Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Semin Cell Dev Biol ; 143: 28-36, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35063351

RESUMEN

The biogenesis of mitochondria requires the coordinated expression of the nuclear and the mitochondrial genomes. However, the vast majority of gene products within the organelle are encoded in the nucleus, synthesized in the cytosol, and imported into mitochondria via the protein import machinery, which permit the entry of proteins to expand the mitochondrial network. Once inside, proteins undergo a maturation and folding process brought about by enzymes comprising the unfolded protein response (UPRmt). Protein import and UPRmt activity must be synchronized and matched with mtDNA-encoded subunit synthesis for proper assembly of electron transport chain complexes to avoid proteotoxicity. This review discusses the functions of the import and UPRmt systems in mammalian skeletal muscle, as well as how exercise alters the equilibrium of these pathways in a time-dependent manner, leading to a new steady state of mitochondrial content resulting in enhanced oxidative capacity and improved muscle health.


Asunto(s)
Mitocondrias , Proteínas Mitocondriales , Animales , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Respuesta de Proteína Desplegada , Adaptación Fisiológica , Mamíferos/metabolismo
2.
J Physiol ; 602(4): 569-596, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38319954

RESUMEN

Atrial fibrillation (AF) is a supraventricular tachyarrhythmia that is strongly associated with cardiovascular (CV) disease and sedentary lifestyles. Despite the benefits of exercise on overall health, AF incidence in high-level endurance athletes rivals that of CV disease patients, suggesting a J-shaped relationship with AF. To investigate the dependence of AF vulnerability on exercise, we varied daily swim durations (120, 180 or 240 min day-1 ) in 7-week-old male CD1 mice. We assessed mice after performing equivalent amounts of cumulative work during swimming (i.e. ∼700 L O2  kg-1 ), as determined from O2 consumption rates ( V ̇ O 2 ${\dot V_{{{\mathrm{O}}_2}}}$ ). The mean V ̇ O 2 ${\dot V_{{{\mathrm{O}}_2}}}$ during exercise increased progressively throughout the training period and was indistinguishable between the swim groups. Consistent with similar improvements in aerobic conditioning induced by swimming, skeletal muscle mitochondria content increased (P = 0.027) indistinguishably between exercise groups. Physiological ventricular remodelling, characterized by mild hypertrophy and left ventricular dilatation, was also similar between exercised mice without evidence of ventricular arrhythmia inducibility. By contrast, prolongation of daily swim durations caused progressive and vagal-dependent heart rate reductions (P = 0.008), as well as increased (P = 0.005) AF vulnerability. As expected, vagal inhibition prolonged (P = 0.013) atrial refractoriness, leading to reduced AF vulnerability, although still inducible in the 180 and 240 min swim groups. Accordingly, daily swim dose progressively increased atrial hypertrophy (P = 0.003), fibrosis (P < 0.001) and macrophage accumulation (P = 0.006) without differentially affecting the ventricular tissue properties. Thus, increasing daily exercise duration drives progressively adverse atrial-specific remodelling and vagal-dependent AF vulnerability despite robust and beneficial aerobic conditioning and physiological remodelling of ventricles and skeletal muscle. KEY POINTS: Previous studies have suggested that a J-shaped dose-response relationship exists between physical activity and cardiovascular health outcomes, with moderate exercise providing protection against many cardiovascular disease conditions, whereas chronic endurance exercise can promote atrial fibrillation (AF). We found that AF vulnerability increased alongside elevated atrial hypertrophy, fibrosis and inflammation as daily swim exercise durations in mice were prolonged (i.e. ≥180 min day-1 for 6 weeks). The MET-h week-1 (based on O2  measurements during swimming) needed to induce increased AF vulnerability mirrored the levels linked to AF in athletes. These adverse atria effects associated with excessive daily exercise occurred despite improved aerobic conditioning, skeletal muscle adaptation and physiological ventricular remodelling. We suggest that atrial-specific changes observed with exercise arise from excessive elevations in venous filling pressures during prolonged exercise bouts, which we argue has implications for all AF patients because elevated atrial pressures occur in most cardiovascular disease conditions as well as ageing which are linked to AF.


Asunto(s)
Fibrilación Atrial , Humanos , Masculino , Animales , Ratones , Remodelación Ventricular , Atrios Cardíacos , Fibrosis , Cardiomegalia
3.
Am J Physiol Cell Physiol ; 325(4): C862-C884, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37575060

RESUMEN

Mitochondria control cellular functions through their metabolic role. Recent research that has gained considerable attention is their ability to transfer between cells. This has the potential of improving cellular functions in pathological or energy-deficit conditions, but little is known about the role of mitochondrial transfer in sustaining cellular homeostasis. Few studies have investigated the potential of skeletal muscle as a source of healthy mitochondria that can be transferred to other cell types. Thus, we isolated intermyofibrillar mitochondria from murine skeletal muscle and incubated them with host cells. We observed dose- and time-dependent increases in mitochondrial incorporation into myoblasts. This resulted in elongated mitochondrial networks and an enhancement of bioenergetic profile of the host cells. Mitochondrial donation also rejuvenated the functional capacities of the myoblasts when respiration efficiency and lysosomal function were inhibited by complex I inhibitor rotenone and bafilomycin A, respectively. Mitochondrial transfer was accomplished via tunneling nanotubes, extracellular vesicles, gap junctions, and by macropinocytosis internalization. Murine muscle mitochondria were also effectively transferred to human fibroblast cells having mitochondrial DNA mutations, resulting in augmented mitochondrial dynamics and metabolic functions. This improved cell function by diminishing reactive oxygen species (ROS) emission in the diseased cells. Our findings suggest that mitochondria from donor skeletal muscle can be integrated in both healthy and functionally compromised host cells leading to mitochondrial structural refinement and respiratory boost. This mitochondrial trafficking and bioenergetic reprogramming to maintain and revitalize tissue homeostasis could be a useful therapeutic strategy in treating diseases.NEW & NOTEWORTHY In our study, we have shown the potential of mouse skeletal muscle intermyofibrillar mitochondria to be transplanted in myoblasts and human fibroblast cells having mitochondrial DNA mutations. This resulted in an augmentation of mitochondrial dynamics and enhancement of bioenergetic profile in the host cells. Our findings suggest that mitochondria from donor skeletal muscle can be integrated into both healthy and functionally compromised host cells leading to mitochondrial structural refinement and respiratory boost.


Asunto(s)
Mitocondrias , Músculo Esquelético , Animales , Humanos , Ratones , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Mitocondrias Musculares/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Homeostasis
4.
Am J Physiol Cell Physiol ; 325(1): C224-C242, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37273238

RESUMEN

Mitochondrial function is widely recognized as a major determinant of health, emphasizing the importance of understanding the mechanisms promoting mitochondrial quality in various tissues. Recently, the mitochondrial unfolded protein response (UPRmt) has come into focus as a modulator of mitochondrial homeostasis, particularly in stress conditions. In muscle, the necessity for activating transcription factor 4 (ATF4) and its role in regulating mitochondrial quality control (MQC) have yet to be determined. We overexpressed (OE) and knocked down ATF4 in C2C12 myoblasts, differentiated them to myotubes for 5 days, and subjected them to acute (ACA) or chronic (CCA) contractile activity. ATF4 mediated myotube formation through the regulated expression of myogenic factors, mainly Myc and myoblast determination protein 1 (MyoD), and suppressed mitochondrial biogenesis basally through peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1α). However, our data also show that ATF4 expression levels are directly related to mitochondrial fusion and dynamics, UPRmt activation, as well as lysosomal biogenesis and autophagy. Thus, ATF4 promoted enhanced mitochondrial networking, protein handling, and the capacity for clearance of dysfunctional organelles under stress conditions, despite lower levels of mitophagy flux with OE. Indeed, we found that ATF4 promoted the formation of a smaller pool of high-functioning mitochondria that are more responsive to contractile activity and have higher oxygen consumption rates and lower reactive oxygen species levels. These data provide evidence that ATF4 is both necessary and sufficient for mitochondrial quality control and adaptation during both differentiation and contractile activity, thus advancing the current understanding of ATF4 beyond its canonical functions to include the regulation of mitochondrial morphology, lysosomal biogenesis, and mitophagy in muscle cells.


Asunto(s)
Factor de Transcripción Activador 4 , Mitocondrias Musculares , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Mitocondrias/metabolismo , Mitocondrias Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Humanos , Animales , Ratones
5.
J Biol Chem ; 298(2): 101540, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34958797

RESUMEN

Persistent inactivity promotes skeletal muscle atrophy, marked by mitochondrial aberrations that affect strength, mobility, and metabolic health leading to the advancement of disease. Mitochondrial quality control (MQC) pathways include biogenesis (synthesis), mitophagy/lysosomal turnover, and the mitochondrial unfolded protein response, which serve to maintain an optimal organelle network. Tumor suppressor p53 has been implicated in regulating muscle mitochondria in response to cellular stress; however, its role in the context of muscle disuse has yet to be explored, and whether p53 is necessary for MQC remains unclear. To address this, we subjected p53 muscle-specific KO (mKO) and WT mice to unilateral denervation. Transcriptomic and pathway analyses revealed dysregulation of pathways pertaining to mitochondrial function, and especially turnover, in mKO muscle following denervation. Protein and mRNA data of the MQC pathways indicated activation of the mitochondrial unfolded protein response and mitophagy-lysosome systems along with reductions in mitochondrial biogenesis and content in WT and mKO tissue following chronic denervation. However, p53 ablation also attenuated the expression of autophagy-mitophagy machinery, reduced autophagic flux, and enhanced lysosomal dysfunction. While similar reductions in mitochondrial biogenesis and content were observed between genotypes, MQC dysregulation exacerbated mitochondrial dysfunction in mKO fibers, evidenced by elevated reactive oxygen species. Moreover, acute experiments indicate that p53 mediates the expression of transcriptional regulators of MQC pathways as early as 1 day following denervation. Together, our data illustrate exacerbated mitochondrial dysregulation with denervation stress in p53 mKO tissue, thus indicating that p53 contributes to organellar maintenance via regulation of MQC pathways during muscle atrophy.


Asunto(s)
Mitocondrias Musculares , Mitofagia , Músculo Esquelético , Proteína p53 Supresora de Tumor , Animales , Desnervación , Ratones , Mitocondrias Musculares/metabolismo , Mitofagia/fisiología , Músculo Esquelético/inervación , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
6.
Annu Rev Physiol ; 81: 19-41, 2019 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-30216742

RESUMEN

Mitochondria are critical organelles responsible for regulating the metabolic status of skeletal muscle. These organelles exhibit remarkable plasticity by adapting their volume, structure, and function in response to chronic exercise, disuse, aging, and disease. A single bout of exercise initiates signaling to provoke increases in mitochondrial biogenesis, balanced by the onset of organelle turnover carried out by the mitophagy pathway. This accelerated turnover ensures the presence of a high functioning network of mitochondria designed for optimal ATP supply, with the consequence of favoring lipid metabolism, maintaining muscle mass, and reducing apoptotic susceptibility over the longer term. Conversely, aging and disuse are associated with reductions in muscle mass that are in part attributable to dysregulation of the mitochondrial network and impaired mitochondrial function. Therefore, exercise represents a viable, nonpharmaceutical therapy with the potential to reverse and enhance the impaired mitochondrial function observed with aging and chronic muscle disuse.


Asunto(s)
Envejecimiento/fisiología , Ejercicio Físico/fisiología , Mitocondrias Musculares/fisiología , Mitocondrias/fisiología , Músculo Esquelético/fisiología , Condicionamiento Físico Animal/fisiología , Animales , Humanos , Transducción de Señal/fisiología
7.
Am J Physiol Cell Physiol ; 322(5): C913-C926, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35353634

RESUMEN

The adaptive plasticity of mitochondria within a skeletal muscle is regulated by signals converging on a myriad of regulatory networks that operate during conditions of increased (i.e., exercise) and decreased (inactivity, disuse) energy requirements. Notably, some of the initial signals that induce adaptive responses are common to both conditions, differing in their magnitude and temporal pattern, to produce vastly opposing mitochondrial phenotypes. In response to exercise, signaling to peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α (PGC-1α) and other regulators ultimately produces an abundance of high-quality mitochondria, leading to reduced mitophagy and a higher mitochondrial content. This is accompanied by the presence of an enhanced protein quality control system that consists of the protein import machinery as well chaperones and proteases termed the mitochondrial unfolded protein response (UPRmt). The UPRmt monitors intraorganelle proteostasis, and strives to maintain a mito-nuclear balance between nuclear- and mtDNA-derived gene products via retrograde signaling from the organelle to the nucleus. In addition, antioxidant capacity is improved, affording greater protection against oxidative stress. In contrast, chronic disuse conditions produce similar signaling but result in decrements in mitochondrial quality and content. Thus, the interactive cross talk of the regulatory networks that control organelle turnover during wide variations in muscle use and disuse remain incompletely understood, despite our improving knowledge of the traditional regulators of organelle content and function. This brief review acknowledges existing regulatory networks and summarizes recent discoveries of novel biological pathways involved in determining organelle biogenesis, dynamics, mitophagy, protein quality control, and antioxidant capacity, identifying ample protein targets for therapeutic intervention that determine muscle and mitochondrial health.


Asunto(s)
Antioxidantes , Músculo Esquelético , Antioxidantes/metabolismo , Mitocondrias/metabolismo , Mitocondrias Musculares/metabolismo , Proteínas Mitocondriales/metabolismo , Mitofagia/fisiología , Músculo Esquelético/metabolismo , Biogénesis de Organelos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
8.
J Physiol ; 600(7): 1683-1701, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35067920

RESUMEN

Deficits in skeletal muscle mitochondrial content and quality are observed following denervation-atrophy. This is due to alterations in the biogenesis of new mitochondria as well as their degradation via mitophagy. The regulation of autophagy and mitophagy over the course of denervation (Den) remains unknown. Further, the time-dependent changes in lysosome content, the end-stage organelle for mitophagy, remain unexplored. Here, we studied autophagic as well as mitophagic pre-lysosomal flux in subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria from rat muscle subjected to Den for 1, 3 or 7 days. We also assessed flux at 1 day post-denervation in transgenic mt-keima mice. Markers of mitochondrial content were reduced at 7 days following Den, and Den further resulted in rapid decrements in mitochondrial respiration, along with increased ROS emission. Pre-lysosomal autophagy flux was upregulated at 1 and 3 days post-Den but was reduced compared to time-matched sham-operated controls at 7 days post-Den. Similarly, pre-lysosomal mitophagy flux was enhanced in SS mitochondria as early as 1 and 3 days of Den but decreased in both SS and IMF subfractions following 7 days of Den. Lysosome protein content and transcriptional regulators TFEB and TFE3 were progressively enhanced with Den, an adaptation designed to enhance autophagic capacity. However, evidence for lysosome dysfunction was apparent by 7 days, which may limit degradation capacity. This may contribute to an inability to clear dysfunctional mitochondria and increased ROS signalling, thereby accelerating muscle atrophy. Thus, therapeutic targeting of lysosome function may help to maintain autophagy and muscle health during conditions of muscle disuse or denervation. KEY POINTS: Denervation is an experimental model of peripheral neuropathies as well as muscle disuse, and it helps us understand some aspects of the sarcopenia of ageing. Muscle disuse is associated with reduced mitochondrial content and function, leading to metabolic impairments within the tissue. Although the processes that regulate mitochondrial biogenesis are understood, those that govern mitochondrial breakdown (i.e. mitophagy) are not well characterized in this context. Autophagy and mitophagy flux, measured up to the point of the lysosome (pre-lysosomal flux rates), were increased in the early stages of denervation, along with mitochondrial dysfunction, but were reduced at later time points when the degree of muscle atrophy was highest. Denervation led to progressive increases in lysosomal proteins to accommodate mitophagy flux, yet evidence for lysosomal impairment at later stages may limit the removal of dysfunctional mitochondria, stimulate reactive oxygen species signalling, and reduce muscle health as denervation time progresses.


Asunto(s)
Mitofagia , Enfermedades del Sistema Nervioso Periférico , Animales , Autofagia/fisiología , Desnervación , Lisosomas/metabolismo , Ratones , Mitofagia/fisiología , Músculo Esquelético/fisiología , Enfermedades del Sistema Nervioso Periférico/metabolismo , Ratas
9.
Am J Physiol Cell Physiol ; 321(1): C176-C186, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34106788

RESUMEN

Maintaining mitochondrial function and dynamics is crucial for cellular health. In muscle, defects in mitochondria result in severe myopathies where accumulation of damaged mitochondria causes deterioration and dysfunction. Importantly, understanding the role of mitochondria in disease is a necessity to determine future therapeutics. One of the most common myopathies is mitochondrial encephalopathy lactic acidosis stroke-like episodes (MELAS), which has no current treatment. Recently, patients with MELAS treated with rapamycin exhibited improved clinical outcomes. However, the cellular mechanisms of rapamycin effects in patients with MELAS are currently unknown. In this study, we used cultured skin fibroblasts as a window into the mitochondrial dysfunction evident in MELAS cells, as well as to study the mechanisms of rapamycin action, compared with control, healthy individuals. We observed that mitochondria from patients were fragmented, had a threefold decline in the average speed of motility, a twofold reduced mitochondrial membrane potential, and a 1.5- to 2-fold decline in basal respiration. Despite the reduction in mitochondrial function, mitochondrial import protein Tim23 was elevated in patient cell lines. MELAS fibroblasts exhibited increased MnSOD levels and lysosomal function when compared with healthy controls. Treatment of MELAS fibroblasts with rapamycin for 24 h resulted in increased mitochondrial respiration compared with control cells, a higher lysosome content, and a greater localization of mitochondria to lysosomes. Our studies suggest that rapamycin has the potential to improve cellular health even in the presence of mtDNA defects, primarily via an increase in lysosomal content.


Asunto(s)
Fibroblastos/efectos de los fármacos , Lisosomas/efectos de los fármacos , Síndrome MELAS/genética , Mitocondrias/efectos de los fármacos , Sirolimus/farmacología , Estudios de Casos y Controles , Preescolar , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Regulación de la Expresión Génica , Humanos , Lactante , Lisosomas/metabolismo , Síndrome MELAS/tratamiento farmacológico , Síndrome MELAS/metabolismo , Síndrome MELAS/patología , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Mutación , Fosforilación Oxidativa/efectos de los fármacos , Cultivo Primario de Células , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo , Adulto Joven
10.
J Physiol ; 599(3): 803-817, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-31674658

RESUMEN

Mitochondrial health is an important mediator of cellular function across a range of tissues, and as a result contributes to whole-body vitality in health and disease. Our understanding of the regulation and function of these organelles is of great interest to scientists and clinicians across many disciplines within our healthcare system. Skeletal muscle is a useful model tissue for the study of mitochondrial adaptations because of its mass and contribution to whole body metabolism. The remarkable plasticity of mitochondria allows them to adjust their volume, structure and capacity under conditions such as exercise, which is useful or improving metabolic health in individuals with various diseases and/or advancing age. Mitochondria exist within muscle as a functional reticulum which is maintained by dynamic processes of biogenesis and fusion, and is balanced by opposing processes of fission and mitophagy. The sophisticated coordination of these events is incompletely understood, but is imperative for organelle function and essential for the maintenance of an interconnected organelle network that is finely tuned to the metabolic needs of the cell. Further elucidation of the mechanisms of mitochondrial turnover in muscle could offer potential therapeutic targets for the advancement of health and longevity among our ageing populations. As well, investigating exercise modalities that are both convenient and capable of inducing robust mitochondrial adaptations are useful in fostering more widespread global adherence. To this point, exercise remains the most potent behavioural therapeutic approach for the improvement of mitochondrial health, not only in muscle, but potentially also in other tissues.


Asunto(s)
Ejercicio Físico , Mitocondrias Musculares , Humanos , Mitocondrias , Mitocondrias Musculares/metabolismo , Mitofagia , Músculo Esquelético/metabolismo , Biogénesis de Organelos
11.
Exp Physiol ; 106(11): 2168-2176, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33998072

RESUMEN

NEW FINDINGS: What is the central question of the study? Do interindividual differences in trainability exist for morphological and molecular skeletal muscle responses to aerobic exercise training? What is the main finding and its importance? Interindividual differences in trainability were present for some, but not all, morphological and molecular outcomes included in our study. Our findings suggest that it is inappropriate, and perhaps erroneous, to assume that variability in observed responses reflects interindividual differences in trainability in skeletal muscle responses to aerobic exercise training. ABSTRACT: Studies have interpreted a wide range of morphological and molecular changes in human skeletal muscle as evidence of interindividual differences in trainability. However, these interpretations fail to account for the influence of random measurement error and within-subject variability. The purpose of the present study was to use the standard deviation of individual response (SDIR ) statistic to test the hypothesis that interindividual differences in trainability are present for some but not all skeletal muscle outcomes. Twenty-nine recreationally active males (age: 21 ± 2 years; BMI: 24 ± 3 kg/m2 ; V̇O2peak ; 45 ± 7 ml/kg/min) completed 4 weeks of continuous training (REL; n = 14) or control (n = 15). Maximal enzyme activities (citrate synthase and ß-hydroxyacyl-CoA dehydrogenase), capillary density, fibre type composition, fibre-specific succinate dehydrogenase activity and substrate storage (intramuscular triglycerides and glycogen), and markers of mitophagy (BCL2-interacting protein 3 (BNIP3), BNIP3-like protein, parkin and PTEN-induced kinase 1) were measured in vastus lateralis samples collected before and after the intervention. We also calculated SDIR values for V̇O2peak , peak work rate and the onset of blood lactate accumulation for the REL group and a separate group that exercised at the negative talk test stage. Although positive SDIR values - indicating interindividual differences in trainability - were obtained for aerobic capacity outcomes, maximal enzyme activities, capillary density, all fibre-specific outcomes and BNIP3 protein content, the remaining outcomes produced negative SDIR values indicating a large degree of random measurement error and/or within-subject variability. Our findings question the interpretation of heterogeneity in observed responses as evidence of interindividual differences in trainability and highlight the importance of including control groups when analysing individual skeletal muscle response to exercise training.


Asunto(s)
Entrenamiento Aeróbico , Adaptación Fisiológica , Adulto , Citrato (si)-Sintasa/metabolismo , Ejercicio Físico/fisiología , Glucógeno/metabolismo , Humanos , Masculino , Músculo Esquelético/fisiología , Consumo de Oxígeno/fisiología , Resistencia Física/fisiología , Adulto Joven
12.
Exerc Sport Sci Rev ; 49(2): 67-76, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33720909

RESUMEN

Exercise stimulates the biogenesis of mitochondria in muscle. Some literature supports the use of pharmaceuticals to enhance mitochondria as a substitute for exercise. We provide evidence that exercise rejuvenates mitochondrial function, thereby augmenting muscle health with age, in disease, and in the absence of cellular regulators. This illustrates the power of exercise to act as mitochondrial medicine in muscle.


Asunto(s)
Ejercicio Físico , Mitocondrias , Humanos , Músculos
13.
J Card Surg ; 36(10): 3643-3651, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34250631

RESUMEN

BACKGROUND AND AIM: Autophagy is a cytoprotective recycling mechanism, capable of digesting dysfunctional cellular components, and this process is associated with pro-survival outcomes. Autophagy may decline in the aging myocardium, thereby contributing to cardiac dysfunction. However, it remains to be established how autophagy responds to ischemia-reperfusion stress with age. METHODS: Samples from the right atrium were collected from young (≤50 years; n = 5) and aged (≥70 years; n = 11) patients before and immediately following cardioplegic arrest during coronary artery bypass grafting surgery, a model of human ischemia-reperfusion injury. RESULTS: Mitochondrial content, as assessed by a cohort of mitochondrial markers, exhibited an overall decrease in the aging myocardium (p = 0.01). In response to IR, COX-I (0.63 vs. 0.91, p = 0.01) increased in young, but not in aged patients (interaction effect p = 0.08). Reductions in LC3-I (0.48 vs. 0.28, p = 0.02) along with declines in TFEB and TFE3 (0.63 vs. 0.20, p = 0.05; 0.71 vs. 0.20, p = 0.01) were observed with age suggesting an impairment in the aged myocardium. Aged patients also displayed an inability to mount an appropriate response to IR compared to their young counterparts, specifically, increases in v-ATPase and NIX (1.06 vs 0.69, p = .01; 1.15 vs 0.69, p = .001) were not seen in the aged. CONCLUSION: Our data demonstrate a reduced cardiac mitochondrial content and a blunted mitochondrial response to ischemia with age, accompanied by a possible impairment in mitophagy. These findings support an age-associated inability of the atrial myocardium to mount appropriate adaptive responses to stress.


Asunto(s)
Daño por Reperfusión , Autofagia , Paro Cardíaco Inducido , Humanos , Mitofagia , Miocardio
14.
Int J Mol Sci ; 22(10)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34068411

RESUMEN

Periods of muscle disuse promote marked mitochondrial alterations that contribute to the impaired metabolic health and degree of atrophy in the muscle. Thus, understanding the molecular underpinnings of muscle mitochondrial decline with prolonged inactivity is of considerable interest. There are translational applications to patients subjected to limb immobilization following injury, illness-induced bed rest, neuropathies, and even microgravity. Studies in these patients, as well as on various pre-clinical rodent models have elucidated the pathways involved in mitochondrial quality control, such as mitochondrial biogenesis, mitophagy, fission and fusion, and the corresponding mitochondrial derangements that underlie the muscle atrophy that ensues from inactivity. Defective organelles display altered respiratory function concurrent with increased accumulation of reactive oxygen species, which exacerbate myofiber atrophy via degradative pathways. The preservation of muscle quality and function is critical for maintaining mobility throughout the lifespan, and for the prevention of inactivity-related diseases. Exercise training is effective in preserving muscle mass by promoting favourable mitochondrial adaptations that offset the mitochondrial dysfunction, which contributes to the declines in muscle and whole-body metabolic health. This highlights the need for further investigation of the mechanisms in which mitochondria contribute to disuse-induced atrophy, as well as the specific molecular targets that can be exploited therapeutically.


Asunto(s)
Metabolismo Energético , Mitocondrias Musculares/fisiología , Músculo Esquelético/fisiología , Atrofia Muscular/fisiopatología , Biogénesis de Organelos , Animales , Humanos
15.
Pflugers Arch ; 471(3): 431-440, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30368578

RESUMEN

Autophagy and mitophagy are important for training-inducible muscle adaptations, yet it remains unclear how these systems are regulated throughout the adaptation process. Here, we studied autophagic and mitophagic flux in the skeletal muscles of Sprague-Dawley rats (300-500 g) exposed to chronic contractile activity (CCA; 3 h/day, 9 V, 10 Hz continuous, 0.1 ms pulse duration) for 1, 2, 5, and 7 days (N = 6-8/group). In order to determine the flux rates, colchicine (COL; 0.4 mg/ml/kg) was injected 48 h before tissue collection, and we evaluated differences of autophagosomal protein abundances (LC3-II and p62) between colchicine- and saline-injected animals. We confirmed that CCA resulted in mitochondrial adaptations, including improved state 3 respiration as early as day 1 in permeabilized muscle fibers, as well significant increases in mitochondrial respiratory capacity and marker proteins in IMF mitochondria by day 7. Mitophagic and autophagic flux (LC3-II and p62) were significantly decreased in skeletal muscle following 7 days of CCA. Notably, the mitophagic system seemed to be downregulated prior (day 3-5) to changes in autophagic flux (day 7), suggesting enhanced sensitivity of mitophagy compared to autophagy with chronic muscle contraction. Although we detected no significant change in the nuclear translocation of TFEB, a regulator of lysosomal biogenesis, CCA increased total TFEB protein, as well as LAMP1, in skeletal muscle. Thus, chronic muscle activity reduces mitophagy in parallel with improved mitochondrial function, and this is supported by enhanced lysosomal degradation capacity.


Asunto(s)
Adaptación Fisiológica/fisiología , Autofagia/fisiología , Mitofagia/fisiología , Contracción Muscular/fisiología , Fibras Musculares Esqueléticas/fisiología , Animales , Lisosomas/fisiología , Masculino , Mitocondrias/fisiología , Mitocondrias Musculares/fisiología , Condicionamiento Físico Animal/fisiología , Ratas , Ratas Sprague-Dawley
16.
Arch Biochem Biophys ; 661: 66-73, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30439362

RESUMEN

Skeletal muscle mitochondria are essential in providing the energy required for locomotion. In response to contractile activity, the production of mitochondria is upregulated to meet the energy demands placed upon muscle cells. In a coordinated fashion, exercise also promotes the breakdown of dysfunctional mitochondria via mitophagy. Mitophagy is characterized by the selection of poorly functioning organelles, engulfment in an autophagosome and transport to lysosomes for degradation. In addition to the activation of mitophagy, exercise also elevates lysosome biogenesis. This coordinated increase in mitophagy targeting and lysosomal biogenesis serves to enhance the capacity for autophagosomal degradation, thereby aiding in the maintenance of mitochondrial quality. Lysosome dysfunction, as observed in lysosomal storage disorders (LSDs), negatively impacts mitochondrial function likely through the suppression of mitophagy. Since exercise is capable of activating mitophagy and lysosome biogenesis, researchers have begun to investigate physical activity as an effective therapy for LSDs. This review summarizes the current understanding of how mitophagy and lysosomal biogenesis are regulated in exercising skeletal, with potential therapeutic implications.


Asunto(s)
Autofagosomas/metabolismo , Autofagia , Enfermedades por Almacenamiento Lisosomal/metabolismo , Lisosomas/metabolismo , Mitocondrias Musculares/metabolismo , Mitofagia , Animales , Autofagosomas/patología , Humanos , Enfermedades por Almacenamiento Lisosomal/patología , Enfermedades por Almacenamiento Lisosomal/terapia , Lisosomas/patología , Mitocondrias Musculares/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología
17.
Am J Physiol Cell Physiol ; 315(4): C516-C526, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29949403

RESUMEN

The mitochondrial unfolded protein response (UPRmt) is a protein quality control mechanism that strives to achieve proteostasis in the face of misfolded proteins. Because of the reliance of mitochondria on both the nuclear and mitochondrial genomes, a perturbation of the coordination of these genomes results in a mitonuclear imbalance in which holoenzymes are unable to assume mature stoichiometry and thereby activates the UPRmt. Thus, we sought to perturb this genomic coordination by using a systemic antisense oligonucleotide (in vivo morpholino) targeted to translocase of the inner membrane channel subunit 23 (Tim23), the major channel of the inner membrane. This resulted in a 40% reduction in Tim23 protein content, a 32% decrease in matrix-destined protein import, and a trend to elevate reactive oxygen species (ROS) emission under maximal respiration conditions. This import defect activated the C/EBP homologous protein (CHOP) branch of the UPRmt, as evident from increases in caseinolytic mitochondrial matrix peptidase proteolytic subunit (ClpP) and chaperonin 10 (cpn10) but not the activating transcription factor 5 (ATF5) arm. Thus, in the face of proteotoxic stress, CHOP and ATF5 could be activated independently to regain proteostasis. Our second aim was to investigate the role of proteolytically derived peptides in mediating retrograde signaling. Peptides released from the mitochondrion following basal proteolysis were isolated and incubated with import reactions. Dose- and time-dependent effect of peptides on protein import was observed. Our data suggest that mitochondrial proteolytic byproducts exert an inhibitory effect on protein import, possibly to reduce excessive protein import as a potential negative feedback mechanism. The inhibition of import into the organelle also serves a retrograde function, possibly via ROS emission, to modify nuclear gene expression and ultimately improve folding capacity.


Asunto(s)
Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Transducción de Señal/genética , Respuesta de Proteína Desplegada/genética , Factores de Transcripción Activadores/genética , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Transporte de Proteínas/genética , Proteolisis , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción CHOP/genética
18.
Am J Physiol Cell Physiol ; 314(1): C62-C72, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29046293

RESUMEN

The mitochondrial network in muscle is controlled by the opposing processes of mitochondrial biogenesis and mitophagy. The coactivator peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) regulates biogenesis, while the transcription of mitophagy-related genes is controlled by transcription factor EB (TFEB). PGC-1α activation is induced by exercise; however, the effect of exercise on TFEB is not fully known. We investigated the interplay between PGC-1α and TFEB on mitochondria in response to acute contractile activity in C2C12 myotubes and following exercise in wild-type and PGC-1α knockout mice. TFEB nuclear localization was increased by 1.6-fold following 2 h of acute myotube contractile activity in culture, while TFEB transcription was also simultaneously increased by twofold to threefold. Viral overexpression of TFEB in myotubes increased PGC-1α and cytochrome- c oxidase-IV gene expression. In wild-type mice, TFEB translocation to the nucleus increased 2.4-fold in response to acute exercise, while TFEB transcription, assessed through the electroporation of a TFEB promoter construct, was elevated by fourfold. These exercise effects were dependent on the presence of PGC-1α. Our data indicate that acute exercise provokes TFEB expression and activation in a PGC-1α-dependent manner and suggest that TFEB, along with PGC-1α, is an important regulator of mitochondrial biogenesis in muscle as a result of exercise.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Mitocondrias Musculares/metabolismo , Contracción Muscular , Músculo Esquelético/metabolismo , Biogénesis de Organelos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Transporte Activo de Núcleo Celular , Animales , Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Línea Celular , Femenino , Masculino , Ratones , Ratones Noqueados , Mitofagia , Fibras Musculares Esqueléticas/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/deficiencia , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Condicionamiento Físico Animal , Transcripción Genética , Regulación hacia Arriba
19.
J Physiol ; 596(16): 3567-3584, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29781176

RESUMEN

KEY POINTS: A healthy mitochondrial pool is dependent on the removal of dysfunctional organelles via mitophagy, but little is known about how mitophagy is altered with ageing and chronic exercise. Chronic contractile activity (CCA) is a standardized exercise model that can elicit mitochondrial adaptations in both young and aged muscle, albeit to a lesser degree in the aged group. Assessment of mitophagy flux revealed enhanced targeting of mitochondria for degradation in aged muscle, in contrast to previous theories. Mitophagy flux was significantly reduced as an adaptation to CCA suggesting that an improvement in organelle quality reduces the need for mitochondrial turnover. CCA enhances lysosomal capacity and may ameliorate lysosomal dysfunction in aged muscle. ABSTRACT: Skeletal muscle exhibits deficits in mitochondrial quality with age. Central to the maintenance of a healthy mitochondrial pool is the removal of dysfunctional organelles via mitophagy. Little is known on how mitophagy is altered with ageing and chronic exercise. We assessed mitophagy flux using colchicine treatment in vivo following chronic contractile activity (CCA) of muscle in young and aged rats. CCA evoked mitochondrial biogenesis in young muscle, with an attenuated response in aged muscle. Mitophagy flux was higher in aged muscle and was correlated with the enhanced expression of mitophagy receptors and upstream transcriptional regulators. CCA decreased mitophagy flux in both age groups, suggesting an improvement in organelle quality. CCA also reduced the exaggerated expression of TFEB evident in aged muscle, which may be promoting the age-induced increase in lysosomal markers. Thus, aged muscle possesses an elevated drive for autophagy and mitophagy which may contribute to the decline in organelle content observed with age, but which may serve to maintain mitochondrial quality. CCA improves organelle integrity and reduces mitophagy, illustrating that chronic exercise is a modality to improve muscle quality in aged populations.


Asunto(s)
Envejecimiento , Autofagia , Lisosomas/patología , Mitocondrias Musculares/patología , Mitofagia , Contracción Muscular , Músculo Esquelético/fisiopatología , Condicionamiento Físico Animal , Animales , Biomarcadores/metabolismo , Enfermedad Crónica , Lisosomas/metabolismo , Masculino , Mitocondrias Musculares/metabolismo , Ratas , Ratas Endogámicas F344 , Transducción de Señal
20.
Am J Physiol Endocrinol Metab ; 315(3): E404-E415, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29812989

RESUMEN

The maintenance of muscle health with advancing age is dependent on mitochondrial homeostasis. While reductions in mitochondrial biogenesis have been observed with age, less is known regarding organelle degradation. Parkin is an E3 ubiquitin ligase implicated in mitophagy, but few studies have examined Parkin's contribution to mitochondrial turnover in muscle. Wild-type (WT) and Parkin knockout (KO) mice were used to delineate a role for Parkin-mediated mitochondrial degradation in aged muscle, in concurrence with exercise. Aged animals exhibited declines in muscle mass and mitochondrial content, paralleled by a nuclear environment endorsing the transcriptional repression of mitochondrial biogenesis. Mitophagic signaling was enhanced following acute endurance exercise in young WT mice but was abolished in the absence of Parkin. Basal mitophagy flux of the autophagosomal protein lipidated microtubule-associated protein 1A/1B-light chain 3 was augmented in aged animals but did not increase additionally with exercise when compared with young animals. In the absence of Parkin, exercise increased the nuclear localization of Parkin-interacting substrate, corresponding to a decrease in nuclear peroxisome proliferator gamma coactivator-1α. Remarkably, exercise enhanced mitochondrial ubiquitination in both young WT and KO animals. This suggested compensation of alternative ubiquitin ligases that were, however, unable to restore the diminished exercise-induced mitophagy in KO mice. Under basal conditions, we demonstrated that Parkin was required for mitochondrial mitofusin-2 ubiquitination. We also observed an abrogation of exercise-induced mitophagy in aged muscle. Our results demonstrate that acute exercise-induced mitophagy is dependent on Parkin and attenuated with age, which likely contributes to changes in mitochondrial content and quality in aging muscle.


Asunto(s)
Envejecimiento/fisiología , Mitofagia/genética , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/fisiología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/fisiología , Animales , Complejo IV de Transporte de Electrones/metabolismo , GTP Fosfohidrolasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Musculares/genética , Mitocondrias Musculares/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Condicionamiento Físico Animal , Proteínas Represoras/metabolismo , Ubiquitinación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA