Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; : e2311402, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38757547

RESUMEN

The native extracellular matrix (ECM) undergoes constant remodeling, where adhesive ligand presentation changes over time and in space to control stem cell function. As such, it is of interest to develop 2D biointerfaces able to study these complex ligand stem-cell interactions. In this study, a novel dynamic bio interface based on DNA hybridization is developed, which can be employed to control ligand display kinetics and used to study dynamic cell-ligand interaction. In this approach, mesoporous silica nanoparticles (MSN) are functionalized with single-strand DNA (MSN-ssDNA) and spin-coated on a glass substrate to create the 2D bio interface. Cell adhesive tripeptide RGD is conjugated to complementary DNA strands (csDNA) of 9, 11, or 20 nucleotides in length, to form csDNA-RGD. The resulting 3 csDNA-RGD conjugates can hybridize with the ssDNA on the MSN surface, presenting RGD with increased ligand dissociation rates as DNA length is shortened. Slow RGD dissociation rates led to enhanced stem cell adhesion and spreading, resulting in elongated cell morphology. Cells on surfaces with slow RGD dissociation rates also exhibited higher motility, migrating in multiple directions compared to cells on surfaces with fast RGD dissociation rates. This study contributes to the existing body of knowledge on dynamic ligand-stem cell interactions.

2.
Rapid Commun Mass Spectrom ; 37(5): e9439, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36415963

RESUMEN

RATIONALE: Isomeric separation of prostanoids is often a challenge and requires chromatography and time-consuming sample preparation. Multiple prostanoid isomers have distinct in vivo functions crucial for understanding the inflammation process, including prostaglandins E2 (PGE2 ) and D2 (PGD2 ). High-resolution ion mobility spectrometry (IMS) based on linear ion transport in low-to-moderate electric fields and nonlinear ion transport in strong electric fields emerges as a broad approach for rapid separations prior to mass spectrometry. METHODS: Derivatization with Girard's reagent T (GT) was used to overcome inefficient ionization of prostanoids in negative ionization mode due to poor deprotonation of the carboxylic acid group. Three high-resolution IMS techniques, namely linear cyclic IMS, linear trapped IMS, and nonlinear high-field asymmetric waveform IMS, were compared for the isomeric separation and endogenous detection of prostanoids present in intestinal tissue. RESULTS: Direct infusion of GT-derivatized prostanoids proved to increase the ionization efficiency in positive ionization mode by a factor of >10, which enabled detection of these molecules in endogenous concentration levels. The high-resolution IMS comparison revealed its potential for rapid isomeric analysis of biologically relevant prostanoids. Strengths and weaknesses of both linear and nonlinear IMS are discussed. Endogenous prostanoid detection in intestinal tissue extracts demonstrated the applicability of our approach in biomedical research. CONCLUSIONS: The applied derivatization strategy offers high sensitivity and improved stereoisomeric separation for screening of complex biological systems. The high-resolution IMS comparison indicated that the best sensitivity and resolution are achieved by linear and nonlinear IMS, respectively.


Asunto(s)
Espectrometría de Movilidad Iónica , Prostaglandinas , Espectrometría de Movilidad Iónica/métodos , Espectrometría de Masas/métodos , Betaína/química
3.
Anal Chem ; 92(6): 4292-4300, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32107919

RESUMEN

Size-exclusion chromatography employing aqueous mobile phases with volatile salts at neutral pH combined with electrospray-ionization mass spectrometry (SEC-ESI-MS) is a useful tool to study proteins in their native state. However, whether the applied eluent conditions actually prevent protein-stationary phase interactions, and/or protein denaturation, often is not assessed. In this study, the effects of volatile mobile phase additives on SEC retention and ESI of proteins were thoroughly investigated. Myoglobin was used as the main model protein, and eluents of varying ionic strength and pH were applied. The degree of interaction between protein and stationary phase was evaluated by calculating the SEC distribution coefficient. Protein-ion charge state distributions obtained during offline and online native ESI-MS were used to monitor alterations in protein structure. Interestingly, most of the supposedly mild eluent compositions induced nonideal SEC behavior and/or protein unfolding. SEC experiments revealed that the nature, ionic strength, and pH of the eluent affected protein retention. Protein-stationary phase interactions were effectively avoided using ammonium acetate at ionic strengths above 0.1 M. Direct-infusion ESI-MS showed that the tested volatile eluent salts seem to follow the Hofmeister series: no denaturation was induced using ammonium acetate (kosmotropic), whereas ammonium formate and bicarbonate (both chaotropic) caused structural changes. Using a mobile phase of 0.2 M ammonium acetate (pH 6.9), several proteins (i.e., myoglobin, carbonic anhydrase, and cytochrome c) could be analyzed by SEC-ESI-MS using different column chemistries without compromising their native state. Overall, with SEC-ESI-MS, the effect of nonspecific interactions between protein and stationary phase on the protein structure can be studied, even revealing gradual structural differences along a peak.


Asunto(s)
Cromatografía en Gel , Mioglobina/análisis , Animales , Corazón , Caballos , Concentración de Iones de Hidrógeno , Desnaturalización Proteica , Espectrometría de Masa por Ionización de Electrospray
4.
Br J Anaesth ; 125(6): 1070-1078, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32950246

RESUMEN

BACKGROUND: The majority of postoperative patients report moderate to severe pain, possibly related to opioid underdosing or overdosing during surgery. Objective guidance of opioid dosing using the Nociception Level (NOL) index, a multiparameter artificial intelligence-driven index designed to monitor nociception during surgery, may lead to a more appropriate analgesic regimen, with effects beyond surgery. We tested whether NOL-guided opioid dosing during general anaesthesia results in less postoperative pain. METHODS: In this two-centre RCT, 50 patients undergoing abdominal surgery under fentanyl/sevoflurane anaesthesia were randomised to NOL-guided fentanyl dosing or standard care in which fentanyl dosing was based on haemodynamics. The primary endpoint of the study was postoperative pain assessed in the PACU. RESULTS: Median postoperative pain scores were 3.2 (inter-quartile range 1.3-4.3) and 4.8 (3.0-5.3) in NOL-guided and standard care groups, respectively (P=0.006). Postoperative morphine consumption (standard deviation) was 0.06 (0.07) mg kg-1 (NOL-guided group) and 0.09 (0.09) mg kg-1 (control group; P=0.204). During surgery, fentanyl dosing was not different between groups (NOL-guided group: 6.4 [4.2] µg kg-1vs standard care: 6.0 [2.2] µg kg-1, P=0.749), although the variation between patients was greater in the NOL-guided group (% coefficient of variation 66% in the NOL-guided group vs 37% in the standard care group). CONCLUSIONS: Despite absence of differences in fentanyl and morphine consumption during and after surgery, a 1.6-point improvement in postoperative pain scores was observed in the NOL-guided group. We attribute this to NOL-driven rather than BP- and HR-driven fentanyl dosing during anaesthesia. CLINICAL TRIAL REGISTRATION: www.trialregister.nl under identifier NL7845.


Asunto(s)
Fentanilo/administración & dosificación , Monitoreo Intraoperatorio/métodos , Nocicepción/efectos de los fármacos , Dolor Postoperatorio/tratamiento farmacológico , Sevoflurano , Adulto , Anciano , Anestésicos por Inhalación , Anestésicos Intravenosos/administración & dosificación , Inteligencia Artificial , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Masculino , Persona de Mediana Edad
5.
Molecules ; 25(24)2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33348537

RESUMEN

General anesthesia is obtained by administration of potent hypnotics, analgesics and muscle relaxants. Apart from their intended effects (loss of consciousness, pain relief and muscle relaxation), these agents profoundly affect the control of breathing, in part by an effect within the peripheral chemoreflex loop that originates at the carotid bodies. This review assesses the role of cholinergic chemotransmission in the peripheral chemoreflex loop and the mechanisms through which muscle relaxants and hypnotics interfere with peripheral chemosensitivity. Additionally, consequences for clinical practice are discussed.


Asunto(s)
Anestésicos Generales/farmacología , Cuerpo Carotídeo/efectos de los fármacos , Colinérgicos/farmacología , Neuronas Colinérgicas/efectos de los fármacos , Retraso en el Despertar Posanestésico/prevención & control , Hipnóticos y Sedantes/farmacología , Relajantes Musculares Centrales/farmacología , Acetilcolina/metabolismo , Anestesia General/efectos adversos , Anestesia General/métodos , Humanos , Propofol/farmacología , Receptores Nicotínicos/efectos de los fármacos , Respiración/efectos de los fármacos , Respiración Artificial
6.
Chemistry ; 25(65): 14999-15003, 2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31529519

RESUMEN

The crystalline sponge method entails the elucidation of the (absolute) structure of molecules from a solution phase using single-crystal X-ray diffraction and eliminates the need for crystals of the target compound. An important limitation for the application of the crystalline sponge method is the instability of the available crystalline sponges that can act as host crystals. The host crystal that is most often used decomposes in protic or nucleophilic solvents, or when guest molecules with Lewis basic substituents are introduced. Here a new class of (water) stable host crystals based on f-block metals is disclosed. It can be shown that these hosts not only increase the scope of the crystalline sponge method to a wider array of solvents and guests, but that they can even be applied to aqueous solutions containing hydrophilic guest molecules, thereby extending the crystalline sponge method to the important field of water-based chemistry.

7.
Rapid Commun Mass Spectrom ; 33 Suppl 2: 49-59, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30811738

RESUMEN

RATIONALE: The separation of isomeric compounds with major differences in their physiochemical and pharmacokinetic properties is of particular importance in pharmaceutical R&D. However, the structural assessment and separation of these compounds with current analytical techniques and methods are still a challenge. In this study, we describe strategies to separate the various structural and stereo-isomers. METHODS: The separation of ten structural and stereo-isomers was investigated using Trapped and Travelling Wave ion mobility spectrometry (TIMS and TWIMS). Different strategies including adduct ion formation with Na, Li, Ag and Cs as well as fragmentation before and after the ion mobility cell were applied to separate the isomeric compounds. RESULTS: All the counter ions (in particular Na) strongly coordinated with the test analytes in all the IMS systems. The highest resolving power was achieved for the sodium and lithium adducts using TIMS-time-of-flight (TOF). However, some separation was attained on a Synapt HDMS system with its unique potential to monitor the ion mobility of the product ions. The elution order of the adduct ions was the same in all instruments, in which, unexpectedly, the para-substituted isomer of the [M + Na]+ species had the lowest collision cross section followed by the meta- and ortho-isomers. CONCLUSIONS: The formation of adduct ions could facilitate the separation of structural and even stereo-isomers by generating different molecular conformations. In addition, fragmenting isomers before or after the ion mobility cell is a valuable strategy to separate and also to assess the structures of adducts and different conformers.


Asunto(s)
Iones/química , Espectrometría de Movilidad Iónica/métodos , Isomerismo , Estructura Molecular , Plata/química , Sodio/química
8.
Anal Chem ; 89(22): 12076-12086, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29064225

RESUMEN

Ion mobility (IM) is now a well-established and fast analytical technique. The IM hardware is constantly being improved, especially in terms of the resolving power. The Drift Tube (DTIMS), the Traveling Wave (TWIMS), and the Trapped Ion Mobility Spectrometry (TIMS) coupled to mass spectrometry are used to determine the Collision Cross-Sections (CCS) of ions. In analytical chemistry, the CCS is approached as a descriptor for ion identification and it is also used in physical chemistry for 3D structure elucidation with computational chemistry support. The CCS is a physical descriptor extracted from the reduced mobility (K0) measurements obtainable only from the DTIMS. TWIMS and TIMS routinely require a calibration procedure to convert measured physical quantities (drift time for TWIMS and elution voltage for TIMS) into CCS values. This calibration is a critical step to allow interinstrument comparisons. The previous calibrating substances lead to large prediction bands and introduced rather large uncertainties during the CCS determination. In this paper, we introduce a new IM calibrant (CCS and K0) using singly charged sodium adducts of poly(ethylene oxide) monomethyl ether (CH3O-PEO-H) for positive ionization in both helium and nitrogen as drift gas. These singly charged calibrating ions make it possible to determine the CCS/K0 of ions having higher charge states. The fitted calibration plots exhibit larger coverage with less data scattering and significantly improved prediction bands and uncertainties. The reasons for the improved CCS/K0 accuracy, advantages, and limitations of the calibration procedures are also discussed. A generalized IM calibration strategy is suggested.

9.
Rapid Commun Mass Spectrom ; 31(4): 362-370, 2017 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-27870135

RESUMEN

RATIONALE: Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) provides detailed and in-depth information about the molecular characteristics of synthetic polymers. To obtain the most accurate results the sample preparation parameters should be chosen to suit the sample and the aim of the experiment. Because the underlying principles of MALDI are still not fully known, a priori determination of optimal sample preparation protocols is often not possible. METHODS: Employing an automated sample preparation quality assessment method recently presented by us we quantified the sample preparation quality obtained using various sample preparation protocols. Six conventional matrices with and without added potassium as a cationization agent and six ionic liquid matrices (ILMs) were assessed using poly(ethylene glycol) (PEG), polytetrahydrofuran (PTHF) and poly(methyl methacrylate) (PMMA) as samples. All sample preparation protocols were scored and ranked based on predefined quality parameters and spot-to-spot repeatability. RESULTS: Clearly distinctive preferences were observed in matrix identity and cationization agent for PEG, PTHF and PMMA, as the addition of an excess of potassium cationization agent results in an increased score for PMMA and a contrasting matrix-dependent effect for PTHF and PEG. The addition of excess cationization agent to sample mixtures dissipates any overrepresentation of high molecular weight polymer species. Our results show reduced ionization efficiency and similar sample deposit homogeneity for all tested ILMs, compared with well-performing conventional MALDI matrices. CONCLUSIONS: The results published here represent a start in the unsupervised quantification of sample preparation quality for MALDI samples. This method can select the best sample preparation parameters for any synthetic polymer sample and the results can be used to formulate hypotheses on MALDI principles. Copyright © 2016 John Wiley & Sons, Ltd.

10.
Anal Bioanal Chem ; 408(5): 1425-43, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26753974

RESUMEN

In the present study, the validity of using a cocktail screening method in combination with a chemometrical data mining approach to evaluate metabolic activity and diversity of drug-metabolizing bacterial Cytochrome P450 (CYP) BM3 mutants was investigated. In addition, the concept of utilizing an in-house-developed library of CYP BM3 mutants as a unique biocatalytic synthetic tool to support medicinal chemistry was evaluated. Metabolic efficiency of the mutant library towards a selection of CYP model substrates, being amitriptyline (AMI), buspirone (BUS), coumarine (COU), dextromethorphan (DEX), diclofenac (DIC) and norethisterone (NET), was investigated. First, metabolic activity of a selection of CYP BM3 mutants was screened against AMI and BUS. Subsequently, for a single CYP BM3 mutant, the effect of co-administration of multiple drugs on the metabolic activity and diversity towards AMI and BUS was investigated. Finally, a cocktail of AMI, BUS, COU, DEX, DIC and NET was screened against the whole in-house CYP BM3 library. Different validated quantitative and qualitative (U)HPLC-MS/MS-based analytical methods were applied to screen for substrate depletion and targeted product formation, followed by a more in-depth screen for metabolic diversity. A chemometrical approach was used to mine all data to search for unique metabolic properties of the mutants and allow classification of the mutants. The latter would open the possibility of obtaining a more in-depth mechanistic understanding of the metabolites. The presented method is the first MS-based method to screen CYP BM3 mutant libraries for diversity in combination with a chemometrical approach to interpret results and visualize differences between the tested mutants.


Asunto(s)
Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/metabolismo , Ensayos Analíticos de Alto Rendimiento , Preparaciones Farmacéuticas/metabolismo , Cromatografía Liquida/métodos , Sistema Enzimático del Citocromo P-450/genética , Interacciones Farmacológicas , Humanos , Inactivación Metabólica/genética , Oxidación-Reducción , Especificidad por Sustrato , Espectrometría de Masas en Tándem/métodos
13.
Drug Discov Today ; 29(7): 104027, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38762085

RESUMEN

Various analytical technologies have been developed for the study of target-ligand interactions. The combination of these technologies gives pivotal information on the binding mechanism, kinetics, affinity, residence time, and changes in molecular structures. Mass spectrometry (MS) offers structural information, enabling the identification and quantification of target-ligand interactions. Surface plasmon resonance (SPR) provides kinetic information on target-ligand interaction in real time. The coupling of MS and SPR complements each other in the studies of target-ligand interactions. Over the last two decades, the capabilities and added values of SPR-MS have been reported. This review summarizes and highlights the benefits, applications, and potential for further research of the SPR-MS approach.


Asunto(s)
Descubrimiento de Drogas , Espectrometría de Masas , Resonancia por Plasmón de Superficie , Resonancia por Plasmón de Superficie/métodos , Descubrimiento de Drogas/métodos , Espectrometría de Masas/métodos , Humanos , Ligandos , Animales
14.
AMB Express ; 14(1): 45, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662284

RESUMEN

Quorum sensing (QS) is a complex communication system in bacteria, directing their response to the environment. QS is also one of the main regulators of bacterial biofilms' formation, maturation and dispersion. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI) is a molecular imaging technique that allows the mapping of QS molecules in bacterial biofilms. Here, we highlight the latest advances in MALDI-MSI in recent years and how this technology can improve QS understanding at the molecular level.

15.
Chem Sci ; 15(18): 6867-6873, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38725510

RESUMEN

Dearomatization of indoles through a charge transfer complex constitutes a powerful tool for synthesizing three-dimensional constrained structures. However, the implementation of this strategy for the dearomatization of tryptamine-derived isocyanides to generate spirocyclic scaffolds remains underdeveloped. In this work, we have demonstrated the ability of tryptamine-derived isocyanides to form aggregates at higher concentration, enabling a single electron transfer step to generate carbon-based-radical intermediates. Optical, HRMS and computational studies have elucidated key aspects associated with the photophysical properties of tryptamine-derived isocyanides. The developed protocol is operationally simple, robust and demonstrates a novel approach to generate conformationally constrained spirocyclic scaffolds, compounds with high demand in various fields, including drug discovery.

16.
Anal Bioanal Chem ; 405(21): 6711-20, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23812883

RESUMEN

Flow-through electrochemical conversion (EC) of drug-like molecules was hyphenated to miniaturized nuclear magnetic resonance spectroscopy (NMR) via on-line solid-phase extraction (SPE). After EC of the prominent p38α mitogen-activated protein kinase inhibitor BIRB796 into its reactive products, the SPE step provided preconcentration of the EC products and solvent exchange for NMR analysis. The acquisition of NMR spectra of the mass-limited samples was achieved in a stripline probe with a detection volume of 150 nL offering superior mass sensitivity. This hyphenated EC-SPE-stripline-NMR setup enabled the detection of the reactive products using only minute amounts of substrate. Furthermore, the integration of conversion and detection into one flow setup counteracts incorrect assessments caused by the degradation of reactive products. However, apparent interferences of the NMR magnetic field with the EC, leading to a low product yield, so far demanded relatively long signal averaging. A critical assessment of what is and what is not (yet) possible with this approach is presented, for example in terms of structure elucidation and the estimation of concentrations. Additionally, promising routes for further improvement of EC-SPE-stripline-NMR are discussed.


Asunto(s)
Electroquímica/instrumentación , Análisis de Inyección de Flujo/métodos , Espectroscopía de Resonancia Magnética/instrumentación , Proteína Quinasa 14 Activada por Mitógenos/análisis , Proteína Quinasa 14 Activada por Mitógenos/química , Extracción en Fase Sólida/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Estudios de Factibilidad , Miniaturización , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
17.
Front Bioeng Biotechnol ; 11: 1197760, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37284240

RESUMEN

Three-dimensional (3D) cell cultures, including organ-on-a-chip (OOC) devices, offer the possibility to mimic human physiology conditions better than 2D models. The organ-on-a-chip devices have a wide range of applications, including mechanical studies, functional validation, and toxicology investigations. Despite many advances in this field, the major challenge with the use of organ-on-a-chips relies on the lack of online analysis methods preventing the real-time observation of cultured cells. Mass spectrometry is a promising analytical technique for real-time analysis of cell excretes from organ-on-a-chip models. This is due to its high sensitivity, selectivity, and ability to tentatively identify a large variety of unknown compounds, ranging from metabolites, lipids, and peptides to proteins. However, the hyphenation of organ-on-a-chip with MS is largely hampered by the nature of the media used, and the presence of nonvolatile buffers. This in turn stalls the straightforward and online connection of organ-on-a-chip outlet to MS. To overcome this challenge, multiple advances have been made to pre-treat samples right after organ-on-a-chip and just before MS. In this review, we summarised these technological advances and exhaustively evaluated their benefits and shortcomings for successful hyphenation of organ-on-a-chip with MS.

18.
J Inorg Biochem ; 242: 112156, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36801621

RESUMEN

Iron(II) and Ru(II) half-sandwich compounds encompass some promising pre-clinical anticancer agents whose efficacy may be tuned by structural modification of the coordinated ligands. Here, we combine two such bioactive metal centres in cationic bis(diphenylphosphino)alkane-bridged heterodinuclear [Fe2+, Ru2+] complexes to delineate how ligand structural variations modulate compound cytotoxicity. Specifically, Fe(II) complexes of the type [(η5-C5H5)Fe(CO)2(κ1-PPh2(CH2)nPPh2)]{PF6} (n = 1-5), compounds 1-5, and heterodinuclear [Fe2+, Ru2+] complexes, [(η5-C5H5)Fe(CO)2(µ-PPh2(CH2)nPPh2))(η6-p-cymene)RuCl2]{PF6} (n = 2-5) (compounds 7-10), were synthesized and characterised. The mononuclear complexes were moderately cytotoxic against two ovarian cancer cell lines (A2780 and cisplatin resistant A2780cis) with IC50 values ranging from 2.3 ± 0.5 µM to 9.0 ± 1.4 µM. For 7-10, the cytotoxicity increased with increasing Fe⋅⋅⋅Ru distance, consistent with their DNA affinity. UV-visible spectroscopy suggested the chloride ligands in heterodinuclear 8-10 undergo stepwise substitution by water on the timescale of the DNA interaction experiments, probably affording the species [RuCl(OH2)(η6-p-cymene)(PRPh2)]2+ and [Ru(OH)(OH2)(η6-p-cymene)(PRPh2)]2+ (where PRPh2 has R = [-(CH2)5PPh2-Fe(C5H5)(CO)2]+). One interpretation of the combined DNA-interaction and kinetic data is that the mono(aqua) complex may interact with dsDNA through nucleobase coordination. Heterodinuclear 10 reacts with glutathione (GSH) to form stable mono- and bis(thiolate) adducts, 10-SG and 10-SG2, with no evidence of metal ion reduction (k1 = 1.07 ± 0.17 × 10-1 min-1 and k2 = 6.04 ± 0.59 × 10-3 min-1 at 37 °C). This work highlights the synergistic effect of the Fe2+/Ru2+ centres on both the cytotoxicity and biomolecular interactions of the present heterodinuclear complexes.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Neoplasias Ováricas , Rutenio , Humanos , Femenino , Línea Celular Tumoral , Neoplasias Ováricas/tratamiento farmacológico , Análisis Espectral , ADN/química , Rutenio/química , Antineoplásicos/química , Complejos de Coordinación/química
19.
Anal Bioanal Chem ; 403(2): 367-75, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22227812

RESUMEN

In this study, an integrated approach is developed for the formation, identification and biological characterization of electrochemical conversion products of p38α mitogen-activated protein kinase inhibitors. This work demonstrates the hyphenation of an electrochemical reaction cell with a continuous-flow bioaffinity assay and parallel LC-HR-MS. Competition of the formed products with a tracer (SKF-86002) that shows fluorescence enhancement in the orthosteric binding site of the p38α kinase is the readout for bioaffinity. Parallel HR-MS(n) experiments provided information on the identity of binders and non-binders. Finally, the data produced with this on-line system were compared to electrochemical conversion products generated off-line. The electrochemical conversion of 1-{6-chloro-5-[(2R,5S)-4-(4-fluorobenzyl)-2,5-dimethylpiperazine-1-carbonyl]-3aH-indol-3-yl}-2-morpholinoethane-1,2-dione resulted in eight products, three of which showed bioaffinity in the continuous-flow p38α bioaffinity assay used. Electrochemical conversion of BIRB796 resulted, amongst others, in the formation of the reactive quinoneimine structure and its corresponding hydroquinone. Both products were detected in the p38α bioaffinity assay, which indicates binding to the p38α kinase.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Electroquímica/métodos , Inhibidores Enzimáticos/química , Espectrometría de Masas/métodos , Proteína Quinasa 14 Activada por Mitógenos/antagonistas & inhibidores , Sitios de Unión , Cromatografía Líquida de Alta Presión/instrumentación , Evaluación Preclínica de Medicamentos , Electroquímica/instrumentación , Inhibidores Enzimáticos/farmacología , Humanos , Cinética , Espectrometría de Masas/instrumentación , Proteína Quinasa 14 Activada por Mitógenos/química , Unión Proteica
20.
Anal Chim Acta ; 1200: 339617, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35256146

RESUMEN

Bile acids are steroid compounds involved in biological mechanisms of neurodegenerative diseases making them potential biomarkers for diagnosis or treatment. These compounds exist as structural and conformational isomers, which hinder distinguishing them in physiological processes. We aimed to develop tandem mass spectrometry-ion mobility spectrometry (MS/MS-IMS) methodologies to explore and understand the behaviour of isomeric steroids in the gas-phase and rapidly separate them. Unlike previously published ion mobility data, various isomers were investigated in mixtures to better mimic complex (pre-) clinical samples. The experimental collision cross sections (CCS)s were compared to the theoretical CCS values for an in-depth analysis of isomeric ions' behaviour in the gas-phase. Based on density-functional theory, we identified the impact of adduct positioning on the 3D conformation of enantiomers, diastereomers and structural isomers. The curling of the large side chains hedged the small differences among the isomers and lowered the CCS values. On the other hand, fragmenting off the identical side branches as well as imposing the bending of the steroid ring resulted in ion mobility differentiation. Careful data evaluation revealed the tendency of isomers to form homo-cluster in the mixture solutions and assist the separation. Our fundamental and experimental findings enable the ion mobility separation of isomeric steroids to be predicted. The introduced rapid and optimal MS/MS-IMS analytical methodology can be applied to distinguish isomeric bile acids both in a solution and potentially in patients' tissue samples, and consequently, reveal their molecular pathways.


Asunto(s)
Espectrometría de Movilidad Iónica , Espectrometría de Masas en Tándem , Humanos , Espectrometría de Movilidad Iónica/métodos , Iones/química , Isomerismo , Esteroides , Espectrometría de Masas en Tándem/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA