Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 128(8): 080502, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35275690

RESUMEN

We demonstrate a simplified method for dissipative generation of an entangled state of two trapped-ion qubits. Our implementation produces its target state faster and with higher fidelity than previous demonstrations of dissipative entanglement generation and eliminates the need for auxiliary ions. The entangled singlet state is generated in ∼7 ms with a fidelity of 0.949(4). The dominant source of infidelity is photon scattering. We discuss this error source and strategies for its mitigation.

2.
Sci Adv ; 10(9): eadi6462, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38427733

RESUMEN

The structure and dynamics of a molecular system is governed by its potential energy surface (PES), representing the total energy as a function of the nuclear coordinates. Obtaining accurate potential energy surfaces is limited by the exponential scaling of Hilbert space, restricting quantitative predictions of experimental observables from first principles to small molecules with just a few electrons. Here, we present an explicitly physics-informed approach for improving and assessing the quality of families of PESs by modifying them through linear coordinate transformations based on experimental data. We demonstrate this "morphing" of the PES for the He - H2+ complex using recent comprehensive Feshbach resonance (FR) measurements for reference PESs at three different levels of quantum chemistry. In all cases, the positions and intensities of peaks in the energy distributions are improved. We find these observables to be mainly sensitive to the long-range part of the PES.

3.
Science ; 380(6640): 77-81, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-37023184

RESUMEN

Feshbach resonances are fundamental to interparticle interactions and become particularly important in cold collisions with atoms, ions, and molecules. In this work, we present the detection of Feshbach resonances in a benchmark system for strongly interacting and highly anisotropic collisions: molecular hydrogen ions colliding with noble gas atoms. The collisions are launched by cold Penning ionization, which exclusively populates Feshbach resonances that span both short- and long-range parts of the interaction potential. We resolved all final molecular channels in a tomographic manner using ion-electron coincidence detection. We demonstrate the nonstatistical nature of the final-state distribution. By performing quantum scattering calculations on ab initio potential energy surfaces, we show that the isolation of the Feshbach resonance pathways reveals their distinctive fingerprints in the collision outcome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA