Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Clin Infect Dis ; 76(5): 786-794, 2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-36285523

RESUMEN

BACKGROUND: Aerosol inhalation is recognized as the dominant mode of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission. Three highly transmissible lineages evolved during the pandemic. One hypothesis to explain increased transmissibility is that natural selection favors variants with higher rates of viral aerosol shedding. However, the extent of aerosol shedding of successive SARS-CoV-2 variants is unknown. We aimed to measure the infectivity and rate of SARS-CoV-2 shedding into exhaled breath aerosol (EBA) by individuals during the Delta and Omicron waves and compared those rates with those of prior SARS-CoV-2 variants from our previously published work. METHODS: Individuals with coronavirus disease 2019 (COVID-19) (n = 93; 32 vaccinated and 20 boosted) were recruited to give samples, including 30-minute breath samples into a Gesundheit-II EBA sampler. Samples were quantified for viral RNA using reverse-transcription polymerase chain reaction and cultured for virus. RESULTS: Alpha (n = 4), Delta (n = 3), and Omicron (n = 29) cases shed significantly more viral RNA copies into EBAs than cases infected with ancestral strains and variants not associated with increased transmissibility (n = 57). All Delta and Omicron cases were fully vaccinated and most Omicron cases were boosted. We cultured virus from the EBA of 1 boosted and 3 fully vaccinated cases. CONCLUSIONS: Alpha, Delta, and Omicron independently evolved high viral aerosol shedding phenotypes, demonstrating convergent evolution. Vaccinated and boosted cases can shed infectious SARS-CoV-2 via EBA. These findings support a dominant role of infectious aerosols in transmission of SARS-CoV-2. Monitoring aerosol shedding from new variants and emerging pathogens can be an important component of future threat assessments and guide interventions to prevent transmission.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Aerosoles y Gotitas Respiratorias , ARN Viral
2.
Clin Infect Dis ; 75(1): e241-e248, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34519774

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemiology implicates airborne transmission; aerosol infectiousness and impacts of masks and variants on aerosol shedding are not well understood. METHODS: We recruited coronavirus disease 2019 (COVID-19) cases to give blood, saliva, mid-turbinate and fomite (phone) swabs, and 30-minute breath samples while vocalizing into a Gesundheit-II, with and without masks at up to 2 visits 2 days apart. We quantified and sequenced viral RNA, cultured virus, and assayed serum samples for anti-spike and anti-receptor binding domain antibodies. RESULTS: We enrolled 49 seronegative cases (mean days post onset 3.8 ±â€…2.1), May 2020 through April 2021. We detected SARS-CoV-2 RNA in 36% of fine (≤5 µm), 26% of coarse (>5 µm) aerosols, and 52% of fomite samples overall and in all samples from 4 alpha variant cases. Masks reduced viral RNA by 48% (95% confidence interval [CI], 3 to 72%) in fine and by 77% (95% CI, 51 to 89%) in coarse aerosols; cloth and surgical masks were not significantly different. The alpha variant was associated with a 43-fold (95% CI, 6.6- to 280-fold) increase in fine aerosol viral RNA, compared with earlier viruses, that remained a significant 18-fold (95% CI, 3.4- to 92-fold) increase adjusting for viral RNA in saliva, swabs, and other potential confounders. Two fine aerosol samples, collected while participants wore masks, were culture-positive. CONCLUSIONS: SARS-CoV-2 is evolving toward more efficient aerosol generation and loose-fitting masks provide significant but only modest source control. Therefore, until vaccination rates are very high, continued layered controls and tight-fitting masks and respirators will be necessary.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevención & control , Humanos , Máscaras , ARN Viral , Aerosoles y Gotitas Respiratorias
3.
J Infect Dis ; 224(10): 1730-1734, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34534320

RESUMEN

Mobile phones are among the most highly touched personal objects. As part of a broader study on the contribution of fomites to influenza transmission, between 2017 and 2019, we swabbed mobile phones from 138 patients with influenza in 2 locations. Influenza viral RNA detection rates were 23% (23 of 99 phones) and 36% (14 of 39) in Hong Kong and Maryland, respectively. In Hong Kong, infectious influenza virus was recovered from 3 of 23 mobile phones which had influenza viral RNA detected. Mobile phone influenza contamination was positively associated with upper respiratory tract viral load and negatively associated with age. Cleaning personal objects of patients with influenza should be recommended, and individuals should avoid sharing objects with these patients.


Asunto(s)
Teléfono Celular , Enfermedades Transmisibles , Gripe Humana , Orthomyxoviridae , Hong Kong/epidemiología , Humanos , Gripe Humana/epidemiología , ARN Viral , Estados Unidos
4.
EBioMedicine ; 104: 105157, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38821778

RESUMEN

BACKGROUND: Tight-fitting masks and respirators, in manikin studies, improved aerosol source control compared to loose-fitting masks. Whether this translates to humans is not known. METHODS: We compared efficacy of masks (cloth and surgical) and respirators (KN95 and N95) as source control for SARS-CoV-2 viral load in exhaled breath of volunteers with COVID-19 using a controlled human experimental study. Volunteers (N = 44, 43% female) provided paired unmasked and masked breath samples allowing computation of source-control factors. FINDINGS: All masks and respirators significantly reduced exhaled viral load, without fit tests or training. A duckbill N95 reduced exhaled viral load by 98% (95% CI: 97%-99%), and significantly outperformed a KN95 (p < 0.001) as well as cloth and surgical masks. Cloth masks outperformed a surgical mask (p = 0.027) and the tested KN95 (p = 0.014). INTERPRETATION: These results suggest that N95 respirators could be the standard of care in nursing homes and healthcare settings when respiratory viral infections are prevalent in the community and healthcare-associated transmission risk is elevated. FUNDING: Defense Advanced Research Projects Agency, National Institute of Allergy and Infectious Diseases, Centers for Disease Control and Prevention, the Bill & Melinda Gates Foundation, and The Flu Lab.


Asunto(s)
COVID-19 , Máscaras , Respiradores N95 , SARS-CoV-2 , Carga Viral , Humanos , COVID-19/prevención & control , COVID-19/transmisión , COVID-19/virología , Femenino , SARS-CoV-2/aislamiento & purificación , Masculino , Adulto , Respiradores N95/virología , Persona de Mediana Edad , Esparcimiento de Virus , Aerosoles , Aerosoles y Gotitas Respiratorias/virología , Espiración , Pruebas Respiratorias/métodos
5.
Microbiol Spectr ; 10(2): e0012822, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35311575

RESUMEN

Saliva is an attractive sample for detecting SARS-CoV-2. However, contradictory reports exist concerning the sensitivity of saliva versus nasal swabs. We followed close contacts of COVID-19 cases for up to 14 days from the last exposure and collected self-reported symptoms, midturbinate swabs (MTS), and saliva every 2 or 3 days. Ct values, viral load, and frequency of viral detection by MTS and saliva were compared. Fifty-eight contacts provided 200 saliva-MTS pairs, and 14 contacts (13 with symptoms) had one or more positive samples. Saliva and MTS had similar rates of viral detection (P = 0.78) and substantial agreement (κ = 0.83). However, sensitivity varied significantly with time since symptom onset. Early on (days -3 to 2), saliva had 12 times (95% CI: 1.2, 130) greater likelihood of viral detection and 3.2 times (95% CI: 2.8, 3.8) higher RNA copy numbers compared to MTS. After day 2 of symptoms, there was a nonsignificant trend toward greater sensitivity using MTS. Saliva and MTS demonstrated high agreement making saliva a suitable alternative to MTS for SARS-CoV-2 detection. Saliva was more sensitive early in the infection when the transmission was most likely to occur, suggesting that it may be a superior and cost-effective screening tool for COVID-19. IMPORTANCE The findings of this manuscript are increasingly important with new variants that appear to have shorter incubation periods emerging, which may be more prone to detection in saliva before detection in nasal swabs. Therefore, there is an urgent need to provide the science to support the use of a detection method that is highly sensitive and widely acceptable to the public to improve screening rates and early detection. The manuscript presents the first evidence that saliva-based RT-PCR is more sensitive than MTS-based RT-PCR in detecting SARS-CoV-2 during the presymptomatic period - the critical period for unwitting onward transmission. Considering other advantages of saliva samples, including the lower cost, greater acceptability within the general population, and less risk to health care workers, our findings further supported the use of saliva to identify presymptomatic infection and prevent transmission of the virus.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Nasofaringe , SARS-CoV-2/genética , Saliva , Manejo de Especímenes/métodos
6.
Influenza Other Respir Viruses ; 15(3): 331-335, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33665959

RESUMEN

Evaluation of population-based COVID-19 control measures informs strategies to quell the current pandemic and reduce the impact of those yet to come. Effective COVID-19 control measures may simultaneously reduce the incidence of other acute respiratory infections (ARIs) due to shared transmission modalities. To assess the impact of stay-at-home orders and other physical distancing measures on the prevalence of ARI-related symptoms, we compared symptoms reported by prospective college cohorts enrolled during two consecutive academic years. ARI-related symptoms declined following campus closure and implementation of stay-at-home orders, demonstrating the impact of population-based physical distancing measures on control of a broad range of respiratory infections.


Asunto(s)
COVID-19/prevención & control , Infecciones del Sistema Respiratorio/epidemiología , SARS-CoV-2 , Enfermedad Aguda , Adolescente , Adulto , Estudios de Cohortes , Femenino , Humanos , Masculino , Distanciamiento Físico , Prevalencia , Adulto Joven
7.
Nat Commun ; 12(1): 6, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33397903

RESUMEN

The current practice for diagnosis of COVID-19, based on SARS-CoV-2 PCR testing of pharyngeal or respiratory specimens in a symptomatic patient at high epidemiologic risk, likely underestimates the true prevalence of infection. Serologic methods can more accurately estimate the disease burden by detecting infections missed by the limited testing performed to date. Here, we describe the validation of a coronavirus antigen microarray containing immunologically significant antigens from SARS-CoV-2, in addition to SARS-CoV, MERS-CoV, common human coronavirus strains, and other common respiratory viruses. A comparison of antibody profiles detected on the array from control sera collected prior to the SARS-CoV-2 pandemic versus convalescent blood specimens from virologically confirmed COVID-19 cases demonstrates near complete discrimination of these two groups, with improved performance from use of antigen combinations that include both spike protein and nucleoprotein. This array can be used as a diagnostic tool, as an epidemiologic tool to more accurately estimate the disease burden of COVID-19, and as a research tool to correlate antibody responses with clinical outcomes.


Asunto(s)
Anticuerpos Antivirales/sangre , Antígenos Virales/sangre , COVID-19/inmunología , SARS-CoV-2/inmunología , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , COVID-19/sangre , COVID-19/diagnóstico , Prueba de COVID-19 , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Inmunoglobulina M/sangre , Inmunoglobulina M/inmunología , Análisis por Micromatrices/métodos , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Pruebas de Neutralización , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología
8.
bioRxiv ; 2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-32511324

RESUMEN

The current practice for diagnosis of SARS-CoV-2 infection relies on PCR testing of nasopharyngeal or respiratory specimens in a symptomatic patient at high epidemiologic risk. This testing strategy likely underestimates the true prevalence of infection, creating the need for serologic methods to detect infections missed by the limited testing to date. Here, we describe the development of a coronavirus antigen microarray containing immunologically significant antigens from SARS-CoV-2, in addition to SARS-CoV, MERS-CoV, common human coronavirus strains, and other common respiratory viruses. A preliminary study of human sera collected prior to the SARS-CoV-2 pandemic demonstrates overall high IgG reactivity to common human coronaviruses and low IgG reactivity to epidemic coronaviruses including SARS-CoV-2, with some cross-reactivity of conserved antigenic domains including S2 domain of spike protein and nucleocapsid protein. This array can be used to answer outstanding questions regarding SARS-CoV-2 infection, including whether baseline serology for other coronaviruses impacts disease course, how the antibody response to infection develops over time, and what antigens would be optimal for vaccine development.

9.
Environ Int ; 137: 105537, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32028176

RESUMEN

Strategies to protect building occupants from the risk of acute respiratory infection (ARI) need to consider ventilation for its ability to dilute and remove indoor bioaerosols. Prior studies have described an association of increased self-reported colds and influenza-like symptoms with low ventilation but have not combined rigorous characterization of ventilation with assessment of laboratory confirmed infections. We report a study designed to fill this gap. We followed laboratory confirmed ARI rates and measured CO2 concentrations for four months during the winter-spring of 2018 in two campus residence halls: (1) a high ventilation building (HVB) with a dedicated outdoor air system that supplies 100% of outside air to each dormitory room, and (2) a low ventilation building (LVB) that relies on infiltration as ventilation. We enrolled 11 volunteers for a total of 522 person-days in the HVB and 109 volunteers for 6069 person-days in the LVB, and tested upper-respiratory swabs from symptomatic cases and their close contacts for the presence of 44 pathogens using a molecular assay. We observed one ARI case in the HVB (0.70/person-year) and 47 in the LVB (2.83/person-year). Simultaneously, 154 CO2 sensors distributed primarily in the dormitory rooms collected 668,390 useful data points from over 1 million recorded data points. Average and standard deviation of CO2 concentrations were 1230 ppm and 408 ppm in the HVB, and 1492 ppm and 837 ppm in the LVB, respectively. Importantly, this study developed and calibrated multi-zone models for the HVB with 229 zones and 983 airflow paths, and for the LVB with 529 zones and 1836 airflow paths by using a subset of CO2 data for model calibration. The models were used to calculate ventilation rates in the two buildings and potential for viral aerosol migration between rooms in the LVB. With doors and windows closed, the average ventilation rate was 12 L/s in the HVB dormitory rooms and 4 L/s in the LVB dormitory rooms. As a result, residents had on average 6.6 L/(s person) of outside air in the HVB and 2.3 L/(s person) in the LVB. LVB rooms located at the leeward side of the building had smaller average ventilation rates, as well as a somewhat higher ARI incidence rate and average CO2 concentrations when compared to those values in the rooms located at the windward side of the building. Average ventilation rates in twenty LVB dormitory rooms increased from 2.3 L/s to 7.5 L/s by opening windows, 3.6 L/s by opening doors, and 8.8 L/s by opening both windows and doors. Therefore, opening both windows and doors in the LVB dormitory rooms can increase ventilation rates to the levels comparable to those in the HVB. But it can also have a negative effect on thermal comfort due to low outdoor temperatures. Simulation results identified an aerobiologic pathway from a room occupied by an index case of influenza A to a room occupied by a possible secondary case.


Asunto(s)
Contaminación del Aire Interior , Infecciones del Sistema Respiratorio , Contaminación del Aire Interior/análisis , Femenino , Vivienda , Humanos , Masculino , Maryland , Infecciones del Sistema Respiratorio/epidemiología , Estudiantes , Temperatura , Universidades , Ventilación , Adulto Joven
10.
bioRxiv ; 2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32511302

RESUMEN

The current practice for diagnosis of COVID-19, based on SARS-CoV-2 PCR testing of pharyngeal or respiratory specimens in a symptomatic patient at high epidemiologic risk, likely underestimates the true prevalence of infection. Serologic methods can more accurately estimate the disease burden by detecting infections missed by the limited testing performed to date. Here, we describe the validation of a coronavirus antigen microarray containing immunologically significant antigens from SARS-CoV-2, in addition to SARS-CoV, MERS-CoV, common human coronavirus strains, and other common respiratory viruses. A comparison of antibody profiles detected on the array from control sera collected prior to the SARS-CoV-2 pandemic versus convalescent blood specimens from virologically confirmed COVID-19 cases demonstrates near complete discrimination of these two groups, with improved performance from use of antigen combinations that include both spike protein and nucleoprotein. This array can be used as a diagnostic tool, as an epidemiologic tool to more accurately estimate the disease burden of COVID-19, and as a research tool to correlate antibody responses with clinical outcomes.

11.
Mol Pharmacol ; 75(5): 1084-95, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19218367

RESUMEN

Azietomidate is a photoreactive analog of the general anesthetic etomidate that acts as a nicotinic acetylcholine receptor (nAChR) noncompetitive antagonist. We used rapid perfusion electrophysiological techniques to characterize the state dependence and kinetics of azietomidate inhibition of Torpedo californica nAChRs and time-resolved photolabeling to identify the nAChR binding sites occupied after exposure to [(3)H]azietomidate and agonist for 50 ms (open state) or at equilibrium (desensitized state). Azietomidate acted primarily as an open channel inhibitor characterized by a bimolecular association rate constant of k(+) = 5 x 10(5) M(-1) s(-1) and a dissociation rate constant of <3s(-1). Azietomidate at 10 microM, when perfused with acetylcholine (ACh), inhibited the ACh response by approximately 50% after 50 ms; when preincubated for 10 s, it decreased the peak initial response by approximately 15%. Comparison of the kinetics of recovery of ACh responses after exposure to ACh and azietomidate or to ACh alone indicated that at subsecond times, azietomidate inhibited nAChRs without enhancing the kinetics of agonist-induced desensitization. In nAChRs frozen after 50-ms exposure to agonist and [(3)H]azietomidate, amino acids were photolabeled in the ion channel [position M2-20 (alphaGlu-262, betaAsp-268, deltaGln-276)], in deltaM1 (deltaCys-236), and in alphaMA/alphaM4 (alphaGlu-390, alphaCys-412) that were also photolabeled in nAChRs in the equilibrium desensitized state at approximately half the efficiency. These results identify azietomidate binding sites at the extracellular end of the ion channel, in the delta subunit helix bundle, and in the nAChR cytoplasmic domain that seem similar in structure and accessibility in the open and desensitized states of the nAChR.


Asunto(s)
Etomidato/análogos & derivados , Antagonistas Nicotínicos/metabolismo , Etiquetas de Fotoafinidad/metabolismo , Receptores Nicotínicos/análisis , Anestésicos/farmacología , Animales , Etomidato/metabolismo , Etomidato/farmacología , Femenino , Canales Iónicos/efectos de los fármacos , Lidocaína/análogos & derivados , Lidocaína/farmacología , Estructura Terciaria de Proteína , Subunidades de Proteína , Receptores Nicotínicos/química , Receptores Nicotínicos/efectos de los fármacos , Tritio , Xenopus laevis
12.
J Med Chem ; 46(7): 1257-65, 2003 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-12646036

RESUMEN

To locate general anesthetic binding sites on ligand-gated ion channels, a diazirine derivative of the potent intravenous anesthetic, R-(+)-etomidate (2-ethyl 1-(1-phenylethyl)-1H-imidazole-5-carboxylate), has been synthesized and characterized. R-(+)-Azietomidate [2-(3-methyl-3H-diaziren-3-yl)ethyl 1-(1-phenylethyl)-1H-imidazole-5-carboxylate] anesthetizes tadpoles with an EC(50) of 2.2 microM, identical to that of R-(+)-etomidate. At this concentration both agents equally enhanced GABA-induced currents and decreased binding of the caged-convulsant [(35)S]TBPS to GABA(A) receptors. In all of the above actions R-(+)-azietomidate is about an order of magnitude more potent than S-(-)-azietomidate, an enantioselectivity comparable to etomidate's. R-(+)-Azietomidate also inhibits acetylcholine-induced currents in nicotinic acetylcholine receptors, with about twice the potency of the parent compound. [(3)H]Azietomidate photoincorporated into Torpedo nicotinic acetylcholine receptor-rich membranes. Desensitization decreased photoincorporation into the delta-subunit and increased that into the alpha-subunit. The latter increase was confined to a proteolytic fragment containing the first three transmembrane segments. Thus, R-(+)-azietomidate is a potent stereoselective general anesthetic and an effective photolabel.


Asunto(s)
Anestésicos Generales/síntesis química , Etomidato/análogos & derivados , Etomidato/síntesis química , Imidazoles/síntesis química , Activación del Canal Iónico , Etiquetas de Fotoafinidad/síntesis química , Regulación Alostérica , Anestésicos Generales/química , Anestésicos Generales/farmacología , Animales , Sitios de Unión , Etomidato/química , Etomidato/farmacología , Agonistas del GABA/síntesis química , Agonistas del GABA/química , Agonistas del GABA/farmacología , Imidazoles/química , Imidazoles/farmacología , Técnicas In Vitro , Larva , Ligandos , Ratones , Oocitos/efectos de los fármacos , Oocitos/fisiología , Técnicas de Placa-Clamp , Etiquetas de Fotoafinidad/química , Etiquetas de Fotoafinidad/farmacología , Receptores de GABA-A/efectos de los fármacos , Receptores de GABA-A/fisiología , Receptores Nicotínicos/efectos de los fármacos , Receptores Nicotínicos/fisiología , Reflejo/efectos de los fármacos , Estereoisomerismo , Torpedo , Xenopus , Ácido gamma-Aminobutírico/farmacología
13.
Biochemistry ; 44(41): 13447-56, 2005 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-16216068

RESUMEN

The interactions of a photoreactive analogue of benzoylcholine, 4-azido-2,3,5,6-tetrafluorobenzoylcholine (APFBzcholine), with nicotinic acetylcholine receptors (nAChRs) were studied using electrophysiology and photolabeling. APFBzcholine acted as a low-efficacy partial agonist, eliciting maximal responses that were 0.3 and 0.1% of that of acetylcholine for embryonic mouse and Torpedo nAChRs expressed in Xenopus oocytes, respectively. Equilibrium binding studies of [3H]APFBzcholine with nAChR-rich membranes from Torpedo electric organ revealed equal affinities (K(eq) = 12 microM) for the two agonist binding sites. Upon UV irradiation at 254 nm, [3H]APFBzcholine was photoincorporated into the nAChR alpha, gamma, and delta subunits in an agonist-inhibitable manner. Photolabeled amino acids in the agonist binding sites were identified by Edman degradation of isolated, labeled subunit fragments. [3H]APFBzcholine photolabeled gammaLeu-109/deltaLeu-111, gammaTyr-111, and gammaTyr-117 in binding site segment E as well as alphaTyr-198 in alpha subunit binding site segment C. The observed pattern of photolabeling is examined in relation to the predicted orientation of the azide when APFBzcholine is docked in the agonist binding site of a homology model of the nAChR extracellular domain based upon the structure of the snail acetylcholine binding protein.


Asunto(s)
Benzoilcolina/análogos & derivados , Agonistas Nicotínicos/química , Etiquetas de Fotoafinidad/química , Receptores Nicotínicos/química , Receptores Nicotínicos/fisiología , Animales , Benzoilcolina/química , Benzoilcolina/farmacología , Electrofisiología , Receptores Nicotínicos/efectos de los fármacos , Torpedo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA