Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Sep Sci ; 46(19): e2300159, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37525329

RESUMEN

Qingshen granule, composed of 14 herbal drugs, is primarily used as the assistant therapy for chronic kidney disease. Qingshen granule chemical composition was complex, but its chemical constituents and the pharmacodynamic material basis remain unreported. Ultra-high-performance liquid chromatography (UHPLC)-quadrupole-orbitrap high-resolution mass spectrometry was applied to recognize the chemical constituents of Qingshen granule. The analysis was performed using the ACQUITY UHPLC BEH C18 column (2.1 × 50 mm, 1.7 µm) with acetonitrile-0.1% formic acid as the mobile phase for gradient elution. The data were collected using heated electrospray ionization in positive and negative ion modes. This study successfully applied the UPHLC-quadrupole-orbitrap high-resolution mass spectrometry technique with the Compound Discoverer 3.3 platform to analyze Qingshen granule chemical composition. A total of 127 and 42 chemical components were identified in Qingshen granule in vitro and in vivo, respectively. In the tissue distribution of Qingshen granule, 9, 10, 11, 10, and 18 prototype components were detected in the heart, liver, spleen, lungs, and kidneys, respectively. Qingshen granule chemical constituents were characterized rapidly for the first time in this study, laying a foundation for further research on the substance basis and quality control of Qingshen granule in treating chronic kidney disease.

2.
Molecules ; 28(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36903383

RESUMEN

The homogeneous galactoglucan PCP-1C extracted from Poria cocos sclerotium has multiple biological activities. The present study demonstrated the effect of PCP-1C on the polarization of RAW 264.7 macrophages and the underlying molecular mechanism. Scanning electron microscopy showed that PCP-1C is a detrital-shaped polysaccharide with fish-scale patterns on the surface, with a high sugar content. The ELISA assay, qRT-PCR assay, and flow cytometry assay showed that the presence of PCP-1C could induce higher expression of M1 markers, including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-12 (IL-12), when compared with the control and the LPS group, and it caused a decrease in the level of interleukin-10 (IL-10), which is the marker for M2 macrophages. At the same time, PCP-1C induces an increase in the CD86 (an M1 marker)/CD206 (an M2 marker) ratio. The results of the Western blot assay showed that PCP-1C induced activation of the Notch signaling pathway in macrophages. Notch1, ligand Jagged1, and Hes1 were all up-regulated with the incubation of PCP-1C. These results indicate that the homogeneous Poria cocos polysaccharide PCP-1C improves M1 macrophage polarization through the Notch signaling pathway.


Asunto(s)
Wolfiporia , Animales , Transducción de Señal , Macrófagos , Polisacáridos/farmacología , Interleucina-12/metabolismo
3.
Zhongguo Zhong Yao Za Zhi ; 46(21): 5496-5511, 2021 Nov.
Artículo en Zh | MEDLINE | ID: mdl-34951201

RESUMEN

Salviae Miltiorrhizae Radix et Rhizoma is a Chinese herbal medicine that promotes blood circulation to remove blood stasis, nourishes blood to tranquilize the mind, and cools blood to disperse carbuncles. Salviae Miltiorrhizae Radix et Rhizoma has microcirculation-improving, blood vessel-dilating, atherosclerosis-preventing, anti-inflammatory, anti-tumor, and blood pressure-and blood lipid-lowering activities. As research progresses, the chemical composition, pharmacological effect, and clinical application of Salviae Miltiorrhizae Radix et Rhizoma have attracted much attention. We reviewed the research progress in this field. Based on the concept of quality marker(Q-marker) in traditional Chinese medicine, the Q-markers of Salviae Miltiorrhizae Radix et Rhizoma were predicted and analyzed from the aspects of quality transfer, traceability, ingredient specificity, association between ingredients and pharmacological effects, ingredient predictability, and compounding environment. This review provides a scientific basis for the quality control of Salviae Miltiorrhizae Radix et Rhizoma and its preparations.


Asunto(s)
Medicamentos Herbarios Chinos , Salvia miltiorrhiza , Medicamentos Herbarios Chinos/farmacología , Medicina Tradicional China , Raíces de Plantas , Rizoma
4.
Heliyon ; 10(11): e31923, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38845919

RESUMEN

Salvia miltiorrhiza Bge. (S. miltiorrhiza) is a well-known traditional Chinese medicine for the treatment of cardiovascular diseases. The processing of S. miltiorrhiza requires the raw herbs to sweat first and then dry. The aim of this study was to investigate the anti-acute myocardial ischemia (AMI) of S. miltiorrhiza extracts (including tanshinones and phenolic acids) before and after sweating, and to further explore whether the "sweating" primary processing affected the efficacy of S. miltiorrhiza. The AMI animal model was established by subcutaneous injection of isoprenaline hydrochloride (ISO). After treatment, the cardiac function of rats was evaluated by electrocardiogram (ECG), biochemical, and histochemical analysis. Moreover, the regulation of S. miltiorrhiza extracts on the peroxisome proliferator-activated receptor α (PPARα)/retinoid X receptor α (RXRα)/nuclear transcription factor-kappa B (NF-κB) signaling pathway of rats was assessed by the Western blotting. The results showed that sweated and non-sweated S. miltiorrhiza extracts including tanshinones and phenolic acids significantly reduced ST-segment elevation in ECG and the myocardial infarction area in varying degrees. Meanwhile, sweated and non-sweated S. miltiorrhiza reversed the activities of aspartate transaminase (AST), lactic dehydrogenase (LDH), creatine kinase-MB (CK-MB), and superoxide dismutase (SOD), as well as the levels of interleukin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor-α (TNF-α) in AMI rats. Concurrently, the results of Western blotting revealed that S. miltiorrhiza extracts regulated the PPARα/RXRα/NF-κB signaling pathway to exert an anti-inflammatory effect. Most importantly, sweated S. miltiorrhiza tanshinones extracts are more effective than the non-sweated S. miltiorrhiza, and the anti-inflammatory efficacy of tanshinones extract was also better than that of phenolic acid extract. Although phenolic acid extracts before and after sweating were effective in anti-AMI, there was no significant difference between them. In conclusion, both tanshinones and phenolic acids extracts of sweated and non-sweated S. miltiorrhiza promote anti-oxidative stress and anti-inflammatory against AMI via regulating the PPARα/RXRα/NF-κB signaling pathway. Further, the comparations between sweated and non-sweated S. miltiorrhiza extracts indicate that sweated S. miltiorrhiza tanshinones extracts have better therapeutic effects on AMI.

5.
Biomed Res Int ; 2022: 4293062, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36060135

RESUMEN

Background: Zuo-Gui Yin Decoction (ZGYD), a traditional Chinese prescription, is mainly used in various kinds of andrology and gynecology diseases. However, the study on the interaction of ZGYD and drugs has not been reported. Therefore, evaluating the interaction between ZGYD and metabolic enzymes is helpful to guide rational drug use. Objective: This study was conducted to explore the effects of ZGYD on the activity and mRNA expressions of six Cytochrome P450 (CYP450) enzymes in rats and to provide a basis for its rational clinical use. Methods: Sprague-Dawley rats were randomly divided into control, ZGYD high, medium, and low-dose group (n = 6). The concentrations of six probe substrates in plasma of rats in each group were determined by UPLC-MS/MS. In addition, RT-PCR and Western blot were used to determine the effects of ZGYD on the expression of CYP450 isoforms in the liver. Results: Compared with the control group, the main pharmacokinetic parameters AUC(0-t), AUC (0~∞), of omeprazole, dextromethorphan, and midazolam in the high-dose group were significantly decreased, while the CL of these were significantly increased. The gene expressions of CYP2C11 and CYP3A1 were upregulated in the ZGYD medium, high-dose group. The protein expression of CYP2C11 was upregulated in the high-dose group, and the protein expression of CYP3A1 was upregulated in the medium, high-dose group. Conclusion: The results showed that ZGYD exhibited the induction effects on CYP2C11 and CYP3A1 (CYP2C19 and CYP3A4 in humans) in rats. However, no significant change in CYP1A2, CYP2B1, CYP2C7, and CYP2D2 activities was observed. It would be useful for the safe and effective usage of ZGYD in clinic.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Medicamentos Herbarios Chinos , Animales , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicina Tradicional China , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem
6.
Curr Drug Metab ; 23(6): 473-483, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35585828

RESUMEN

BACKGROUND: The ethanol of Danshen (DEE) preparation has been widely used to treat cardiac-cerebral disease and cancer. Sweating is one of the primary processing methods of Danshen, which greatly influences its quality and pharmacological properties. Sweated and non-sweated DEE preparation combined with various synthetic drugs, add up the possibility of herbal-drug interactions. OBJECTIVE: This study explored the effects of sweated and non-sweated DEE on human and rat hepatic UGT enzyme expression and activity and proposed a potential mechanism. METHODS: The expression of two processed DEE on rat UGT1A, UGT2B, and nuclear receptors, including pregnane X receptor (PXR), constitutive androstane receptor (CAR), and peroxisome proliferator-activated receptor α (PPARα), were investigated after intragastric administration in rats by Western blot. Enzyme activity of DEE and its active ingredients (Tanshinone I, Cryptotanshinone, and Tanshinone I) on UGT isoenzymes was evaluated by quantifying probe substrate metabolism and metabolite formation in vitro using Ultra Performance Liquid Chromatography. RESULTS: The two processed DEE (5.40 g/kg) improved UGT1A (P<0.01) and UGT2B (P<0.05) protein expression, and the non-sweated DEE (2.70 g/kg) upregulated UGT2B expression protein (P<0.05), compared with the CMCNa group. On day 28, UGT1A protein expression was increased (P<0.05) both in two processed DEE groups meanwhile, the non-sweated DEE significantly enhanced UGT2B protein expression (P<0.05) on day 21, compared with the CMCNa group. The process underlying this mechanism involved the activation of nuclear receptors CAR, PXR, and PPARα. In vitro, sweated DEE (0-80 µg/mL) significantly inhibited the activity of human UGT1A7 (P<0.05) and rat UGT1A1, 1A8, and 1A9 (P<0.05). Non-sweated DEE (0-80 µg/mL) dramatically suppressed the activity of human UGT1A1, 1A3, 1A6, 1A7, 2B4, and 2B15, and rat UGT1A1, 1A3, 1A7, and 1A9 (P<0.05). Tanshinone I (0-1 µM) inhibited the activity of human UGT1A3, 1A6, and 1A7 (P<0.01) and rat UGT1A3, 1A6, 1A7, and 1A8 (P<0.05). Cryptotanshinone (0-1 µM) remarkably inhibited the activity of human UGT1A3 and 1A7 (P<0.05) and rat UGT1A7, 1A8, and 1A9 (P<0.05). Nonetheless, Tanshinone IIA (0-2 µM) is not a potent UGT inhibitor both in humans and rats. Additionally, there existed significant differences between two processed DEE in the expression of PXR, and the activity of human UGT1A1, 1A3, 1A6, and 2B15 and rat UGT1A3, and 2B15 (P<0.05). CONCLUSION: The effects of two processed DEE on hepatic UGT enzyme expression and activity differed. Accordingly, the combined usage of related UGTs substrates with DEE and its monomer components preparations may call for caution, depending on the drug's exposure-response relationship and dose adjustment. Besides, it is vital to pay attention to the distinction between sweated and non-sweated Danshen in clinic, which influences its pharmacological activity.


Asunto(s)
Glucuronosiltransferasa , Interacciones de Hierba-Droga , Extractos Vegetales , Salvia miltiorrhiza , Abietanos , Animales , Etanol , Glucuronosiltransferasa/metabolismo , Humanos , PPAR alfa , Fenantrenos , Extractos Vegetales/farmacología , Ratas , Receptores Citoplasmáticos y Nucleares , Uridina Difosfato
7.
J Pharm Pharmacol ; 74(9): 1230-1240, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35833577

RESUMEN

OBJECTIVES: This study aims to compare the fingerprint and the content of the three components of sweated and non-sweated Salvia miltiorrhiza alcoholic extracts (SSAE and NSAE). It also aims to investigate the difference in protective effects of SSAE and NSAE on myocardial ischaemia-reperfusion injury (MIRI). METHODS: The fingerprints of SSAE and NSAE were established by HPLC with a UV detector to identify the common peaks and detect the content of the three major components (cryptotanshinone, tanshinone I and tanshinone IIA). The protective effects of SSAE and NSAE were compared with MIRI rat model after orally administered SSAE and NSAE (2 g/kg of raw drug) for 7 days. The ST segment, PR and QT interval changes and the infarct size were assessed in the rat hearts. Moreover, the activity of aspartate transaminase (AST), lactate dehydrogenase (LDH), superoxide dismutase (SOD) and the level of cardiac troponin I (cTn I) in serum as well as the cardiac H&E staining were evaluated. KEY FINDINGS: The results showed that the fingerprints of SSAE and NSAE were similar, and cluster analysis showed that the sweating methods had effects on the alcoholic extracts. The content determination showed that sweating could increase the total content of cryptotanshinone, tanshinone I and tanshinone IIA of S. miltiorrhiza. The results of electrocardiograms (ECG) showed that SSAE could make the ST segment drop more obviously, PR and QT intervals become shorter, and the size of the infarct much smaller. Compared with NSAE, SSAE had more significant effects on the enzymatic activity of AST, LDH and the level of cTn I in serum. The H&E staining showed that both SSAE and NSAE could reduce the degree of heart damage. CONCLUSIONS: The present investigation results demonstrated that sweating increased the content of tanshinone components in S. miltiorrhiza alcoholic extracts, and SSAE had a better protective effect on MIRI.


Asunto(s)
Daño por Reperfusión Miocárdica , Salvia miltiorrhiza , Animales , Infarto , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/prevención & control , Fitoquímicos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Ratas , Salvia miltiorrhiza/química , Sudoración
8.
Artículo en Inglés | MEDLINE | ID: mdl-35908440

RESUMEN

"San-Bai Decoction" (SBD) has been a traditional Chinese medicine compound preparation for replenishing Qi and promoting blood circulation, whitening skin, and removing blemishes since ancient times. However, its chemical composition and antioxidant activity are not clear thus far, which limits the in-depth study on its pharmacodynamic material basis and efficacy. The objective of this study was to establish the fingerprint profile of SBD, assess its antioxidant activity by measuring 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging ability, and find the spectrum-effect relationship of SBD by Grey Relation Analysis (GRA) and Partial Least Squares Regression (PLS). In this study, the fingerprint of SBD was established by high performance liquid chromatography (HPLC), and 20 common peaks were found, among which 6 peaks were designated. The similarities between the fingerprints of 12 batches of SBD and the reference fingerprint (R) were all greater than 0.900. Meanwhile, the antioxidant activities of all batches were concentration-dependent in their linear regression equation. The result of GRA showed that the correlation order of 20 common peaks for DPPH radical scavenging was X13 > X7 > X3 > X6 > X10 > X11 > X4 > X12 > X2 > X18 > X9 > X5 > X19 > X1 > X20 > X16 > X17 > X15 > X8 > X14. At the same time, PLS study demonstrated that the contribution of six identified characteristic peaks to DPPH radical scavenging ability was X1 = X7 > X6 > X19 > X20 > X16. In this study, the spectrum-effect relationship of SBD between its HPLC fingerprint and the antioxidant activity can be used to screen the pharmacodynamic substance basis of its antioxidant action and lay the foundation for establishing quality standards and product development.


Asunto(s)
Antioxidantes , Medicamentos Herbarios Chinos , Antioxidantes/análisis , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/química , Análisis de los Mínimos Cuadrados , Medicina Tradicional China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA