Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nature ; 594(7862): 271-276, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33910229

RESUMEN

Vascular malformations are thought to be monogenic disorders that result in dysregulated growth of blood vessels. In the brain, cerebral cavernous malformations (CCMs) arise owing to inactivation of the endothelial CCM protein complex, which is required to dampen the activity of the kinase MEKK31-4. Environmental factors can explain differences in the natural history of CCMs between individuals5, but why single CCMs often exhibit sudden, rapid growth, culminating in strokes or seizures, is unknown. Here we show that growth of CCMs requires increased signalling through the phosphatidylinositol-3-kinase (PI3K)-mTOR pathway as well as loss of function of the CCM complex. We identify somatic gain-of-function mutations in PIK3CA and loss-of-function mutations in the CCM complex in the same cells in a majority of human CCMs. Using mouse models, we show that growth of CCMs requires both PI3K gain of function and CCM loss of function in endothelial cells, and that both CCM loss of function and increased expression of the transcription factor KLF4 (a downstream effector of MEKK3) augment mTOR signalling in endothelial cells. Consistent with these findings, the mTORC1 inhibitor rapamycin effectively blocks the formation of CCMs in mouse models. We establish a three-hit mechanism analogous to cancer, in which aggressive vascular malformations arise through the loss of vascular 'suppressor genes' that constrain vessel growth and gain of a vascular 'oncogene' that stimulates excess vessel growth. These findings suggest that aggressive CCMs could be treated using clinically approved mTORC1 inhibitors.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/genética , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Mutación , Neoplasias/genética , Animales , Animales Recién Nacidos , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/patología , Mutación con Ganancia de Función , Hemangioma Cavernoso del Sistema Nervioso Central/irrigación sanguínea , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/metabolismo , Mutación con Pérdida de Función , MAP Quinasa Quinasa Quinasa 3/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Neoplasias/irrigación sanguínea , Neoplasias/patología , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo
2.
Circ Res ; 129(1): 195-215, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34166073

RESUMEN

Cerebral cavernous malformations are acquired vascular anomalies that constitute a common cause of central nervous system hemorrhage and stroke. The past 2 decades have seen a remarkable increase in our understanding of the pathogenesis of this vascular disease. This new knowledge spans genetic causes of sporadic and familial forms of the disease, molecular signaling changes in vascular endothelial cells that underlie the disease, unexpectedly strong environmental effects on disease pathogenesis, and drivers of disease end points such as hemorrhage. These novel insights are the integrated product of human clinical studies, human genetic studies, studies in mouse and zebrafish genetic models, and basic molecular and cellular studies. This review addresses the genetic and molecular underpinnings of cerebral cavernous malformation disease, the mechanisms that lead to lesion hemorrhage, and emerging biomarkers and therapies for clinical treatment of cerebral cavernous malformation disease. It may also serve as an example for how focused basic and clinical investigation and emerging technologies can rapidly unravel a complex disease mechanism.


Asunto(s)
Venas Cerebrales/anomalías , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Hemangioma Cavernoso del Sistema Nervioso Central/terapia , Mutación , Animales , Venas Cerebrales/metabolismo , Predisposición Genética a la Enfermedad , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Humanos , Fenotipo , Transducción de Señal
3.
Nature ; 545(7654): 305-310, 2017 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-28489816

RESUMEN

Cerebral cavernous malformations (CCMs) are a cause of stroke and seizure for which no effective medical therapies yet exist. CCMs arise from the loss of an adaptor complex that negatively regulates MEKK3-KLF2/4 signalling in brain endothelial cells, but upstream activators of this disease pathway have yet to be identified. Here we identify endothelial Toll-like receptor 4 (TLR4) and the gut microbiome as critical stimulants of CCM formation. Activation of TLR4 by Gram-negative bacteria or lipopolysaccharide accelerates CCM formation, and genetic or pharmacologic blockade of TLR4 signalling prevents CCM formation in mice. Polymorphisms that increase expression of the TLR4 gene or the gene encoding its co-receptor CD14 are associated with higher CCM lesion burden in humans. Germ-free mice are protected from CCM formation, and a single course of antibiotics permanently alters CCM susceptibility in mice. These studies identify unexpected roles for the microbiome and innate immune signalling in the pathogenesis of a cerebrovascular disease, as well as strategies for its treatment.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Hemangioma Cavernoso del Sistema Nervioso Central/inmunología , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Inmunidad Innata , Receptor Toll-Like 4/inmunología , Animales , Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Susceptibilidad a Enfermedades , Células Endoteliales/metabolismo , Femenino , Vida Libre de Gérmenes , Bacterias Gramnegativas/inmunología , Hemangioma Cavernoso del Sistema Nervioso Central/microbiología , Humanos , Inyecciones Intravenosas , Receptores de Lipopolisacáridos/genética , Receptores de Lipopolisacáridos/metabolismo , Lipopolisacáridos/administración & dosificación , Lipopolisacáridos/inmunología , Masculino , Ratones , Transducción de Señal , Receptor Toll-Like 4/antagonistas & inhibidores , Receptor Toll-Like 4/deficiencia , Receptor Toll-Like 4/genética
4.
J Exp Med ; 217(10)2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32648916

RESUMEN

Cerebral cavernous malformations (CCMs) form following loss of the CCM protein complex in brain endothelial cells due to increased endothelial MEKK3 signaling and KLF2/4 transcription factor expression, but the downstream events that drive lesion formation remain undefined. Recent studies have revealed that CCM lesions expand by incorporating neighboring wild-type endothelial cells, indicative of a cell nonautonomous mechanism. Here we find that endothelial loss of ADAMTS5 reduced CCM formation in the neonatal mouse model. Conversely, endothelial gain of ADAMTS5 conferred early lesion genesis in the absence of increased KLF2/4 expression and synergized with KRIT1 loss of function to create large malformations. Lowering versican expression reduced CCM burden, indicating that versican is the relevant ADAMTS5 substrate and that lesion formation requires proteolysis but not loss of this extracellular matrix protein. These findings identify endothelial secretion of ADAMTS5 and cleavage of versican as downstream mechanisms of CCM pathogenesis and provide a basis for the participation of wild-type endothelial cells in lesion formation.


Asunto(s)
Proteína ADAMTS5/metabolismo , Hemangioma Cavernoso del Sistema Nervioso Central/etiología , Versicanos/metabolismo , Proteína ADAMTS1/metabolismo , Proteína ADAMTS4/metabolismo , Animales , Modelos Animales de Enfermedad , Endotelio Vascular/metabolismo , Femenino , Estudios de Asociación Genética , Hemangioma Cavernoso del Sistema Nervioso Central/embriología , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Proteolisis , Sustancia Blanca/metabolismo
5.
Sci Transl Med ; 11(520)2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31776290

RESUMEN

Cerebral cavernous malformation (CCM) is a genetic, cerebrovascular disease. Familial CCM is caused by genetic mutations in KRIT1, CCM2, or PDCD10 Disease onset is earlier and more severe in individuals with PDCD10 mutations. Recent studies have shown that lesions arise from excess mitogen-activated protein kinase kinase kinase 3 (MEKK3) signaling downstream of Toll-like receptor 4 (TLR4) stimulation by lipopolysaccharide derived from the gut microbiome. These findings suggest a gut-brain CCM disease axis but fail to define it or explain the poor prognosis of patients with PDCD10 mutations. Here, we demonstrate that the gut barrier is a primary determinant of CCM disease course, independent of microbiome configuration, that explains the increased severity of CCM disease associated with PDCD10 deficiency. Chemical disruption of the gut barrier with dextran sulfate sodium augments CCM formation in a mouse model, as does genetic loss of Pdcd10, but not Krit1, in gut epithelial cells. Loss of gut epithelial Pdcd10 results in disruption of the colonic mucosal barrier. Accordingly, loss of Mucin-2 or exposure to dietary emulsifiers that reduce the mucus barrier increases CCM burden analogous to loss of Pdcd10 in the gut epithelium. Last, we show that treatment with dexamethasone potently inhibits CCM formation in mice because of the combined effect of action at both brain endothelial cells and gut epithelial cells. These studies define a gut-brain disease axis in an experimental model of CCM in which a single gene is required for two critical components: gut epithelial function and brain endothelial signaling.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Encéfalo/metabolismo , Tracto Gastrointestinal/metabolismo , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Encéfalo/patología , Proteínas Portadoras/metabolismo , Colitis/complicaciones , Dexametasona/farmacología , Dexametasona/uso terapéutico , Sulfato de Dextran , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Microbioma Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/patología , Hemangioma Cavernoso del Sistema Nervioso Central/tratamiento farmacológico , Humanos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Proteína KRIT1/metabolismo , Ligandos , Ratones , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/metabolismo
6.
Cell Rep ; 22(6): 1545-1559, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29425509

RESUMEN

Yin yang 1 (YY1) is a ubiquitous transcription factor and mammalian polycomb group protein (PcG) with important functions to regulate embryonic development, lineage differentiation, and cell proliferation. YY1 mediates stable PcG-dependent transcriptional repression via recruitment of PcG proteins that catalyze histone modifications. Many questions remain unanswered regarding how cell- and tissue-specificity is achieved by PcG proteins. Here, we demonstrate that a conditional knockout of Yy1 in hematopoietic stem cells (HSCs) decreases long-term repopulating activity and ectopic YY1 expression expands HSCs. Although the YY1 PcG domain is required for Igκ chain rearrangement in B cells, the YY1 mutant lacking the PcG domain retained the capacity to stimulate HSC self-renewal. YY1 deficiency deregulated the genetic network governing HSC cell proliferation and impaired stem cell factor/c-Kit signaling, disrupting mechanisms conferring HSC quiescence. These results reveal a mechanism for how a ubiquitously expressed transcriptional repressor mediates lineage-specific functions to control adult hematopoiesis.


Asunto(s)
Autorrenovación de las Células/fisiología , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/metabolismo , Factor de Transcripción YY1/metabolismo , Animales , Técnicas de Inactivación de Genes , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA