Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
RNA ; 25(8): 1020-1037, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31110137

RESUMEN

Stable recognition of the intron branchpoint (BP) by the U2 snRNP to form the pre-spliceosome is the first ATP-dependent step of splicing. Genetic and biochemical data from yeast indicate that Cus2 aids U2 snRNA folding into the stem IIa conformation prior to pre-spliceosome formation. Cus2 must then be removed by an ATP-dependent function of Prp5 before assembly can progress. However, the location from which Cus2 is displaced and the nature of its binding to the U2 snRNP are unknown. Here, we show that Cus2 contains a conserved UHM (U2AF homology motif) that binds Hsh155, the yeast homolog of human SF3b1, through a conserved ULM (U2AF ligand motif). Mutations in either motif block binding and allow pre-spliceosome formation without ATP. A 2.0 Å resolution structure of the Hsh155 ULM in complex with the UHM of Tat-SF1, the human homolog of Cus2, and complementary binding assays show that the interaction is highly similar between yeast and humans. Furthermore, we show that Tat-SF1 can replace Cus2 function by enforcing ATP dependence of pre-spliceosome formation in yeast extracts. Cus2 is removed before pre-spliceosome formation, and both Cus2 and its Hsh155 ULM binding site are absent from available cryo-EM structure models. However, our data are consistent with the apparent location of the disordered Hsh155 ULM between the U2 stem-loop IIa and the HEAT repeats of Hsh155 that interact with Prp5. We propose a model in which Prp5 uses ATP to remove Cus2 from Hsh155 such that extended base-pairing between U2 snRNA and the intron BP can occur.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U2/química , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Secuencias de Aminoácidos , Sitios de Unión , Secuencia Conservada , Cristalografía por Rayos X , ARN Helicasas DEAD-box/metabolismo , Humanos , Modelos Moleculares , Mutación , Unión Proteica , Empalme del ARN , Proteínas de Unión al ARN/genética , Ribonucleoproteína Nuclear Pequeña U2/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
2.
J Biol Chem ; 294(8): 2892-2902, 2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30567737

RESUMEN

The transcription elongation and pre-mRNA splicing factor Tat-SF1 associates with the U2 small nuclear ribonucleoprotein (snRNP) of the spliceosome. However, the direct binding partner and underlying interactions mediating the Tat-SF1-U2 snRNP association remain unknown. Here, we identified SF3b1 as a Tat-SF1-interacting subunit of the U2 snRNP. Our 1.1 Å resolution crystal structure revealed that Tat-SF1 contains a U2AF homology motif (UHM) protein-protein interaction module. We demonstrated that Tat-SF1 preferentially and directly binds the SF3b1 subunit compared with other U2AF ligand motif (ULM)-containing splicing factors, and further established that SF3b1 association depends on the integrity of the Tat-SF1 UHM. We next compared the Tat-SF1-binding affinities for each of the five known SF3b1 ULMs and then determined the structures of representative high- and low-affinity SF3b1 ULM complexes with the Tat-SF1 UHM at 1.9 Å and 2.1 Å resolutions, respectively. These structures revealed a canonical UHM-ULM interface, comprising a Tat-SF1 binding pocket for a ULM tryptophan (SF3b1 Trp338) and electrostatic interactions with a basic ULM tail. Importantly, we found that SF3b1 regulates Tat-SF1 levels and that these two factors influence expression of overlapping representative transcripts, consistent with a functional partnership of Tat-SF1 and SF3b1. Altogether, these results define a new molecular interface of the Tat-SF1-U2 snRNP complex for gene regulation.


Asunto(s)
Fosfoproteínas/metabolismo , Precursores del ARN/metabolismo , Factores de Empalme de ARN/metabolismo , Empalme del ARN , Empalmosomas/metabolismo , Factor de Empalme U2AF/metabolismo , Transactivadores/metabolismo , Secuencia de Aminoácidos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cristalografía por Rayos X , Células HEK293 , Humanos , Ligandos , Fosfoproteínas/química , Fosfoproteínas/genética , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Precursores del ARN/genética , Factores de Empalme de ARN/química , Factores de Empalme de ARN/genética , Homología de Secuencia , Empalmosomas/genética , Factor de Empalme U2AF/química , Factor de Empalme U2AF/genética , Transactivadores/química , Transactivadores/genética
3.
Nat Commun ; 12(1): 4375, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34272366

RESUMEN

DNMDP and related compounds, or velcrins, induce complex formation between the phosphodiesterase PDE3A and the SLFN12 protein, leading to a cytotoxic response in cancer cells that express elevated levels of both proteins. The mechanisms by which velcrins induce complex formation, and how the PDE3A-SLFN12 complex causes cancer cell death, are not fully understood. Here, we show that PDE3A and SLFN12 form a heterotetramer stabilized by binding of DNMDP. Interactions between the C-terminal alpha helix of SLFN12 and residues near the active site of PDE3A are required for complex formation, and are further stabilized by interactions between SLFN12 and DNMDP. Moreover, we demonstrate that SLFN12 is an RNase, that PDE3A binding increases SLFN12 RNase activity, and that SLFN12 RNase activity is required for DNMDP response. This new mechanistic understanding will facilitate development of velcrin compounds into new cancer therapies.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/química , Péptidos y Proteínas de Señalización Intracelular/química , Piridazinas/química , Adenosina Monofosfato/química , Rastreo Diferencial de Calorimetría , Dominio Catalítico , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Microscopía por Crioelectrón , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/genética , Endorribonucleasas/química , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Cinética , Espectrometría de Masas , Complejos Multienzimáticos/ultraestructura , Mutación , Unión Proteica , Conformación Proteica en Hélice alfa , Multimerización de Proteína , Piridazinas/farmacología , Proteínas Recombinantes , Tetrahidroisoquinolinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA