Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Materials (Basel) ; 17(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38730923

RESUMEN

This study investigated how process parameters of laser cladding affect the microstructure and mechanical properties of WC-12Co composite coating for use as a protective layer of continuous caster rolls. WC-Co powders, WC-Ni powders, and Ni-Cr alloy powder with various wear resistance characteristics were evaluated in order to determine their applicability for use as cladding materials for continuous caster roll coating. The cladding process was conducted with various parameters, including laser powers, cladding speeds, and powder feeding rates, then the phases, microstructure, and micro-hardness of the cladding layer were analyzed in each specimen. Results indicate that, to increase the hardness of the cladding layer in WC-Co composite coating, the dilution of the cladding layer by dissolution of Fe from the substrate should be minimized, and the formation of the Fe-Co alloy phase should be prevented. The mechanical properties and wear resistance of each powder with the same process parameters were compared and analyzed. The microstructure and mechanical properties of the laser cladding layer depend not only on the process parameters, but also on the powder characteristics, such as WC particle size and the type of binder material. Additionally, depending on the degree of thermal decomposition of WC particles and evolution of W distribution within the cladding layer, the hardness of each powder can differ significantly, and the wear mechanism can change.

2.
Materials (Basel) ; 15(10)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35629539

RESUMEN

When various alloying elements are added or the cooling rate is increased, steel grades with U- or V-typed ductility behavior show N-shaped ductility behavior in which the ductility decreases in the low-temperature region. This study proposes a method that uses N-shaped data fitting and random forest to predict ductility behavior of steel grades that have bainite microstructure. To include the phenomenon in which that ductility decreases below the intermediate temperature, the data range was extended to temperature T < 700 °C. To identify the T range in which the ductility decreases at T < 700 °C, an N-shaped data fitting method using six parameters was proposed. Comparison with the experimental values confirmed the effectiveness of the proposed model. Also, the model has better ability than models to predict bainite start temperature TBS. In a case study, the change of ductility behavior according to the cooling rate was observed for Nb-added steel. As the cooling rate increased from 1 °C/s to 10 °C/s, the formation of hard phase was relatively promoted, and different transformation behaviors appeared. This ability to predict the ductility behavior of alloy steels with a bainite microstructure, and to predict TBS below the intermediate temperature enables effective control of the secondary cooling conditions during continuous casting process, minimizing the formation of cracks on the slab surface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA