RESUMEN
The CD4-binding site (CD4bs) is a conserved epitope on HIV-1 envelope (Env) that can be targeted by protective broadly neutralizing antibodies (bnAbs). HIV-1 vaccines have not elicited CD4bs bnAbs for many reasons, including the occlusion of CD4bs by glycans, expansion of appropriate naive B cells with immunogens, and selection of functional antibody mutations. Here, we demonstrate that immunization of macaques with a CD4bs-targeting immunogen elicits neutralizing bnAb precursors with structural and genetic features of CD4-mimicking bnAbs. Structures of the CD4bs nAb bound to HIV-1 Env demonstrated binding angles and heavy-chain interactions characteristic of all known human CD4-mimicking bnAbs. Macaque nAb were derived from variable and joining gene segments orthologous to the genes of human VH1-46-class bnAb. This vaccine study initiated in primates the B cells from which CD4bs bnAbs can derive, accomplishing the key first step in the development of an effective HIV-1 vaccine.
Asunto(s)
Vacunas contra el SIDA , VIH-1 , Animales , Humanos , Anticuerpos ampliamente neutralizantes , Antígenos CD4 , Moléculas de Adhesión Celular , VIH-1/fisiología , Macaca , Vacunas contra el SIDA/inmunologíaRESUMEN
Natural antibodies (Abs) can target host glycans on the surface of pathogens. We studied the evolution of glycan-reactive B cells of rhesus macaques and humans using glycosylated HIV-1 envelope (Env) as a model antigen. 2G12 is a broadly neutralizing Ab (bnAb) that targets a conserved glycan patch on Env of geographically diverse HIV-1 strains using a unique heavy-chain (VH) domain-swapped architecture that results in fragment antigen-binding (Fab) dimerization. Here, we describe HIV-1 Env Fab-dimerized glycan (FDG)-reactive bnAbs without VH-swapped domains from simian-human immunodeficiency virus (SHIV)-infected macaques. FDG Abs also recognized cell-surface glycans on diverse pathogens, including yeast and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike. FDG precursors were expanded by glycan-bearing immunogens in macaques and were abundant in HIV-1-naive humans. Moreover, FDG precursors were predominately mutated IgM+IgD+CD27+, thus suggesting that they originated from a pool of antigen-experienced IgM+ or marginal zone B cells.
Asunto(s)
Anticuerpos Neutralizantes/inmunología , VIH-1/inmunología , Fragmentos Fab de Inmunoglobulinas/inmunología , Polisacáridos/inmunología , SARS-CoV-2/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Animales , Linfocitos B/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , COVID-19/inmunología , Dimerización , Epítopos/inmunología , Glicosilación , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Macaca mulatta , Polisacáridos/química , Receptores de Antígenos de Linfocitos B/química , Virus de la Inmunodeficiencia de los Simios/genética , Vacunas/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genéticaRESUMEN
HIV-1 broadly neutralizing antibodies (bnAbs) are difficult to induce with vaccines but are generated in â¼50% of HIV-1-infected individuals. Understanding the molecular mechanisms of host control of bnAb induction is critical to vaccine design. Here, we performed a transcriptome analysis of blood mononuclear cells from 47 HIV-1-infected individuals who made bnAbs and 46 HIV-1-infected individuals who did not and identified in bnAb individuals upregulation of RAB11FIP5, encoding a Rab effector protein associated with recycling endosomes. Natural killer (NK) cells had the highest differential expression of RAB11FIP5, which was associated with greater dysregulation of NK cell subsets in bnAb subjects. NK cells from bnAb individuals had a more adaptive/dysfunctional phenotype and exhibited impaired degranulation and cytokine production that correlated with RAB11FIP5 transcript levels. Moreover, RAB11FIP5 overexpression modulated the function of NK cells. These data suggest that NK cells and Rab11 recycling endosomal transport are involved in regulation of HIV-1 bnAb development.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Anticuerpos Neutralizantes/inmunología , Infecciones por VIH/inmunología , Vacunas contra el SIDA/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/fisiología , Adulto , Linfocitos B/inmunología , Línea Celular , Estudios de Cohortes , Femenino , Perfilación de la Expresión Génica/métodos , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/fisiopatología , VIH-1/patogenicidad , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/fisiología , Masculino , Persona de Mediana EdadRESUMEN
