Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Cell Physiol ; 235(11): 8085-8097, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-31960422

RESUMEN

In non-small cell lung cancer, sensitizing mutations in epidermal growth factor receptor (EGFR) or cMET amplification serve as good biomarkers for targeted therapies against EGFR or cMET, respectively. Here we aimed to determine how this different genetic background would affect the interaction between the EGFR-inhibitor erlotinib and the cMET-inhibitor crizotinib. To unravel the mechanism of synergy we investigated the effect of the drugs on various parameters, including cell cycle arrest, migration, protein phosphorylation, kinase activity, the expression of drug efflux pumps, intracellular drug concentrations, and live-cell microscopy. We observed additive effects in EBC-1, H1975, and HCC827, and a strong synergism in the HCC827GR5 cell line. This cell line is a clone of the HCC827 cells that harbor an EGFR exon 19 deletion and has been made resistant to the EGFR-inhibitor gefitinib, resulting in cMET amplification. Remarkably, the intracellular concentration of crizotinib was significantly higher in HCC827GR5 compared to the parental HCC827 cell line. Furthermore, live-cell microscopy with a pH-sensitive probe showed a differential reaction of the pH in the cytoplasm and the lysosomes after drug treatment in the HCC827GR5 in comparison with the HCC827 cells. This change in pH could influence the process of lysosomal sequestration of drugs. These results led us to the conclusion that lysosomal sequestration is involved in the strong synergistic reaction of the HCC827GR5 cell line to crizotinib-erlotinib combination. This finding warrants future clinical studies to evaluate whether genetic background and lysosomal sequestration could guide tailored therapeutic interventions.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Lisosomas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-met/genética , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Crizotinib/farmacología , Resistencia a Antineoplásicos/genética , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Clorhidrato de Erlotinib/farmacología , Gefitinib/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Mutación/genética , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores
2.
Int J Mol Sci ; 21(8)2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32295203

RESUMEN

(1) Background: RX-3117 (fluorocyclopentenyl-cytosine) is a cytidine analog that inhibits DNA methyltransferase 1 (DNMT1). We investigated the mechanism and potential of RX-3117 as a demethylating agent in several in vitro models. (2) Methods: we used western blotting to measure expression of several proteins known to be down-regulated by DNA methylation: O6-methylguanine-DNA methyltransferase (MGMT) and the tumor-suppressor genes, p16 and E-cadherin. Transport of methotrexate (MTX) mediated by the proton-coupled folate transporter (PCFT) was used as a functional assay. (3) Results: RX-3117 treatment decreased total DNA-cytosine-methylation in A549 non-small cell lung cancer (NSCLC) cells, and induced protein expression of MGMT, p16 and E-cadherin in A549 and SW1573 NSCLC cells. Leukemic CCRF-CEM cells and the MTX-resistant variant (CEM/MTX, with a deficient reduced folate carrier) have a very low expression of PCFT due to promoter hypermethylation. In CEM/MTX cells, pre-treatment with RX-3117 increased PCFT-mediated MTX uptake 8-fold, and in CEM cells 4-fold. With the reference hypomethylating agent 5-aza-2'-deoxycytidine similar values were obtained. RX-3117 also increased PCFT gene expression and PCFT protein. (4) Conclusion: RX-3117 down-regulates DNMT1, leading to hypomethylation of DNA. From the increased protein expression of tumor-suppressor genes and functional activation of PCFT, we concluded that RX-3117 might have induced hypomethylation of the promotor.


Asunto(s)
Citidina/análogos & derivados , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Transportador de Folato Acoplado a Protón/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Línea Celular Tumoral , Citidina/farmacología , ADN (Citosina-5-)-Metiltransferasa 1/genética , Metilación de ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Metotrexato/farmacología , Transportador de Folato Acoplado a Protón/genética , Proteínas Supresoras de Tumor/genética
3.
Int J Mol Sci ; 20(15)2019 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-31344863

RESUMEN

Oxaliplatin (OHP) treatment of colorectal cancer (CRC) frequently leads to resistance. OHP resistance was induced in CRC cell lines LoVo-92 and LoVo-Li and a platinum-sensitive ovarian cancer cell line, A2780, and related to cellular platinum accumulation, platinum-DNA adducts, transporter expression, DNA repair genes, gene expression arrays, and array-CGH profiling. Pulse (4 h, 4OHP) and continuous exposure (72 h, cOHP) resulted in 4.0 to 7.9-fold and 5.0 to 11.8-fold drug resistance, respectively. Cellular oxaliplatin accumulation and DNA-adduct formation were decreased and related to OCT1-3 and ATP7A expression. Gene expression profiling and pathway analysis showed significantly altered p53 signaling, xenobiotic metabolism, role of BRCA1 in DNA damage response, and aryl hydrocarbon receptor signaling pathways, were related to decreased ALDH1L2, Bax, and BBC3 (PUMA) and increased aldo-keto reductases C1 and C3. The array-CGH profiles showed focal aberrations. In conclusion, OHP resistance was correlated with total platinum accumulation and OCT1-3 expression, decreased proapoptotic, and increased anti-apoptosis and homologous repair genes.


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , Neoplasias Ováricas/tratamiento farmacológico , Oxaliplatino/efectos adversos , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/genética , Proteína BRCA1/genética , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Hibridación Genómica Comparativa , Aductos de ADN/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Transportador 1 de Catión Orgánico/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Oxaliplatino/farmacología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Proteínas Proto-Oncogénicas/genética , Proteína p53 Supresora de Tumor/genética , Proteína X Asociada a bcl-2/genética
4.
Angiogenesis ; 21(2): 325-334, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29532289

RESUMEN

INTRODUCTION: At the clinical introduction of antiangiogenic agents as anticancer agents, no major toxicities were expected as merely just endothelial cells (ECs) in tumors would be affected. However, several (serious) toxicities became apparent, of which underlying mechanisms are largely unknown. We investigated to what extent sunitinib (multitargeted antiangiogenic tyrosine kinase inhibitor (TKI)), sorafenib (TKI) and bevacizumab [specific antibody against vascular endothelial growth factor (VEGF)] may impair platelet function, which might explain treatment-related bleedings. MATERIALS AND METHODS: In vitro, the influence of sunitinib, sorafenib, and bevacizumab on platelet aggregation, P-selectin expression and fibrinogen binding, platelet-EC interaction, and tyrosine phosphorylation of c-Src was studied by optical aggregation, flow cytometry, real-time perfusion, and western blotting. Ex vivo, platelet aggregation was analyzed in 25 patients upon sunitinib or bevacizumab treatment. Concentrations of sunitinib, VEGF, and platelet and EC activation markers were measured by LC-MS/MS and ELISA. RESULTS: In vitro, sunitinib and sorafenib significantly inhibited platelet aggregation (20 µM sunitinib: 71.3%, p < 0.001; 25 µM sorafenib: 55.8%, p = 0.042). Sorafenib and sunitinib significantly inhibited P-selectin expression on platelets. Exposure to both TKIs resulted in a reduced tyrosine phosphorylation of c-Src. Ex vivo, within 24 h sunitinib impaired platelet aggregation (83.0%, p = 0.001, N = 8). Plasma concentrations of sunitinib, VEGF, and platelet/EC activation markers were not correlated with disturbed aggregation. In contrast, bevacizumab only significantly impaired platelet aggregation in vitro at high concentrations, but not ex vivo. CONCLUSION: Sunitinib significantly inhibits platelet aggregation in patients already after 24 h of first administration, whereas bevacizumab had no effect on aggregation. These findings may explain the clinically observed bleedings during treatment with antiangiogenic TKIs.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Bevacizumab/farmacología , Plaquetas/metabolismo , Agregación Plaquetaria/efectos de los fármacos , Sorafenib/farmacología , Sunitinib/farmacología , Proteína Tirosina Quinasa CSK , Células Endoteliales/metabolismo , Femenino , Humanos , Masculino , Selectina-P/metabolismo , Familia-src Quinasas/metabolismo
5.
Br J Cancer ; 119(11): 1326-1331, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30405211

RESUMEN

BACKGROUND: Cytidine deaminase (CDA) plays a crucial role in the degradation of gemcitabine. In our previous retrospective study, CDA enzymatic activity was the strongest prognostic biomarker of the activity and efficacy of platinum/gemcitabine combinations. The aim of this prospective study was to validate the prognostic role of CDA activity in the first-line treatment of advanced non-small-cell lung cancer. METHODS: A total of 124 untreated patients received standard doses of platinum/gemcitabine. CDA activity was baseline measured in plasma samples by spectrophotometric assay. RESULTS: Using the median CDA level as cut-off, in the patients with high versus low CDA activity the response rate was 25.0% (95% CI, 14.7-37.8) and 54.1% (95% CI, 40.8-66.9), P = 0.0013; the 6-month progression rate was 34.5% (95% CI, 22.6-46.6) and 54.1% (95% CI, 40.9-65.6), HR = 2.01 (95% CI, 1.32-3.06), P < 0.001; the 1-year survival rate was 23.3% (95% CI, 13.6-34.6) and 57.3% (95% CI, 43.9-68.6), HR = 2.20 (95% CI, 1.46-3.34), P = 0.0002, respectively. CDA activity resulted to be an independent prognostic factor for progression and survival at multivariate analysis. CONCLUSIONS: This study validated prospectively the prognostic role of the CDA activity and should prompt larger and adequately designed randomised prospective studies to establish the predictive impact of this test in improving the outcome of selected patients.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Cisplatino/uso terapéutico , Citidina Desaminasa/metabolismo , Desoxicitidina/análogos & derivados , Neoplasias Pulmonares/tratamiento farmacológico , Anciano , Anciano de 80 o más Años , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Cisplatino/administración & dosificación , Desoxicitidina/administración & dosificación , Desoxicitidina/uso terapéutico , Supervivencia sin Enfermedad , Femenino , Humanos , Neoplasias Pulmonares/enzimología , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Prospectivos , Estudios Retrospectivos , Gemcitabina
6.
Ther Drug Monit ; 39(3): 235-242, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28490046

RESUMEN

BACKGROUND: Gemcitabine (2',2'-difluoro-2'-deoxycytidine) is a nucleoside analog used as a single agent and in combination regimens for the treatment of a variety of solid tumors. Several studies have shown a relationship between gemcitabine peak plasma concentration (Cmax) and hematological toxicity. An immunoassay for gemcitabine in plasma was developed and validated to facilitate therapeutic drug monitoring (TDM) by providing an economical, robust method for automated chemistry analyzers. METHODS: A monoclonal antibody was coated on nanoparticles to develop a homogenous agglutination inhibition assay. To prevent ex vivo degradation of gemcitabine in blood, tetrahydrouridine was used as a sample stabilizer. Validation was conducted for precision, recovery, cross-reactivity, and linearity on a Beckman Coulter AU480. Verification was performed on an AU5800 in a hospital laboratory. A method comparison was performed with (LC-MS/MS) liquid chromatography tandem mass spectrometry using clinical samples. Selectivity was demonstrated by testing cross-reactivity of the major metabolite, 2',2'-difluorodeoxyuridine. RESULTS: Coefficients of variation for repeatability and within-laboratory precision were <8%. The deviation between measured and assigned values was <3%. Linear range was from 0.40 to 33.02 µ/mL (1.5-125.5 µM). Correlation with validated LC-MS/MS methods was R = 0.977. The assay was specific for gemcitabine: there was no cross-reactivity to 2',2'-difluorodeoxyuridine, chemotherapeutics, concomitant, or common medications tested. Tetrahydrouridine was packaged in single-use syringes. Gemcitabine stability in whole blood was extended to 8 hours (at room temperature) and in plasma to 8 days (2-8°C). CONCLUSIONS: The assay demonstrated the selectivity, test range, precision, and linearity to perform reliable measurements of gemcitabine in plasma. The addition of stabilizer improved the sample handling. Using general clinical chemistry analyzers, gemcitabine could be measured for TDM.


Asunto(s)
Desoxicitidina/análogos & derivados , Plasma/química , Anticuerpos Monoclonales/química , Cromatografía Líquida de Alta Presión/métodos , Desoxicitidina/sangre , Monitoreo de Drogas/métodos , Humanos , Inmunoensayo/métodos , Límite de Detección , Nanopartículas/química , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/métodos , Gemcitabina
8.
Invest New Drugs ; 31(6): 1444-57, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24048768

RESUMEN

A novel cytidine analog fluorocyclopentenylcytosine (RX-3117; TV-1360) was characterized for its cytotoxicity in a 59-cell line panel and further characterized for cytotoxicity, metabolism and mechanism of action in 15 additional cancer cell lines, including gemcitabine-resistant variants. In both panels sensitivity varied 75-fold (IC50: 0.4- > 30 µM RX-3117). RX-3117 showed a different sensitivity profile compared to cyclopentenyl-cytosine (CPEC) and azacytidine, substrates for uridine-cytidine-kinase (UCK). Dipyridamole, an inhibitor of the equilibrative-nucleoside-transporter protected against RX-3117. Uridine and cytidine protected against RX-3117, but deoxycytidine (substrate for deoxycytidine-kinase [dCK]) not, although it protected against gemcitabine, demonstrating that RX-3117 is a substrate for UCK and not for dCK. UCK activity was abundant in all cell lines, including the gemcitabine-resistant variants. RX-3117 was a very poor substrate for cytidine deaminase (66,000-fold less than gemcitabine). RX-3117 was rapidly metabolised to its nucleotides predominantly the triphosphate, which was highest in the most sensitive cells (U937, A2780) and lowest in the least sensitive (CCRF-CEM). RX-3117 did not significantly affect cytidine and uridine nucleotide pools. Incorporation of RX-3117 into RNA and DNA was higher in sensitive A2780 and low in insensitive SW1573 cells. In sensitive U937 cells 1 µM RX-3117 resulted in 90% inhibition of RNA synthesis but 100 µM RX-3117 was required in A2780 and CCRF-CEM cells. RX-3117 at IC50 values did not affect the integrity of RNA. DNA synthesis was completely inhibited in sensitive U937 cells at 1 µM, but in other cells even higher concentrations only resulted in a partial inhibition. At IC50 values RX-3117 downregulated the expression of DNA methyltransferase. In conclusion, RX-3117 showed a completely different sensitivity profile compared to gemcitabine and CPEC, its uptake is transporter dependent and is activated by UCK. RX-3117 is incorporated into RNA and DNA, did not affect RNA integrity, depleted DNA methyltransferase and inhibited RNA and DNA synthesis. Nucleotide formation is related with sensitivity.


Asunto(s)
Antineoplásicos/farmacología , Citidina/análogos & derivados , Línea Celular Tumoral , Citidina/farmacología , Citidina Desaminasa/metabolismo , ADN/metabolismo , Metilasas de Modificación del ADN/metabolismo , Humanos , ARN/metabolismo , Uridina Quinasa/metabolismo
9.
Invest New Drugs ; 30(5): 1908-16, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22002019

RESUMEN

Cytarabine (ara-C) and gemcitabine (dFdC) are commonly used anticancer drugs, which depend on the equilibrative (ENT) and concentrative-nucleoside-transporters to enter the cell. To bypass transport-related drug resistance, lipophilic derivatives elacytarabine (CP-4055), ara-C-5'elaidic-acid-ester, and CP-4126, (CO 1.01) gemcitabine-5'elaidic-acid-ester, were investigated for the entry into the cell, distribution, metabolism and retention. The leukemic CEM-cell-line and its deoxycytidine-kinase deficient variant (CEM/dCK-) were exposed for 30 and 60 min to the radiolabeled drugs; followed by culture in drug-free medium in order to determine drug retention in the cell. The cellular fractions were analyzed with thin-layer-chromatography and HPLC. Elacytarabine and CP-4126 were converted to the parent compounds both inside and outside the cell (35-45%). The ENT-inhibitor dipyridamole did not affect their uptake or retention. Inside the cell Elacytarabine and CP-4126 predominantly localized in the membrane and cytosolic fraction, leading to a long retention after removal of the medium. In contrast, in cells exposed to the parent drugs ara-C and dFdC, intracellular drug concentration increased during exposure but decreased to undetectable levels after drug removal. In the dCK- cell line, no metabolism was observed. The concentrations of ara-CTP and dFdCTP reached a peak at the end of the incubation with the drugs, and decreased after drug removal; peak levels of dFdCTP were 35 times higher than ara-CTP and was retained better. In contrast, after exposure to elacytarabine or CP-4126, ara-CTP and dFdCTP levels continued to increase not only during exposure but also during 120 min after removal of the elacytarabine and CP-4126. Levels of ara-CTP and dFdCTP were higher than after exposure to the parent drugs. In conclusion, the lipophilic derivatives elacytarabine and CP-4126 showed a nucleoside-transporter independent uptake, with long retention of the active nucleotides. These lipophilic nucleoside analogues are new chemical entities suitable for novel clinical applications.


Asunto(s)
Antineoplásicos/farmacocinética , Citarabina/análogos & derivados , Desoxicitidina/análogos & derivados , Nucleotidasas/metabolismo , Antineoplásicos/metabolismo , Línea Celular , Citarabina/metabolismo , Citarabina/farmacocinética , Desoxicitidina/metabolismo , Desoxicitidina/farmacocinética , Desoxicitidina Quinasa/metabolismo , Dipiridamol/metabolismo , Resistencia a Antineoplásicos , Humanos , Leucemia/metabolismo , Proteínas de Transporte de Nucleósidos/metabolismo , Gemcitabina
10.
Clin Cancer Res ; 28(8): 1595-1602, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35165100

RESUMEN

PURPOSE: Tyrosine kinase inhibitors (TKI) have poor efficacy in patients with glioblastoma (GBM). Here, we studied whether this is predominantly due to restricted blood-brain barrier penetration or more to biological characteristics of GBM. PATIENTS AND METHODS: Tumor drug concentrations of the TKI sunitinib after 2 weeks of preoperative treatment was determined in 5 patients with GBM and compared with its in vitro inhibitory concentration (IC50) in GBM cell lines. In addition, phosphotyrosine (pTyr)-directed mass spectrometry (MS)-based proteomics was performed to evaluate sunitinib-treated versus control GBM tumors. RESULTS: The median tumor sunitinib concentration of 1.9 µmol/L (range 1.0-3.4) was 10-fold higher than in concurrent plasma, but three times lower than sunitinib IC50s in GBM cell lines (median 5.4 µmol/L, 3.0-8.5; P = 0.01). pTyr-phosphoproteomic profiles of tumor samples from 4 sunitinib-treated versus 7 control patients revealed 108 significantly up- and 23 downregulated (P < 0.05) phosphopeptides for sunitinib treatment, resulting in an EGFR-centered signaling network. Outlier analysis of kinase activities as a potential strategy to identify drug targets in individual tumors identified nine kinases, including MAPK10 and INSR/IGF1R. CONCLUSIONS: Achieved tumor sunitinib concentrations in patients with GBM are higher than in plasma, but lower than reported for other tumor types and insufficient to significantly inhibit tumor cell growth in vitro. Therefore, alternative TKI dosing to increase intratumoral sunitinib concentrations might improve clinical benefit for patients with GBM. In parallel, a complex profile of kinase activity in GBM was found, supporting the potential of (phospho)proteomic analysis for the identification of targets for (combination) treatment.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Glioblastoma/patología , Humanos , Indoles , Proteómica , Pirroles/uso terapéutico , Sunitinib/uso terapéutico
11.
Invest New Drugs ; 29(2): 248-57, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19957099

RESUMEN

Prodrugs can have the advantage over parent drugs in increased activation and cellular uptake. The multidrug ETC-L-FdUrd and the duplex drug ETC-FdUrd are composed of two different monophosphate-nucleosides, 5-fluoro-2'deoxyuridine (FdUrd) and ethynylcytidine (ETC), coupled via a glycerolipid or phosphodiester, respectively. The aim of the study was to determine cytotoxicity levels and mode of drug cleavage. Moreover, we determined whether a liposomal formulation of ETC-L-FdUrd would improve cytotoxic activity and/or cleavage. Drug effects/cleavage were studied with standard radioactivity assays, HPLC and LC-MS/MS in FM3A/0 mammary cancer cells and their FdUrd resistant variants FM3A/TK(-). ETC-FdUrd was active (IC(50) of 2.2 and 79 nM) in FM3A/0 and TK(-) cells, respectively. ETC-L-FdUrd was less active (IC(50): 7 nM in FM3A/0 vs 4500 nM in FM3A/TK(-)). Although the liposomal formulation was less active than ETC-L-FdUrd in FM3A/0 cells (IC(50):19.3 nM), resistance due to thymidine kinase (TK) deficiency was greatly reduced. The prodrugs inhibited thymidylate synthase (TS) in FM3A/0 cells (80-90%), but to a lower extent in FM3A/TK(-) (10-50%). FdUMP was hardly detected in FM3A/TK(-) cells. Inhibition of the transporters and nucleotidases/phosphatases resulted in a reduction of cytotoxicity of ETC-FdUrd, indicating that this drug was cleaved outside the cells to the monophosphates, which was verified by the presence of FdUrd and ETC in the medium. ETC-L-FdUrd and the liposomal formulation were neither affected by transporter nor nucleotidase/phosphatase inhibition, indicating circumvention of active transporters. In vivo, ETC-FdUrd and ETC-L-FdURd were orally active. ETC nucleotides accumulated in both tumor and liver tissues. These formulations seem to be effective when a lipophilic linker is used combined with a liposomal formulation.


Asunto(s)
Citidina/análogos & derivados , Floxuridina/farmacología , Animales , Línea Celular Tumoral , Citidina/administración & dosificación , Citidina/química , Citidina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/metabolismo , Floxuridina/administración & dosificación , Floxuridina/química , Fluorodesoxiuridilato/metabolismo , Humanos , Concentración 50 Inhibidora , Liposomas/metabolismo , Ratones , Proteínas de Transporte de Nucleósidos/metabolismo , Nucleósidos/metabolismo , Timidilato Sintasa/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Cancer Treat Res Commun ; 27: 100371, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33866108

RESUMEN

The prognosis of patients with advanced oesophageal cancer (EC) and gastric cancer (GC) is poor. Circulating microRNAs (ci-miRNAs) may have prognostic and predictive value to improve patient selection for palliative treatment. The purpose of this study is to assess the prognostic and predictive value of specific ci-miRNAs in plasma of patients with EC and GC treated with first-line palliative gemcitabine and cisplatin. Droplet digital PCR (ddPCR) was used to quantify miR-200c-3p, miR-375, miR-21-5p, miR-148a-3p, miR-146a-5p, miR-141-3p and miR-218-5p in plasma from 68 patients. ci-miRNA expression was analyzed in relation to overall survival (OS), progression-free survival (PFS), and response to chemotherapy. ci-miRNA levels were detectable in 36 baseline (71%) samples and in 14 (47%) follow-up samples. Increased circulating miR-200c-3p in GC showed a trend (p = 0.06) towards a shorter OS. High circulating miR-375 was associated with a longer OS (p = 0.02) in patients with esophageal adenocarcinoma (EAC). No significant difference was observed in ci-miRNA expression between paired pre- and on-treatment samples. ci-miRNA expression was not associated with response to chemotherapy. ci-miRNAs can be measured in plasma samples of patients treated with first-line palliative chemotherapy using ddPCR despite prolonged storage in heparin. Elevated circulating miR-375 might be a prognostic marker for patients with EAC.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Esofágicas/sangre , Neoplasias Esofágicas/tratamiento farmacológico , Unión Esofagogástrica , MicroARNs/sangre , Neoplasias Gástricas/sangre , Neoplasias Gástricas/tratamiento farmacológico , Anciano , Cisplatino/administración & dosificación , Ensayos Clínicos Fase II como Asunto , Desoxicitidina/administración & dosificación , Desoxicitidina/análogos & derivados , Femenino , Ácido Fólico/administración & dosificación , Humanos , Masculino , Persona de Mediana Edad , Cuidados Paliativos , Pronóstico , Supervivencia sin Progresión , Ensayos Clínicos Controlados Aleatorios como Asunto , Tasa de Supervivencia , Gemcitabina
13.
J Nucl Med ; 62(7): 934-940, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33127619

RESUMEN

Sorafenib leads to clinical benefit in a subgroup of patients, whereas all are exposed to potential toxicity. Currently, no predictive biomarkers are available. The purpose of this study was to evaluate whether 11C-sorafenib and 15O-H2O PET have potential to predict treatment efficacy. Methods: In this prospective exploratory study, 8 patients with advanced solid malignancies and an indication for sorafenib treatment were included. Microdose 11C-sorafenib and perfusion 15O-H2O dynamic PET scans were performed before and after 2 wk of sorafenib therapy. The main objective was to assess whether tumor 11C-sorafenib uptake predicts sorafenib concentrations during therapy in corresponding tumor biopsy samples measured with liquid chromatography tandem mass spectrometry. Secondary objectives included determining the association of 11C-sorafenib PET findings, perfusion 15O-H2O PET findings, and sorafenib concentrations after therapeutic dosing with response. Results:11C-sorafenib PET findings did not predict sorafenib concentrations in tumor biopsy samples during therapy. In addition, sorafenib plasma and tumor concentrations were not associated with clinical outcome in this exploratory study. Higher 11C-sorafenib accumulation in tumors at baseline and day 14 of treatment showed an association with poorer prognosis and correlated with tumor perfusion (Spearman correlation coefficient = 0.671, P = 0.020). Interestingly, a decrease in tumor perfusion measured with 15O-H2O PET after only 14 d of therapy showed an association with response, with a decrease in tumor perfusion of 56% ± 23% (mean ± SD) versus 18% ± 32% in patients with stable and progressive disease, respectively. Conclusion: Microdose 11C-sorafenib PET did not predict intratumoral sorafenib concentrations after therapeutic dosing, but the association between a decrease in tumor perfusion and clinical benefit warrants further investigation.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Adulto , Humanos , Persona de Mediana Edad , Niacinamida , Compuestos de Fenilurea , Sorafenib
14.
Cancers (Basel) ; 13(23)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34885072

RESUMEN

Renal function-based carboplatin dosing using measured glomerular filtration rate (GFR) results in more consistent drug exposure than anthropometric dosing. We aimed to validate the Newell dosing equation using estimated GFR (eGFR) and study which equation most accurately predicts carboplatin clearance in children with retinoblastoma. In 13 children with retinoblastoma 38 carboplatin clearance values were obtained from individual fits using MWPharm++. Carboplatin exposure (AUC) was calculated from administered dose and observed carboplatin clearance and compared to predicted AUC calculated with a carboplatin dosing equation (Newell) using different GFR estimates. Different dosing regimens were compared in terms of accuracy, bias and precision. All patients had normal eGFR. Carboplatin exposure using cystatin C-based eGFR equations tended to be more accurate compared to creatinine-based eGFR (30% accuracy 76.3-89.5% versus 76.3-78.9%, respectively), which led to significant overexposure, especially in younger (aged ≤ 2 years) children. Of all equations, the Schwartz cystatin C-based equation had the highest accuracy and lowest bias. Although anthropometric dosing performed comparably to many of the eGFR equations overall, we observed a weight-dependent change in bias leading to underdosing in the smallest patients. Using cystatin C-based eGFR equations for carboplatin dosing in children leads to more accurate carboplatin-exposure in patients with normal renal function compared to anthropometric dosing. In children with impaired kidney function, this trend might be more pronounced. Anthropometric dosing is hampered by a weight-dependent bias.

15.
CPT Pharmacometrics Syst Pharmacol ; 10(12): 1497-1511, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34608769

RESUMEN

This study aimed to determine whether published pharmacokinetic (PK) models can adequately predict the PK profile of imatinib in a new indication, such as coronavirus disease 2019 (COVID-19). Total (bound + unbound) and unbound imatinib plasma concentrations obtained from 134 patients with COVID-19 participating in the CounterCovid study and from an historical dataset of 20 patients with gastrointestinal stromal tumor (GIST) and 85 patients with chronic myeloid leukemia (CML) were compared. Total imatinib area under the concentration time curve (AUC), maximum concentration (Cmax ) and trough concentration (Ctrough ) were 2.32-fold (95% confidence interval [CI] 1.34-3.29), 2.31-fold (95% CI 1.33-3.29), and 2.32-fold (95% CI 1.11-3.53) lower, respectively, for patients with CML/GIST compared with patients with COVID-19, whereas unbound concentrations were comparable among groups. Inclusion of alpha1-acid glycoprotein (AAG) concentrations measured in patients with COVID-19 into a previously published model developed to predict free imatinib concentrations in patients with GIST using total imatinib and plasma AAG concentration measurements (AAG-PK-Model) gave an estimated mean (SD) prediction error (PE) of -20% (31%) for total and -7.0% (56%) for unbound concentrations. Further covariate modeling with this combined dataset showed that in addition to AAG; age, bodyweight, albumin, CRP, and intensive care unit admission were predictive of total imatinib oral clearance. In conclusion, high total and unaltered unbound concentrations of imatinib in COVID-19 compared to CML/GIST were a result of variability in acute phase proteins. This is a textbook example of how failure to take into account differences in plasma protein binding and the unbound fraction when interpreting PK of highly protein bound drugs, such as imatinib, could lead to selection of a dose with suboptimal efficacy in patients with COVID-19.


Asunto(s)
Proteínas de Fase Aguda/metabolismo , Tratamiento Farmacológico de COVID-19 , COVID-19/sangre , Mesilato de Imatinib/sangre , Inhibidores de Proteínas Quinasas/sangre , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Mesilato de Imatinib/uso terapéutico , Masculino , Persona de Mediana Edad , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Inhibidores de Proteínas Quinasas/uso terapéutico
16.
Cancers (Basel) ; 12(11)2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33182766

RESUMEN

Background: tyrosine kinase inhibitors (TKIs) inhibit phosphorylation of signaling proteins. TKIs often show large variations in the clinic due to poor pharmacology, possibly leading to resistance. We compared gut absorption of inhibitors of epidermal growth factor receptor (erlotinib, gefitinib, and afatinib), ALK-cMET (crizotinib), PDGFR/BCR-Abl (dasatinib), and multikinase inhibitors (sunitinib and sorafenib). In clinical samples, we measured the disposition of each compound within various blood compartments. Methods: we used an optimized CaCo2 gut epithelial model to characterize 20 µM TKI absorption. The apical/basolateral transfer is considered to represent the gut/blood transfer. Drugs were measured using LC-MS/MS. Results: sorafenib and sunitinib showed the highest apical/basolateral transfer (Papp 14.1 and 7.7 × 10-6 cm/s, respectively), followed by dasatinib (3.4), afatinib (1.5), gefitinib (0.38), erlotinib (0.13), and crizotinib (n.d.). However, the net absorptions for dasatinib, afatinib, crizotinib, and erlotinib were highly negative (efflux ratios >5) or neutral/negative, sorafenib (0.86), gefitinib (1.0), and sunitinib (1.6). A high negative absorption may result in resistance because of a poor exposure of tissues to the drug. Accumulation of the TKIs at the end of the transfer period (A->B) was not detectable for erlotinib, very low for afatinib 0.45 pmol/µg protein), followed by gefitinib (0.79), dasatinib (1.1), sorafenib (1.65), and crizotinib (2.11), being highest for sunitinib (11.9). A similar pattern was found for accumulation of these drugs in other colon cell lines, WiDr and HT29. In clinical samples, drugs accumulated consistently in red blood cells; blood to plasma ratios were all > 3 (sorafenib) or over 30 for erlotinib. Conclusions: TKIs are consistently poorly absorbed, but accumulation in red blood cells seems to compensate for this.

17.
Cancers (Basel) ; 12(2)2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32024067

RESUMEN

Identification of predictive biomarkers for targeted therapies requires information on drug exposure at the target site as well as its effect on the signaling context of a tumor. To obtain more insight in the clinical mechanism of action of protein kinase inhibitors (PKIs), we studied tumor drug concentrations of protein kinase inhibitors (PKIs) and their effect on the tyrosine-(pTyr)-phosphoproteome in patients with advanced cancer. Tumor biopsies were obtained from 31 patients with advanced cancer before and after 2 weeks of treatment with sorafenib (SOR), erlotinib (ERL), dasatinib (DAS), vemurafenib (VEM), sunitinib (SUN) or everolimus (EVE). Tumor concentrations were determined by LC-MS/MS. pTyr-phosphoproteomics was performed by pTyr-immunoprecipitation followed by LC-MS/MS. Median tumor concentrations were 2-10 µM for SOR, ERL, DAS, SUN, EVE and >1 mM for VEM. These were 2-178 × higher than median plasma concentrations. Unsupervised hierarchical clustering of pTyr-phosphopeptide intensities revealed patient-specific clustering of pre- and on-treatment profiles. Drug-specific alterations of peptide phosphorylation was demonstrated by marginal overlap of robustly up- and downregulated phosphopeptides. These findings demonstrate that tumor drug concentrations are higher than anticipated and result in drug specific alterations of the phosphoproteome. Further development of phosphoproteomics-based personalized medicine is warranted.

18.
Expert Opin Investig Drugs ; 28(4): 311-322, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30879349

RESUMEN

INTRODUCTION: RX-3117 is an oral, small molecule cytidine analog anticancer agent with an improved pharmacological profile relative to gemcitabine and other nucleoside analogs. The agent has excellent activity against various cancer cell lines and xenografts including gemcitabine-resistant variants and it has excellent oral bioavailability; it is not a substrate for the degradation enzyme cytidine deaminase. RX-3117 is being evaluated at a daily oral schedule of 700 mg (5 days/week for 3 weeks) which results in plasma levels in the micromolar range that have been shown to be cytotoxic to cancer cells. It has shown clinical activity in refractory bladder cancer and pancreatic cancer. Areas covered: The review provides an overview of the relevant market and describes the mechanism of action, main pharmacokinetic/pharmacodynamic features and clinical development of this investigational small molecule. Expert opinion: RX-3117 is selectively activated by uridine-cytidine kinase 2 (UCK2), which is expressed only in tumors and has a dual mechanism of action: DNA damage and inhibition of DNA methyltransferase 1 (DNMT1). Because of its tumor selective activation, novel mechanism of action, excellent oral bioavailability and candidate biomarkers for patient selection, RX-3117 has the potential to replace gemcitabine in the treatment of a spectrum of cancer types.


Asunto(s)
Antimetabolitos Antineoplásicos/uso terapéutico , Citidina/análogos & derivados , Neoplasias/tratamiento farmacológico , Administración Oral , Antimetabolitos Antineoplásicos/farmacocinética , Antimetabolitos Antineoplásicos/farmacología , Disponibilidad Biológica , Citidina/farmacocinética , Citidina/farmacología , Citidina/uso terapéutico , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapéutico , Humanos , Neoplasias/patología , Selección de Paciente , Gemcitabina
19.
J Clin Oncol ; 37(5): 411-418, 2019 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-30586316

RESUMEN

PURPOSE: Dose and schedule optimization of treatment with tyrosine kinase inhibitors is of utmost importance. On the basis of preclinical data, a phase I clinical trial of once weekly or once every 2 weeks administration of high-dose sunitinib in patients with refractory solid malignancies was conducted. PATIENTS AND METHODS: Patients with advanced cancer refractory to standard treatment were eligible. With use of a standard 3 + 3 phase I design, patients received escalating doses of sunitinib, in 100 mg increments, starting at 200 mg once weekly. In both the once weekly and once every 2 weeks cohorts, 10 more patients were included at the maximum tolerated dose level. Primary end points were safety and tolerability. RESULTS: Sixty-nine patients with advanced cancer, predominantly colorectal cancer (42%), were treated with this alternative dosing regimen. Maximum tolerated dose was established at 300 mg once weekly and 700 mg once every 2 weeks, resulting in nine- and 18-fold higher maximum plasma concentrations compared with standard dose, respectively. Treatment was well tolerated, with fatigue (81%), nausea (48%), and anorexia (33%) being the most frequent adverse events. The only grade 3 or 4 treatment-related adverse event in 5% or more of patients was fatigue (6%). Sixty-three percent of patients had significant clinical benefit, with a 30% progression-free survival of 5 months or more. CONCLUSION: Sunitinib administered once weekly at 300 mg or once every 2 weeks at 700 mg is feasible, with comparable tolerability as daily administration. Administration of 700 mg once every 2 weeks can be considered as the most optimal schedule because of the highest maximum plasma concentration being reached. The promising preliminary antitumor activity of this alternative schedule in heavily pretreated patients warrants further clinical evaluation and might ultimately indicate a class characteristic of tyrosine kinase inhibitors.


Asunto(s)
Neoplasias/tratamiento farmacológico , Sunitinib/administración & dosificación , Administración Oral , Adulto , Anciano , Anciano de 80 o más Años , Antineoplásicos/administración & dosificación , Antineoplásicos/efectos adversos , Antineoplásicos/farmacocinética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias/metabolismo , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/farmacocinética , Sunitinib/efectos adversos , Sunitinib/farmacocinética
20.
Clin Cancer Res ; 13(12): 3642-51, 2007 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-17575229

RESUMEN

PURPOSE: To establish maximum tolerated dose (MTD) and tolerability of two schedules of bortezomib in combination with cisplatin and gemcitabine as first-line treatment of patients with advanced solid tumors. EXPERIMENTAL DESIGN: Patients were assigned to increasing doses of bortezomib days 1 and 8 (weekly schedule) or days 1, 4, 8, and 11 (twice-weekly schedule), in addition to gemcitabine 1,000 mg/m(2) days 1 and 8 and cisplatin 70 mg/m(2) day 1, every 21 days. Maximum of six cycles. Plasma pharmacokinetics of cisplatin and gemcitabine were determined at MTD. RESULTS: Thirty-four patients were enrolled of whom 27 had non-small cell lung cancer (NSCLC). Diarrhea, neutropenia, and thrombocytopenia were dose-limiting toxicities leading to an MTD of bortezomib 1.0 mg/m(2) in the weekly schedule. Febrile neutropenia and thrombocytopenia with bleeding were dose-limiting toxicities in the twice-weekly schedule, leading to an MTD of bortezomib 1.0 mg/m(2) as well. Most common > or =grade 3 treatment-related toxicities were thrombocytopenia and neutropenia. No grade > or =3 treatment-related sensory neuropathy was reported. Of 34 evaluable patients, 13 achieved partial responses, 17 stable disease, and 4 progressive disease. Response and survival of NSCLC patients treated with twice weekly or weekly bortezomib were similar. However, increased dose intensity of bortezomib led to increased gastrointestinal toxicity as well as myelosuppression. Pharmacokinetic profiles of cisplatin and gemcitabine were not significantly different in patients receiving either schedule. CONCLUSIONS: Weekly bortezomib 1.0 mg/m(2) plus gemcitabine 1,000 mg/m(2) and cisplatin 70 mg/m(2) is the recommended phase 2 schedule, constituting a safe combination, with activity in NSCLC.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Adulto , Anciano , Ácidos Borónicos/administración & dosificación , Ácidos Borónicos/efectos adversos , Ácidos Borónicos/farmacocinética , Bortezomib , Cisplatino/administración & dosificación , Cisplatino/efectos adversos , Cisplatino/farmacocinética , Desoxicitidina/administración & dosificación , Desoxicitidina/efectos adversos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacocinética , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Masculino , Dosis Máxima Tolerada , Persona de Mediana Edad , Pirazinas/administración & dosificación , Pirazinas/efectos adversos , Pirazinas/farmacocinética , Gemcitabina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA