. Short-term cold exposure increased the concentrations in 147 of 177 quantified circulating lipids and the response of the plasma's lipidome was sex-specific. In particular, the amounts of generated glycerophospholipid and sphingolipid species differed between the sexes. In women, the BMI could be related with the lipidome's response. A logistic regression model predicted with high sensitivity and specificity whether plasma samples were from male or female subjects based on the cold-induced response of phosphatidylcholine (PC), lysophosphatidylcholine (LPC), and sphingomyelin (SM) species. In summary, cold exposure promotes lipid synthesis by supplying fatty acids generated after lipolysis for all lipid classes. The plasma lipidome, i.e. PC, LPC and SM, shows a sex-specific response, indicating a different regulation of its metabolism in men and women. This supports the need for sex-specific research and avoidance of sex bias in clinical trials.
RESUMEN
There are multiple independent genetic signals at the Ras-responsive element binding protein 1 (RREB1) locus associated with type 2 diabetes risk, fasting glucose, ectopic fat, height, and bone mineral density. We have previously shown that loss of RREB1 in pancreatic beta cells reduces insulin content and impairs islet cell development and function. However, RREB1 is a widely expressed transcription factor and the metabolic impact of RREB1 loss in vivo remains unknown. Here, we show that male and female global heterozygous knockout (Rreb1 +/-) mice have reduced body length, weight, and fat mass on high-fat diet. Rreb1+/- mice have sex- and diet-specific decreases in adipose tissue and adipocyte size; male mice on high-fat diet had larger gonadal adipocytes, while males on standard chow and females on high-fat diet had smaller, more insulin sensitive subcutaneous adipocytes. Mouse and human precursor cells lacking RREB1 have decreased adipogenic gene expression and activated transcription of genes associated with osteoblast differentiation, which was associated with Rreb1 +/- mice having increased bone mineral density in vivo. Finally, human carriers of RREB1 T2D protective alleles have smaller adipocytes, consistent with RREB1 loss-of-function reducing diabetes risk.
RESUMEN
BACKGROUND: Cancer cachexia (CCx) is a complex and multi-organ wasting syndrome characterized by substantial weight loss and poor prognosis. An improved understanding of the mechanisms involved in the onset and progression of cancer cachexia is essential. How microRNAs contribute to the clinical manifestation and progression of CCx remains elusive. The aim of this study was to identify specific miRNAs related to organ-specific CCx and explore their functional role in humans. METHODS: miRNA patterns in serum and in cachexia target organs (liver, muscle and adipose tissue) from weight stable (N ≤ 12) and cachectic patients (N ≤ 23) with gastrointestinal cancer were analysed. As a first step, a miRNA array (158 miRNAs) was performed in pooled serum samples. Identified miRNAs were validated in serum and corresponding tissue samples. Using in silico prediction, related genes were identified and evaluated. The findings were confirmed in vitro by siRNA knock-down experiments in human visceral preadipocytes and C2C12 myoblast cells and consecutive gene expression analyses. RESULTS: Validating the results of the array, a 2-fold down-regulation of miR-122-5p (P = 0.0396) and a 4.5-fold down-regulation of miR-194-5p (P < 0.0001) in serum of CCx patients in comparison with healthy controls were detected. Only miR-122-5p correlated with weight loss and CCx status (P = 0.0367). Analysing corresponding tissues six muscle and eight visceral adipose tissue (VAT) cachexia-associated miRNAs were identified. miR-27b-3p, miR-375 and miR-424-5p were the most consistently affected miRNAs in tissues of CCx patients correlating negatively with the severity of body weight loss (P = 0.0386, P = 0.0112 and P = 0.0075, respectively). We identified numerous putative target genes of the miRNAs in association with muscle atrophy and lipolysis pathways. Knock-down experiments in C2C12 myoblast cells revealed an association of miR-27b-3p and the in silico predicted atrophy-related target genes IL-15 and TRIM63. Both were up-regulated in miR-27b-3p knock-down cells (P < 0.05). Concordantly, in muscle tissue of CCx individuals, significant higher expression levels of IL-15 (P = 0.0237) and TRIM63 (P = 0.0442) were detected. miR-424-5p was identified to regulate the expression of lipase genes. Knock-down experiments in human visceral preadipocytes revealed an inverse association of miR-424-5p with its predicted target genes LIPE, PNPLA2, MGLL and LPL (P < 0.01). CONCLUSIONS: The identified miRNAs, in particular miR-122-5p, miR-27b-3p, miR-375 and miR-424-5p, represent features of human CCx and may contribute to tissue wasting and skeletal muscle atrophy through the regulation of catabolic signals. Further studies are needed to explore the potential of the identified miRNAs as a screening tool for early detection of cancer cachexia.
Asunto(s)
MicroARNs , Neoplasias , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Interleucina-15 , Caquexia/genética , Neoplasias/complicaciones , Neoplasias/genética , Pérdida de PesoRESUMEN
Recent large-scale genomic association studies found evidence for a genetic link between increased risk of type 2 diabetes and decreased risk for adiposity-related traits, reminiscent of metabolically obese normal weight (MONW) association signatures. However, the target genes and cellular mechanisms driving such MONW associations remain to be identified. Here, we systematically identify the cellular programmes of one of the top-scoring MONW risk loci, the 2q24.3 risk locus, in subcutaneous adipocytes. We identify a causal genetic variant, rs6712203, an intronic single-nucleotide polymorphism in the COBLL1 gene, which changes the conserved transcription factor motif of POU domain, class 2, transcription factor 2, and leads to differential COBLL1 gene expression by altering the enhancer activity at the locus in subcutaneous adipocytes. We then establish the cellular programme under the genetic control of the 2q24.3 MONW risk locus and the effector gene COBLL1, which is characterized by impaired actin cytoskeleton remodelling in differentiating subcutaneous adipocytes and subsequent failure of these cells to accumulate lipids and develop into metabolically active and insulin-sensitive adipocytes. Finally, we show that perturbations of the effector gene Cobll1 in a mouse model result in organismal phenotypes matching the MONW association signature, including decreased subcutaneous body fat mass and body weight along with impaired glucose tolerance. Taken together, our results provide a mechanistic link between the genetic risk for insulin resistance and low adiposity, providing a potential therapeutic hypothesis and a framework for future identification of causal relationships between genome associations and cellular programmes in other disorders.
Asunto(s)
Actinas , Adipocitos , Obesidad Metabólica Benigna , Humanos , Adipocitos/metabolismo , Actinas/metabolismo , Obesidad Metabólica Benigna/genética , Factores de Transcripción/genética , Grasa Subcutánea/metabolismo , Células Cultivadas , Haplotipos , Ratones Noqueados , Masculino , Femenino , Ratones , AnimalesRESUMEN
A primary obstacle in translating genetic associations with disease into therapeutic strategies is elucidating the cellular programs affected by genetic risk variants and effector genes. Here, we introduce LipocyteProfiler, a cardiometabolic-disease-oriented high-content image-based profiling tool that enables evaluation of thousands of morphological and cellular profiles that can be systematically linked to genes and genetic variants relevant to cardiometabolic disease. We show that LipocyteProfiler allows surveillance of diverse cellular programs by generating rich context- and process-specific cellular profiles across hepatocyte and adipocyte cell-state transitions. We use LipocyteProfiler to identify known and novel cellular mechanisms altered by polygenic risk of metabolic disease, including insulin resistance, fat distribution, and the polygenic contribution to lipodystrophy. LipocyteProfiler paves the way for large-scale forward and reverse deep phenotypic profiling in lipocytes and provides a framework for the unbiased identification of causal relationships between genetic variants and cellular programs relevant to human disease.
RESUMEN
Activation of brown adipose tissue may increase energy expenditure by non-shivering thermogenesis. Cold exposure is one of the options to activate brown adipocytes. To link changes in energy metabolism with microRNA expression (miRNAs), we analyzed 158 miRNAs in serum of 169 healthy individuals before and after cold exposure. Validating the results of a miRNA array, a significant down-regulation of miR-375 after cold exposure (P < 0.0001) was detected. These changes went along with a significant negative correlation between miR-375 and visceral adipose tissue (VAT) mass (P < 0.0001), implicating a specific function of miR-375 in this depot. Significantly higher expression levels of miR-375 were found in VAT in comparison to subcutaneous fat (SAT). Using in silico prediction, we identified putative miR-375 target genes involved in the thermogenesis pathway. Cold-stimulation of subcutaneous and visceral pre-adipocytes (PACs) led to significantly higher expression levels of FABP4, FGF21, PPARGC1A and PRDM16 in VC-PACs. Analyzing miR-375 knock down and cold stimulated VC-PACs revealed a significant up-regulation of thermogenesis associated genes PPARGC1A, ELOVL3 and PRDM16. In summary, our findings identified miR-375 as a potential adipogenic and thermogenesis-associated miRNA exclusively acting in visceral adipose tissue.
Asunto(s)
Grasa Intraabdominal , MicroARNs , Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/metabolismo , Frío , Humanos , Grasa Intraabdominal/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Células Madre/metabolismo , Termogénesis/genética , Factores de Transcripción/metabolismoRESUMEN
BACKGROUND: The adipocyte-hypertrophy associated remodeling of fat cell function is considered causal for the development of metabolic disorders. A better understanding of transcriptome and fatty acid (FA) related alterations with adipocyte hypertrophy combined with less-invasive strategies for the detection of the latter can help to increase the prognostic and diagnostic value of adipocyte size and FA composition as markers for metabolic disease. METHODS: To clarify adipocyte-hypertrophy associated transcriptomic alterations, fat cell size was related to RNA-Seq data from white adipose tissue and size-separated adipocytes. The relationship between adipocyte size and adipose tissue FA composition as measured by GC-MS was investigated. MR spectroscopy (MRS) methods for clinical scanning were developed to characterize adipocyte size and FA composition in a fast and non-invasive manner. FINDINGS: With enlarged adipocyte size, substantial transcriptomic alterations of genes involved in mitochondrial function and FA metabolism were observed. Investigations of these two mechanisms revealed a reciprocal relationship between adipocyte size and estimated thermogenic adipocyte content as well as depot-specific correlations of adipocyte size and FA composition. MRS on a clinical scanner was suitable for the in-parallel assessment of adipose morphology and FA composition. INTERPRETATION: The current study provides a comprehensive overview of the adipocyte-hypertrophy associated transcriptomic and FA landscape in both subcutaneous and visceral adipose tissue. MRS represents a promising technique to translate the observed mechanistic, structural and functional changes in WAT with adipocyte hypertrophy into a clinical context for an improved phenotyping of WAT in the context of metabolic diseases. FUNDING: Competence network for obesity (FKZ 42201GI1128), ERC (No 677661, ProFatMRI; No 875488, FatVirtualBiopsy), Else Kröner-Fresenius-Foundation.
Asunto(s)
Ácidos Grasos , Transcriptoma , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Ácidos Grasos/metabolismo , Humanos , Hipertrofia/metabolismo , Hipertrofia/patologíaRESUMEN
Variants in FTO have the strongest association with obesity; however, it is still unclear how those noncoding variants mechanistically affect whole-body physiology. We engineered a deletion of the rs1421085 conserved cis-regulatory module (CRM) in mice and confirmed in vivo that the CRM modulates Irx3 and Irx5 gene expression and mitochondrial function in adipocytes. The CRM affects molecular and cellular phenotypes in an adipose depot-dependent manner and affects organismal phenotypes that are relevant for obesity, including decreased high-fat diet-induced weight gain, decreased whole-body fat mass, and decreased skin fat thickness. Last, we connected the CRM to a genetically determined effect on steroid patterns in males that was dependent on nutritional challenge and conserved across mice and humans. Together, our data establish cross-species conservation of the rs1421085 regulatory circuitry at the molecular, cellular, metabolic, and organismal level, revealing previously unknown contextual dependence of the variant's action.
Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Obesidad , Adipocitos/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Masculino , Ratones , Obesidad/genética , Obesidad/metabolismo , Fenotipo , Polimorfismo de Nucleótido SimpleRESUMEN
OBJECTIVE: The study aimed to investigate how obesity and glycemic state affect mitochondrial respiration and ATP-generating pathways in mature human adipocytes. METHODS: Subcutaneous (sc) and visceral (vc) adipocytes were isolated from patients undergoing abdominal surgery. Respiratory chain function was analyzed by high-resolution respirometry. Adipocyte ATP levels and lactate release were measured separately in the presence of either glycolysis (2-deoxy-D-glucose) or ATP synthase (oligomycin) inhibitors. RESULTS: A significant negative correlation between oxidative phosphorylation capacity and the BMI of tissue donors found in sc adipocytes (P < 0.05). Furthermore, respirometry revealed an inverse relationship between BMI and the electron transfer system capacity of sc (P < 0.05) but not vc adipocytes. In both depots, the respiratory capacity was not affected by the glycemic state. A positive correlation between BMI and adipocyte lactate release was measured independently of the tissue origin (sc: P = 0.01; vc: P < 0.05). Direct ATP measurements indicated that energy demands of adipocytes were predominantly fulfilled by glycolytic activity. CONCLUSIONS: The study's data suggest that obesity is the primary driver of impaired adipocyte mitochondrial respiration because the glycemic state did not further deteriorate this situation. The adipocytes' energy needs are covered primarily by the glycolytic pathway.