Cytomegalovirus (CMV) is a leading cause of infant hearing loss and neurodevelopmental delay, but there are no clinically licensed vaccines to prevent infection, in part due to challenges eliciting neutralizing antibodies. One of the most well-studied targets for CMV vaccines is the viral fusogen glycoprotein B (gB), which is required for viral entry into host cells. Within gB, antigenic domain 2 site 1 (AD-2S1) is a target of potently neutralizing antibodies, but gB-based candidate vaccines have yet to elicit robust responses against this region. We mapped the genealogy of B cells encoding potently neutralizing anti-gB AD-2S1 antibodies from their inferred unmutated common ancestor (UCA) and characterized the binding and function of early lineage ancestors. Surprisingly, we found that a single amino acid heavy chain mutation A33N, which was an improbable mutation rarely generated by somatic hypermutation machinery, conferred broad CMV neutralization to the non-neutralizing UCA antibody. Structural studies revealed that this mutation mediated key contacts with the gB AD-2S1 epitope. Collectively, these results provide insight into potently neutralizing gB-directed antibody evolution in a single donor and lay a foundation for using this B cell-lineage directed approach for the design of next-generation CMV vaccines.
Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Infecciones por Citomegalovirus , Vacunas contra Citomegalovirus , Citomegalovirus , Humanos , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/inmunología , Citomegalovirus/genética , Citomegalovirus/inmunología , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/inmunología , Vacunas contra Citomegalovirus/uso terapéutico , Mutación , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/inmunología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunologíaRESUMEN
IMPORTANCE: Despite the advent of highly active anti-retroviral therapy, people are still dying from HIV-related causes, many of whom are children, and a protective vaccine or cure is needed to end the HIV pandemic. Understanding the nature and activation states of immune cell subsets during infection will provide insights into the immunologic milieu associated with viremia suppression that can be harnessed via therapeutic strategies to achieve a functional cure, but these are understudied in pediatric subjects. We evaluated humoral and adaptive host immunity associated with suppression of viremia in rhesus macaques infected soon after birth with a pathogenic SHIV. The results from our study provide insights into the immune cell subsets and functions associated with viremia control in young macaques that may translate to pediatric subjects for the design of future anti-viral strategies in HIV-1-infected infants and children and contribute to an understudied area of HIV-1 pathogenesis in pediatric subjects.
Asunto(s)
Animales Recién Nacidos , Modelos Animales de Enfermedad , Infecciones por VIH , Macaca mulatta , Síndrome de Inmunodeficiencia Adquirida del Simio , Viremia , Animales , Niño , Humanos , Animales Recién Nacidos/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Macaca mulatta/inmunología , Macaca mulatta/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/inmunología , Virus de la Inmunodeficiencia de los Simios/fisiología , Viremia/inmunología , Viremia/virología , VIH/inmunología , VIH/fisiologíaRESUMEN
BACKGROUND: Cellular immune responses are phenotypically and functionally perturbed during HIV-1 infection, with the majority of function restored upon antiretroviral therapy (ART). Despite ART, residual inflammation remains that can lead to HIV-related co-morbidities and mortality, indicating that ART does not fully restore normal immune cell function. Thus, understanding the dynamics of the immune cell landscape during HIV-1 infection and ART is critical to defining cellular dysfunction that occurs during HIV-1 infection and imprints during therapy. RESULTS: Here, we have applied single-cell transcriptome sequencing of peripheral blood immune cells from chronic untreated HIV-1 individuals, HIV-1-infected individuals receiving ART and HIV-1 negative individuals. We also applied single-cell transcriptome sequencing to a primary cell model of early HIV-1 infection using CD4+ T cells from healthy donors. We described changes in the transcriptome at high resolution that occurred during HIV-1 infection, and perturbations that remained during ART. We also determined transcriptional differences among T cells expressing HIV-1 transcripts that identified key regulators of HIV-1 infection that may serve as targets for future therapies to block HIV-1 infection. CONCLUSIONS: This work identified key molecular pathways that are altered in immune cells during chronic HIV-1 infection that could remain despite therapy. We also identified key genes that are upregulated during early HIV-1 infection that provide insights on the mechanism of HIV-1 infection and could be targets for future therapy.
Asunto(s)
Enfermedad Injerto contra Huésped , Infecciones por VIH , VIH-1 , Linfocitos T CD4-Positivos , Infecciones por VIH/tratamiento farmacológico , Humanos , Análisis de la Célula Individual , TranscriptomaRESUMEN
The growth rate of new HIV infections in the Philippines was the fastest of any countries in the Asia-Pacific region between 2010 and 2016. To date, HIV-1 subtyping results in the Philippines have been determined by characterizing only partial viral genome sequences. It is not known whether recombination occurs in the majority of unsequenced genome regions. Near-full-length genome (NFLG) sequences were obtained by amplifying two overlapping half genomes from plasma samples collected between 2015 and 2017 from 23 newly diagnosed infected individuals in the Philippines. Phylogenetic analysis showed that the newly characterized sequences were CRF01_AE (14), subtype B (3), CRF01/B recombinants (5) and a CRF01/CRF07/B recombinant (1). All 14 CRF01_AE formed a tight cluster, suggesting that they were derived from a single introduction. The time to the most recent common ancestor (tMRCA) for CRF01_AE in the Philippines was 1995 (1992-1998), about 10-15 years later than that of CRF01_AE in China and Thailand. All five CRF01/B recombinants showed distinct recombination patterns, suggesting ongoing recombination between the two predominant circulating viruses. The identification of partial CRF07_BC sequences in one CRF01/CRF07/B recombinant, not reported previously in the Philippines, indicated that CRF07_BC may have been recently introduced into that country from China, where CRF07_BC is prevalent. Our results show that the major epidemic strains may have shifted to an increased predominance of CRF01_AE and its recombinants, and that other genotypes such as CRF07_BC may have been introduced into the Philippines.
Asunto(s)
Infecciones por VIH/virología , VIH-1/genética , Recombinación Genética , Adulto , Genoma Viral , Genotipo , VIH-1/clasificación , VIH-1/aislamiento & purificación , Humanos , Masculino , Filipinas , Filogenia , Adulto JovenRESUMEN
BACKGROUND: Mutations rapidly accumulate in the HIV-1 genome after infection. Some of those mutations are selected by host immune responses and often cause viral fitness losses. This study is to investigate whether strongly selected mutations that are not associated with immune responses result in fitness losses. RESULTS: Strongly selected mutations were identified by analyzing 5'-half HIV-1 genome (gag/pol) sequences from longitudinal samples of subject CH0131. The K43R mutation in the gag gene was first detected at day 91 post screening and was fixed in the viral population at day 273 while the synonymous N323tc mutation was first detected at day 177 and fixed at day 670. No conventional or cryptic T cell responses were detected against either mutation sites by ELISpot analysis. However, when fitness costs of both mutations were measured by introducing each mutation into their cognate transmitted/founder (T/F) viral genome, the K43R mutation caused a significant fitness loss while the N323tc mutation had little impact on viral fitness. CONCLUSIONS: The rapid fixation, the lack of detectable immune responses and the significant fitness cost of the K43R mutation suggests that it was strongly selected by host factors other than T cell responses and neutralizing antibodies.
Asunto(s)
Anticuerpos Neutralizantes/inmunología , Linfocitos T CD8-positivos/inmunología , Genoma Viral/genética , Infecciones por VIH/inmunología , VIH-1/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Técnicas de Cultivo de Célula , Ensayo de Immunospot Ligado a Enzimas , Epítopos de Linfocito T/inmunología , Aptitud Genética/genética , Infecciones por VIH/virología , VIH-1/inmunología , Humanos , Evasión Inmune/genética , Mutación , Selección Genética/genética , Replicación Viral , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/inmunologíaRESUMEN
Defining the virus-host interactions responsible for HIV-1 transmission, including the phenotypic requirements of viruses capable of establishing de novo infections, could be important for AIDS vaccine development. Previous analyses have failed to identify phenotypic properties other than chemokine receptor 5 (CCR5) and CD4+ T-cell tropism that are preferentially associated with viral transmission. However, most of these studies were limited to examining envelope (Env) function in the context of pseudoviruses. Here, we generated infectious molecular clones of transmitted founder (TF; n = 27) and chronic control (CC; n = 14) viruses of subtypes B (n = 18) and C (n = 23) and compared their phenotypic properties in assays specifically designed to probe the earliest stages of HIV-1 infection. We found that TF virions were 1.7-fold more infectious (P = 0.049) and contained 1.9-fold more Env per particle (P = 0.048) compared with CC viruses. TF viruses were also captured by monocyte-derived dendritic cells 1.7-fold more efficiently (P = 0.035) and more readily transferred to CD4+ T cells (P = 0.025). In primary CD4+ T cells, TF and CC viruses replicated with comparable kinetics; however, when propagated in the presence of IFN-α, TF viruses replicated to higher titers than CC viruses. This difference was significant for subtype B (P = 0.000013) but not subtype C (P = 0.53) viruses, possibly reflecting demographic differences of the respective patient cohorts. Together, these data indicate that TF viruses are enriched for higher Env content, enhanced cell-free infectivity, improved dendritic cell interaction, and relative IFN-α resistance. These viral properties, which likely act in concert, should be considered in the development and testing of AIDS vaccines.
Asunto(s)
Células Dendríticas/inmunología , VIH-1/genética , Fenotipo , Proteínas del Envoltorio Viral/metabolismo , Virión/patogenicidad , Secuencia de Bases , Linfocitos T CD4-Positivos/inmunología , Clonación Molecular , Ensayo de Inmunoadsorción Enzimática , Infecciones por VIH/inmunología , Infecciones por VIH/transmisión , VIH-1/inmunología , Humanos , Modelos Lineales , Datos de Secuencia Molecular , Análisis de Secuencia de ADNRESUMEN
BACKGROUND: Fitness costs and slower disease progression are associated with a cytolytic T lymphocyte (CTL) escape mutation T242N in Gag in HIV-1-infected individuals carrying HLA-B*57/5801 alleles. However, the impact of different context in diverse HIV-1 strains on the fitness costs due to the T242N mutation has not been well characterized. To better understand the extent of fitness costs of the T242N mutation and the repair of fitness loss through compensatory amino acids, we investigated its fitness impact in different transmitted/founder (T/F) viruses. RESULTS: The T242N mutation resulted in various levels of fitness loss in four different T/F viruses. However, the fitness costs were significantly compromised by preexisting compensatory amino acids in (Isoleucine at position 247) or outside (glutamine at position 219) the CTL epitope. Moreover, the transmitted T242N escape mutant in subject CH131 was as fit as the revertant N242T mutant and the elimination of the compensatory amino acid I247 in the T/F viral genome resulted in significant fitness cost, suggesting the fitness loss caused by the T242N mutation had been fully repaired in the donor at transmission. Analysis of the global circulating HIV-1 sequences in the Los Alamos HIV Sequence Database showed a high prevalence of compensatory amino acids for the T242N mutation and other T cell escape mutations. CONCLUSIONS: Our results show that the preexisting compensatory amino acids in the majority of circulating HIV-1 strains could significantly compromise the fitness loss due to CTL escape mutations and thus increase challenges for T cell based vaccines.
Asunto(s)
VIH-1/inmunología , VIH-1/fisiología , Evasión Inmune , Mutación Missense , Linfocitos T/inmunología , Replicación Viral , Aminoácidos/genética , VIH-1/genética , Humanos , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/inmunología , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismoRESUMEN
Sexual transmission of human immunodeficiency virus type 1 (HIV-1) most often results from productive infection by a single transmitted/founder (T/F) virus, indicating a stringent mucosal bottleneck. Understanding the viral traits that overcome this bottleneck could have important implications for HIV-1 vaccine design and other prevention strategies. Most T/F viruses use CCR5 to infect target cells and some encode envelope glycoproteins (Envs) that contain fewer potential N-linked glycosylation sites and shorter V1/V2 variable loops than Envs from chronic viruses. Moreover, it has been reported that the gp120 subunits of certain transmitted Envs bind to the gut-homing integrin α4ß7, possibly enhancing virus entry and cell-to-cell spread. Here we sought to determine whether subtype C T/F viruses, which are responsible for the majority of new HIV-1 infections worldwide, share biological properties that increase their transmission fitness, including preferential α4ß7 engagement. Using single genome amplification, we generated panels of both T/F (nâ=â20) and chronic (nâ=â20) Env constructs as well as full-length T/F (nâ=â6) and chronic (nâ=â4) infectious molecular clones (IMCs). We found that T/F and chronic control Envs were indistinguishable in the efficiency with which they used CD4 and CCR5. Both groups of Envs also exhibited the same CD4+ T cell subset tropism and showed similar sensitivity to neutralization by CD4 binding site (CD4bs) antibodies. Finally, saturating concentrations of anti-α4ß7 antibodies failed to inhibit infection and replication of T/F as well as chronic control viruses, although the growth of the tissue culture-adapted strain SF162 was modestly impaired. These results indicate that the population bottleneck associated with mucosal HIV-1 acquisition is not due to the selection of T/F viruses that use α4ß7, CD4 or CCR5 more efficiently.
Asunto(s)
Antígenos CD4/metabolismo , Infecciones por VIH/transmisión , VIH-1/patogenicidad , Integrinas/metabolismo , Receptores CCR5/metabolismo , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Células Cultivadas , Clonación Molecular , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/inmunología , Proteína gp120 de Envoltorio del VIH/metabolismo , Infecciones por VIH/metabolismo , VIH-1/inmunología , VIH-1/metabolismo , Interacciones Huésped-Patógeno , Humanos , Integrinas/inmunología , Membrana Mucosa/virología , Pruebas de Neutralización , Tropismo Viral , Internalización del Virus , Replicación ViralRESUMEN
We recently demonstrated that Simian-HIV (SHIV)-infected neonate rhesus macaques (RMs) generated heterologous HIV-1 neutralizing antibodies (NAbs) with broadly-NAb (bNAb) characteristics at a higher frequency compared with their corresponding dam. Here, we characterized genetic diversity in Env sequences from four neonate or adult/dam RM pairs: in two pairs, neonate and dam RMs made heterologous HIV-1 NAbs; in one pair, neither the neonate nor the dam made heterologous HIV-1 NAbs; and in another pair, only the neonate made heterologous HIV-1 NAbs. Phylogenetic and sequence diversity analyses of longitudinal Envs revealed that a higher genetic diversity, within the host and away from the infecting SHIV strain, was correlated with heterologous HIV-1 NAb development. We identified 22 Env variable sites, of which 9 were associated with heterologous HIV-1 NAb development; 3/9 sites had mutations previously linked to HIV-1 Env bNAb development. These data suggested that viral diversity drives heterologous HIV-1 NAb development, and the faster accumulation of viral diversity in neonate RMs may be a potential mechanism underlying bNAb induction in pediatric populations. Moreover, these data may inform candidate Env immunogens to guide precursor B cells to bNAb status via vaccination by the Env-based selection of bNAb lineage members with the appropriate mutations associated with neutralization breadth.
Asunto(s)
Anticuerpos Neutralizantes , Evolución Molecular , VIH-1 , Macaca mulatta , Filogenia , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Virus de la Inmunodeficiencia de los Simios/genética , Virus de la Inmunodeficiencia de los Simios/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , VIH-1/genética , VIH-1/inmunología , VIH-1/clasificación , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Variación Genética , Animales Recién Nacidos , Anticuerpos Anti-VIH/inmunología , Anticuerpos Anti-VIH/sangre , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología , Infecciones por VIH/virologíaRESUMEN
A major goal of HIV-1 vaccine development is the induction of broadly neutralizing antibodies (bnAbs). Although success has been achieved in initiating bnAb B cell lineages, design of boosting immunogens that select for bnAb B cell receptors with improbable mutations required for bnAb affinity maturation remains difficult. Here, we demonstrate a process for designing boosting immunogens for a V3-glycan bnAb B cell lineage. The immunogens induced affinity-matured antibodies by selecting for functional improbable mutations in bnAb precursor knockin mice. Moreover, we show similar success in prime and boosting with nucleoside-modified mRNA-encoded HIV-1 envelope trimer immunogens, with improved selection by mRNA immunogens of improbable mutations required for bnAb binding to key envelope glycans. These results demonstrate the ability of both protein and mRNA prime-boost immunogens for selection of rare B cell lineage intermediates with neutralizing breadth after bnAb precursor expansion, a key proof of concept and milestone toward development of an HIV-1 vaccine.
Asunto(s)
Vacunas contra el SIDA , Anticuerpos Neutralizantes , Linfocitos B , Anticuerpos Anti-VIH , VIH-1 , Vacunas contra el SIDA/inmunología , Vacunas contra el SIDA/genética , Animales , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , VIH-1/genética , Ratones , Anticuerpos Neutralizantes/inmunología , Linfocitos B/inmunología , Humanos , Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , Anticuerpos ampliamente neutralizantes/inmunología , Mutación , Desarrollo de Vacunas , Inmunización Secundaria , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genéticaRESUMEN
Human Cytomegalovirus (HCMV) is the leading infectious congenital infection globally and the most common viral infection in transplant recipients, therefore identifying a vaccine for HCMV is a top priority. Humoral immunity is a correlate of protection for HCMV infection. The most effective vaccine tested to date, which achieved 50% reduction in acquisition of HCMV, was comprised of the glycoprotein B protein given with an oil-in-water emulsion adjuvant MF59. We characterize gB-specific monoclonal antibodies isolated from individuals vaccinated with a disabled infectious single cycle (DISC) CMV vaccine, V160, and compare these to the gB-specific monoclonal antibody repertoire isolated from naturally-infected individuals. We find that vaccination with V160 resulted in gB-specific antibodies that bound homogenously to gB expressed on the surface of a cell in contrast to antibodies isolated from natural infection which variably bound to cell-associated gB. Vaccination resulted in a similar breadth of gB-specific antibodies, with binding profile to gB genotypes 1-5 comparable to that of natural infection. Few gB-specific neutralizing antibodies were isolated from V160 vaccinees and fewer antibodies had identifiable gB antigenic domain specificity compared to that of naturally-infected individuals. We also show that glycosylation of gB residue N73 may shield binding of gB-specific antibodies.
RESUMEN
Infants and children infected with human immunodeficiency virus (HIV)-1 have been shown to develop neutralizing antibodies (nAbs) against heterologous HIV-1 strains, characteristic of broadly nAbs (bnAbs). Thus, having a neonatal model for the induction of heterologous HIV-1 nAbs may provide insights into the mechanisms of neonatal bnAb development. Here, we describe a neonatal model for heterologous HIV-1 nAb induction in pathogenic simian-HIV (SHIV)-infected rhesus macaques (RMs). Viral envelope (env) evolution showed mutations at multiple sites, including nAb epitopes. All 13 RMs generated plasma autologous HIV-1 nAbs. However, 8/13 (62%) RMs generated heterologous HIV-1 nAbs with increasing potency over time, albeit with limited breadth, and mapped to multiple nAb epitopes, suggestive of a polyclonal response. Moreover, plasma heterologous HIV-1 nAb development was associated with antigen-specific, lymph-node-derived germinal center activity. We define a neonatal model for heterologous HIV-1 nAb induction that may inform future pediatric HIV-1 vaccines for bnAb induction in infants and children.
Asunto(s)
Enfermedades Transmisibles , Infecciones por VIH , VIH-1 , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Lactante , Recién Nacido , Humanos , Niño , Macaca mulatta , Anticuerpos ampliamente neutralizantes , Anticuerpos Anti-VIH , Anticuerpos Neutralizantes , EpítoposRESUMEN
BACKGROUND: A modest change in HIV-1 fitness can have a significant impact on viral quasispecies evolution and viral pathogenesis, transmission and disease progression. To determine the impact of immune escape mutations selected by cytotoxic T lymphocytes (CTL) on viral fitness in the context of the cognate transmitted/founder (T/F) genome, we developed a new competitive fitness assay using molecular clones of T/F genomes lacking exogenous genetic markers and a highly sensitive and precise parallel allele-specific sequencing (PASS) method. RESULTS: The T/F and mutant viruses were competed in CD4+ T-cell enriched cultures, relative proportions of viruses were assayed after repeated cell-free passage, and fitness costs were estimated by mathematical modeling. Naturally occurring HLA B57-restricted mutations involving the TW10 epitope in Gag and two epitopes in Tat/Rev and Env were assessed independently and together. Compensatory mutations which restored viral replication fitness were also assessed. A principal TW10 escape mutation, T242N, led to a 42% reduction in replication fitness but V247I and G248A mutations in the same epitope restored fitness to wild-type levels. No fitness difference was observed between the T/F and a naturally selected variant carrying the early CTL escape mutation (R355K) in Env and a reversion mutation in the Tat/Rev overlapping region. CONCLUSIONS: These findings reveal a broad spectrum of fitness costs to CTL escape mutations in T/F viral genomes, similar to recent findings reported for neutralizing antibody escape mutations, and highlight the extraordinary plasticity and adaptive potential of the HIV-1 genome. Analysis of T/F genomes and their evolved progeny is a powerful approach for assessing the impact of composite mutational events on viral fitness.
Asunto(s)
Aptitud Genética , Genoma Viral , VIH-1/genética , Evasión Inmune/genética , Mutación , Replicación Viral/genética , Secuencia de Bases , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Células Cultivadas , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Efecto Fundador , VIH-1/inmunología , VIH-1/fisiología , Antígenos HLA-B/genética , Antígenos HLA-B/inmunología , Humanos , Datos de Secuencia Molecular , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/virología , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genéticaRESUMEN
PURPOSE: Ionizing radiation causes acute damage to hematopoietic and immune cells, but the long-term immunologic consequences of irradiation are poorly understood. We therefore performed a prospective study of the delayed immune effects of radiation using a rhesus macaque model. METHODS AND MATERIALS: Ten macaques received 4 Gy high-energy x-ray total body irradiation (TBI) and 6 control animals received sham irradiation. TBI caused transient lymphopenia that resolved over several weeks. Once white blood cell counts recovered, flow cytometry was used to immunophenotype the circulating adaptive immune cell populations 4, 9, and 21 months after TBI. Data were fit using a mixed-effects model to determine age-dependent, radiation-dependent, and interacting effects. T cell receptor (TCR) sequencing and quantification of TCR Excision Circles were used to determine relative contributions of thymopoiesis and peripheral expansion to T cell repopulation. Two years after TBI, the cohort was vaccinated with a 23-valent pneumococcal polysaccharide vaccine and a tetravalent influenza hemagglutinin vaccine. RESULTS: Aging, but not TBI, led to significant changes in the frequencies of dendritic cells, CD4 and CD8 T cells, and B cells. However, irradiated animals exhibited increased frequencies of central memory T cells and decreased frequencies of naïve T cells. These consequences of irradiation were time-dependent and more prolonged in the CD8 T cell population. Irradiation led to transient increases in CD8+ T cell TCR Excision Circles and had no significant effect on TCR sequence entropy, indicating T cell recovery was partially mediated by thymopoiesis. Animals that were irradiated and then vaccinated showed normal immunoglobulin G binding and influenza neutralization titers in response to the 4 protein antigens but weaker immunoglobulin G binding titers to 10 of the 23 polysaccharide antigens. CONCLUSIONS: These findings indicate that TBI causes subtle but long-lasting immune defects that are evident years after recovery from lymphopenia.
RESUMEN
Broadly neutralizing antibodies (bNAbs), known to mediate immune control of HIV-1 infection, only develop in a small subset of HIV-1 infected individuals. Despite being traditionally associated with patients with high viral loads, bNAbs have also been observed in therapy naïve HIV-1+ patients naturally controlling virus replication [Virus Controllers (VCs)]. Thus, dissecting the bNAb response in VCs will provide key information about what constitutes an effective humoral response to natural HIV-1 infection. In this study, we identified a polyclonal bNAb response to natural HIV-1 infection targeting CD4 binding site (CD4bs), V3-glycan, gp120-gp41 interface and membrane-proximal external region (MPER) epitopes on the HIV-1 envelope (Env). The polyclonal antiviral antibody (Ab) response also included antibody-dependent cellular phagocytosis of clade AE, B and C viruses, consistent with both the Fv and Fc domain contributing to function. Sequence analysis of envs from one of the VCs revealed features consistent with potential immune pressure and virus escape from V3-glycan targeting bNAbs. Epitope mapping of the polyclonal bNAb response in VCs with bNAb activity highlighted the presence of gp120-gp41 interface and CD4bs antibody classes with similar binding profiles to known potent bNAbs. Thus, these findings reveal the induction of a broad and polyfunctional humoral response in VCs in response to natural HIV-1 infection.
Asunto(s)
Anticuerpos ampliamente neutralizantes/inmunología , Antígenos CD4/inmunología , Epítopos/inmunología , Anticuerpos Anti-VIH/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Fragmentos de Péptidos/inmunología , Sobrevivientes , Viremia/inmunología , Especificidad de Anticuerpos , Sitios de Unión de Anticuerpos , Antígenos CD4/metabolismo , Recuento de Linfocito CD4 , Mapeo Epitopo , Femenino , Genes env , Antígenos HLA-B/inmunología , Humanos , Evasión Inmune , Fragmentos Fc de Inmunoglobulinas/inmunología , Fragmentos de Inmunoglobulinas/inmunología , Masculino , Modelos Moleculares , Fagocitosis , Dominios Proteicos , Proteínas Recombinantes/inmunología , Carga ViralRESUMEN
OBJECTIVE: Viral fitness plays an important role in HIV-1 evolution, transmission and pathogenesis. However, how mutations accumulated during early infection affect viral fitness has not been well studied. METHODS: Paired infectious molecular clones (IMCs) for transmitted/founder (T/F) and 6-month (6-mo) viruses post infection were generated from 10 infected individuals to investigate the impact of accumulated mutations on viral fitness by comparing 6-mo viruses to their cognate T/F viruses. RESULTS: All ten 6-mo viruses were less fit than their cognate T/F viruses. Moreover, the fitness losses of the 6-mo viruses correlated with the decrease in viral loads from the peak of viremia. CONCLUSION: These results show that the mutations accumulated during half a year post infection collectively reduce viral fitness and thereby contribute to lowering viral loads.
Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , VIH-1/genética , Humanos , Mutación , Carga Viral , Replicación ViralRESUMEN
High-throughput sequencing (HTS) has been widely used to characterize HIV-1 genome sequences. There are no algorithms currently that can directly determine genotype and quasispecies population using short HTS reads generated from long genome sequences without additional software. To establish a robust subpopulation, subtype, and recombination analysis workflow, we amplified the HIV-1 3'-half genome from plasma samples of 65 HIV-1-infected individuals and sequenced the entire amplicon (â¼4,500 bp) by HTS. With direct analysis of raw reads using HIVE-hexahedron, we showed that 48% of samples harbored 2 to 13 subpopulations. We identified various subtypes (17 A1s, 4 Bs, 27 Cs, 6 CRF02_AGs, and 11 unique recombinant forms) and defined recombinant breakpoints of 10 recombinants. These results were validated with viral genome sequences generated by single genome sequencing (SGS) or the analysis of consensus sequence of the HTS reads. The HIVE-hexahedron workflow is more sensitive and accurate than just evaluating the consensus sequence and also more cost-effective than SGS.IMPORTANCE The highly recombinogenic nature of human immunodeficiency virus type 1 (HIV-1) leads to recombination and emergence of quasispecies. It is important to reliably identify subpopulations to understand the complexity of a viral population for drug resistance surveillance and vaccine development. High-throughput sequencing (HTS) provides improved resolution over Sanger sequencing for the analysis of heterogeneous viral subpopulations. However, current methods of analysis of HTS reads are unable to fully address accurate population reconstruction. Hence, there is a dire need for a more sensitive, accurate, user-friendly, and cost-effective method to analyze viral quasispecies. For this purpose, we have improved the HIVE-hexahedron algorithm that we previously developed with in silico short sequences to analyze raw HTS short reads. The significance of this study is that our standalone algorithm enables a streamlined analysis of quasispecies, subtype, and recombination patterns from long HIV-1 genome regions without the need of additional sequence analysis tools. Distinct viral populations and recombination patterns identified by HIVE-hexahedron are further validated by comparison with sequences obtained by single genome sequencing (SGS).