Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Genomics ; 112(2): 1872-1878, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31678592

RESUMEN

Whole genome sequencing (WGS) is a widely available, inexpensive means of providing a wealth of information about an organism's diversity and evolution. However, WGS for many pathogenic bacteria remain limited because they are difficult, slow and/or dangerous to culture. To avoid culturing, metagenomic sequencing can be performed directly on samples, but the sequencing effort required to characterize low frequency organisms can be expensive. Recently developed methods for selective whole genome amplification (SWGA) can enrich target DNA to provide efficient sequencing. We amplified Coxiella burnetii (a bacterial select agent and human/livestock pathogen) from 3 three environmental samples that were overwhelmed with host DNA. The 68- to 147-fold enrichment of the bacterial sequences provided enough genome coverage for SNP analyses and phylogenetic placement. SWGA is a valuable tool for the study of difficult-to-culture organisms and has the potential to facilitate high-throughput population characterizations as well as targeted epidemiological or forensic investigations.


Asunto(s)
Coxiella burnetii/genética , Genoma Bacteriano , Metagenoma , Animales , Coxiella burnetii/clasificación , Coxiella burnetii/aislamiento & purificación , Femenino , Cabras/microbiología , Metagenómica/métodos , Leche/microbiología , Filogenia , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma/métodos
2.
Anaerobe ; 58: 53-72, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30946985

RESUMEN

Clostridioides difficile infection (CDI) is an emerging public health threat and C. difficile is the most common cause of antimicrobial-associated diarrhea worldwide and the leading cause of hospital-associated infections in the US, yet the burden of community-acquired infections (CAI) is poorly understood. Characterizing C. difficile isolated from canines is important for understanding the role that canines may play in CAI. In addition, several studies have suggested that canines carry toxigenic C. difficile asymptomatically, which may imply that there are mechanisms responsible for resistance to CDI in canines that could be exploited to help combat human CDI. To assess the virulence potential of canine-derived C. difficile, we tested whether toxins TcdA and TcdB (hereafter toxins) derived from a canine isolate were capable of causing tight junction disruptions to colonic epithelial cells. Additionally, we addressed whether major differences exist between human and canine cells regarding C. difficile pathogenicity by exposing them to identical toxins. We then examined the canine gut microbiome associated with C. difficile carriage using 16S rRNA gene sequencing and searched for deviations from homeostasis as an indicator of CDI. Finally, we queried 16S rRNA gene sequences for bacterial taxa that may be associated with resistance to CDI in canines. Clostridioides difficile isolated from a canine produced toxins that reduced tight junction integrity in both human and canine cells in vitro. However, canine guts were not dysbiotic in the presence of C. difficile. These findings support asymptomatic carriage in canines and, furthermore, suggest that there are features of the gut microbiome and/or a canine-specific immune response that may protect canines against CDI. We identified two biologically relevant bacteria that may aid in CDI resistance in canines: 1) Clostridium hiranonis, which synthesizes secondary bile acids that have been shown to provide resistance to CDI in mice; and 2) Sphingobacterium faecium, which produces sphingophospholipids that may be associated with regulating homeostasis in the canine gut. Our findings suggest that canines may be cryptic reservoirs for C. difficile and, furthermore, that mechanisms of CDI resistance in the canine gut could provide insights into targeted therapeutics for human CDI.


Asunto(s)
Biota , Clostridioides difficile/crecimiento & desarrollo , Infecciones por Clostridium/veterinaria , Enfermedades de los Perros/microbiología , Disbiosis , Tracto Gastrointestinal/microbiología , Animales , Proteínas Bacterianas/toxicidad , Toxinas Bacterianas/toxicidad , Células CACO-2 , Supervivencia Celular/efectos de los fármacos , Clostridioides difficile/patogenicidad , Infecciones por Clostridium/microbiología , Perros , Enterotoxinas/toxicidad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/microbiología , Células Epiteliales/fisiología , Humanos , Ratones , Fosfolípidos/análisis , Uniones Estrechas/efectos de los fármacos
3.
Appl Environ Microbiol ; 82(3): 954-63, 2016 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-26607593

RESUMEN

Melioidosis is a disease of humans and animals that is caused by the saprophytic bacterium Burkholderia pseudomallei. Once thought to be confined to certain locations, the known presence of B. pseudomallei is expanding as more regions of endemicity are uncovered. There is no vaccine for melioidosis, and even with antibiotic administration, the mortality rate is as high as 40% in some regions that are endemic for the infection. Despite high levels of recombination, phylogenetic reconstruction of B. pseudomallei populations using whole-genome sequencing (WGS) has revealed surprisingly robust biogeographic separation between isolates from Australia and Asia. To date, there have been no confirmed autochthonous melioidosis cases in Australia caused by an Asian isolate; likewise, no autochthonous cases in Asia have been identified as Australian in origin. Here, we used comparative genomic analysis of 455 B. pseudomallei genomes to confirm the unprecedented presence of an Asian clone, sequence type 562 (ST-562), in Darwin, northern Australia. First observed in Darwin in 2005, the incidence of melioidosis cases attributable to ST-562 infection has steadily risen, and it is now a common strain in Darwin. Intriguingly, the Australian ST-562 appears to be geographically restricted to a single locale and is genetically less diverse than other common STs from this region, indicating a recent introduction of this clone into northern Australia. Detailed genomic and epidemiological investigations of new clinical and environmental B. pseudomallei isolates in the Darwin region and ST-562 isolates from Asia will be critical for understanding the origin, distribution, and dissemination of this emerging clone in northern Australia.


Asunto(s)
Burkholderia pseudomallei/genética , Burkholderia pseudomallei/aislamiento & purificación , Genoma Bacteriano , Melioidosis/microbiología , Animales , Asia , Australia/epidemiología , ADN Bacteriano/genética , Variación Genética , Genómica/métodos , Genotipo , Humanos , Melioidosis/epidemiología , Melioidosis/transmisión , Filogenia , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
4.
BMC Microbiol ; 14: 41, 2014 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-24533573

RESUMEN

BACKGROUND: Coxiella burnetii causes Q fever in humans and Coxiellosis in animals; symptoms range from general malaise to fever, pneumonia, endocarditis and death. Livestock are a significant source of human infection as they shed C. burnetii cells in birth tissues, milk, urine and feces. Although prevalence of C. burnetii is high, few Q fever cases are reported in the U.S. and we have a limited understanding of their connectedness due to difficulties in genotyping. Here, we develop canonical SNP genotyping assays to evaluate spatial and temporal relationships among C. burnetii environmental samples and compare them across studies. Given the genotypic diversity of historical collections, we hypothesized that the current enzootic of Coxiellosis is caused by multiple circulating genotypes. We collected A) 23 milk samples from a single bovine herd, B) 134 commercial bovine and caprine milk samples from across the U.S., and C) 400 bovine and caprine samples from six milk processing plants over three years. RESULTS: We detected C. burnetii DNA in 96% of samples with no variance over time. We genotyped 88.5% of positive samples; bovine milk contained only a single genotype (ST20) and caprine milk was dominated by a second type (mostly ST8). CONCLUSIONS: The high prevalence and lack of genotypic diversity is consistent with a model of rapid spread and persistence. The segregation of genotypes between host species is indicative of species-specific adaptations or dissemination barriers and may offer insights into the relative lack of human cases and characterizing genotypes.


Asunto(s)
Coxiella burnetii/clasificación , Coxiella burnetii/genética , Variación Genética , Leche/microbiología , Tipificación Molecular/métodos , Fiebre Q/veterinaria , Animales , Bovinos , Coxiella burnetii/aislamiento & purificación , Genotipo , Cabras , Epidemiología Molecular , Prevalencia , Fiebre Q/microbiología , Estados Unidos/epidemiología
5.
Syst Biol ; 62(5): 752-62, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23736103

RESUMEN

Rooting phylogenies is critical for understanding evolution, yet the importance, intricacies and difficulties of rooting are often overlooked. For rooting, polymorphic characters among the group of interest (ingroup) must be compared to those of a relative (outgroup) that diverged before the last common ancestor (LCA) of the ingroup. Problems arise if an outgroup does not exist, is unknown, or is so distant that few characters are shared, in which case duplicated genes originating before the LCA can be used as proxy outgroups to root diverse phylogenies. Here, we describe a genome-wide expansion of this technique that can be used to solve problems at the other end of the evolutionary scale: where ingroup individuals are all very closely related to each other, but the next closest relative is very distant. We used shared orthologous single nucleotide polymorphisms (SNPs) from 10 whole genome sequences of Coxiella burnetii, the causative agent of Q fever in humans, to create a robust, but unrooted phylogeny. To maximize the number of characters informative about the rooting, we searched entire genomes for polymorphic duplicated regions where orthologs of each paralog could be identified so that the paralogs could be used to root the tree. Recent radiations, such as those of emerging pathogens, often pose rooting challenges due to a lack of ingroup variation and large genomic differences with known outgroups. Using a phylogenomic approach, we created a robust, rooted phylogeny for C. burnetii. [Coxiella burnetii; paralog SNPs; pathogen evolution; phylogeny; recent radiation; root; rooting using duplicated genes.].


Asunto(s)
Clasificación/métodos , Coxiella burnetii/clasificación , Coxiella burnetii/genética , Genómica , Filogenia , Genoma Bacteriano/genética , Genómica/normas
6.
BMC Vet Res ; 10: 107, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24885415

RESUMEN

BACKGROUND: Information about the genotypic characteristic of Coxiella burnetii from Hungary is lacking. The aim of this study is to describe the genetic diversity of C. burnetii in Hungary and compare genotypes with those found elsewhere. A total of 12 samples: (cattle, n = 6, sheep, n = 5 and human, n = 1) collected from across Hungary were studied by a 10-loci multispacer sequence typing (MST) and 6-loci multiple-locus variable-number of tandem repeat analysis (MLVA). Phylogenetic relationships among MST genotypes show how these Hungarian samples are related to others collected around the world. RESULTS: Three MST genotypes were identified: sequence type (ST) 20 has also been identified in ruminants from other European countries and the USA, ST28 was previously identified in Kazakhstan, and the proposed ST37 is novel. All MST genotypes yielded different MLVA genotypes and three different MLVA genotypes were identified within ST20 samples alone. Two novel MLVA types 0-9-5-5-6-2 (AG) and 0-8-4-5-6-2 (AF) (Ms23-Ms24-Ms27-Ms28-Ms33-Ms34) were defined in the ovine materials correlated with ST28 and ST37. Samples from different parts of the phylogenetic tree were associated with different hosts, suggesting host-specific adaptations. CONCLUSIONS: Even with the limited number of samples analysed, this study revealed high genetic diversity among C. burnetii in Hungary. Understanding the background genetic diversity will be essential in identifying and controlling outbreaks.


Asunto(s)
Enfermedades de los Bovinos/microbiología , Coxiella burnetii/genética , Genotipo , Fiebre Q/veterinaria , Enfermedades de las Ovejas/microbiología , Animales , Bovinos , Enfermedades de los Bovinos/epidemiología , Coxiella burnetii/aislamiento & purificación , Humanos , Hungría/epidemiología , Filogenia , Fiebre Q/epidemiología , Fiebre Q/microbiología , Ovinos , Enfermedades de las Ovejas/epidemiología , Especificidad de la Especie
7.
Microbiol Spectr ; 12(6): e0413923, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38651881

RESUMEN

Escherichia coli is a diverse pathogen, causing a range of disease in humans, from self-limiting diarrhea to urinary tract infections (UTIs). Uropathogenic E. coli (UPEC) is the most frequently observed uropathogen in UTIs, a common disease in high-income countries, incurring billions of dollars yearly in treatment costs. Although E. coli is easily grown and identified in the clinical laboratory, genotyping the pathogen is more complicated, yet critical for reducing the incidence of disease. These goals can be achieved through whole-genome sequencing of E. coli isolates, but this approach is relatively slow and typically requires culturing the pathogen in the laboratory. To genotype E. coli rapidly and inexpensively directly from clinical samples, including but not limited to urine, we developed and validated a multiplex amplicon sequencing assay, called ColiSeq. The assay consists of targets designed for E. coli species confirmation, high resolution genotyping, and mixture deconvolution. To demonstrate its utility, we screened the ColiSeq assay against 230 clinical urine samples collected from a hospital system in Flagstaff, Arizona, USA. A limit of detection analysis demonstrated the ability of ColiSeq to identify E. coli at a concentration of ~2 genomic equivalent (GEs)/mL and to generate high-resolution genotyping at a concentration of 1 × 105 GEs/mL. The results of this study suggest that ColiSeq could be a valuable method to understand the source of UPEC strains and guide infection mitigation efforts. As sequence-based diagnostics become accepted in the clinical laboratory, workflows such as ColiSeq will provide actionable information to improve patient outcomes.IMPORTANCEUrinary tract infections (UTIs), caused primarily by Escherichia coli, create an enormous health care burden in the United States and other high-income countries. The early detection of E. coli from clinical samples, including urine, is important to target therapy and prevent further patient complications. Additionally, understanding the source of E. coli exposure will help with future mitigation efforts. In this study, we developed, tested, and validated an amplicon sequencing assay focused on direct detection of E. coli from urine. The resulting sequence data were demonstrated to provide strain level resolution of the pathogen, not only confirming the presence of E. coli, which can focus treatment efforts, but also providing data needed for source attribution and contact tracing. This assay will generate inexpensive, rapid, and reproducible data that can be deployed by public health agencies to track, diagnose, and potentially mitigate future UTIs caused by E. coli.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Infecciones Urinarias , Humanos , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/diagnóstico , Infecciones Urinarias/microbiología , Infecciones Urinarias/diagnóstico , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/aislamiento & purificación , Escherichia coli Uropatógena/clasificación , Genotipo , Secuenciación Completa del Genoma/métodos , Técnicas de Genotipaje/métodos , Reacción en Cadena de la Polimerasa Multiplex/métodos
8.
PLoS Pathog ; 6(1): e1000725, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20090837

RESUMEN

Little is currently known about bacterial pathogen evolution and adaptation within the host during acute infection. Previous studies of Burkholderia pseudomallei, the etiologic agent of melioidosis, have shown that this opportunistic pathogen mutates rapidly both in vitro and in vivo at tandemly repeated loci, making this organism a relevant model for studying short-term evolution. In the current study, B. pseudomallei isolates cultured from multiple body sites from four Thai patients with disseminated melioidosis were subjected to fine-scale genotyping using multilocus variable-number tandem repeat analysis (MLVA). In order to understand and model the in vivo variable-number tandem repeat (VNTR) mutational process, we characterized the patterns and rates of mutations in vitro through parallel serial passage experiments of B. pseudomallei. Despite the short period of infection, substantial divergence from the putative founder genotype was observed in all four melioidosis cases. This study presents a paradigm for examining bacterial evolution over the short timescale of an acute infection. Further studies are required to determine whether the mutational process leads to phenotypic alterations that impact upon bacterial fitness in vivo. Our findings have important implications for future sampling strategies, since colonies in a single clinical sample may be genetically heterogeneous, and organisms in a culture taken late in the infective process may have undergone considerable genetic change compared with the founder inoculum.


Asunto(s)
Burkholderia pseudomallei/genética , Evolución Molecular , Genes Bacterianos/genética , Melioidosis/genética , Filogenia , Adulto , Secuencia de Bases , Electroforesis en Gel de Campo Pulsado , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Repeticiones de Minisatélite/genética , Datos de Secuencia Molecular , Mutación
9.
Microbiol Resour Announc ; 10(9)2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33664150

RESUMEN

A single-chromosome closed genome of Peptacetobacter (Clostridium) hiranonis strain DGF055142 was generated using Illumina MiSeq short reads paired with Oxford Nanopore MinION long reads. This isolate was obtained from a canine in Flagstaff, Arizona, in 2019. Peptacetobacter (C.) hiranonis was hypothesized to contribute to canine Clostridium difficile infection resistance.

10.
Microb Genom ; 5(7)2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31107202

RESUMEN

Clostridioides difficile is a ubiquitous, diarrhoeagenic pathogen often associated with healthcare-acquired infections that can cause a range of symptoms from mild, self-limiting disease to toxic megacolon and death. Since the early 2000s, a large proportion of C. difficile cases have been attributed to the ribotype 027 (RT027) lineage, which is associated with sequence type 1 (ST1) in the C. difficile multilocus sequence typing scheme. The spread of ST1 has been attributed, in part, to resistance to fluoroquinolones used to treat unrelated infections, which creates conditions ideal for C. difficile colonization and proliferation. In this study, we analysed 27 isolates from a healthcare network in northern Arizona, USA, and 1352 publicly available ST1 genomes to place locally sampled isolates into a global context. Whole genome, single nucleotide polymorphism analysis demonstrated that at least six separate introductions of ST1 were observed in healthcare facilities in northern Arizona over an 18-month sampling period. A reconstruction of transmission networks identified potential nosocomial transmission of isolates, which were only identified via whole genome sequence analysis. Antibiotic resistance heterogeneity was observed among ST1 genomes, including variability in resistance profiles among locally sampled ST1 isolates. To investigate why ST1 genomes are so common globally and in northern Arizona, we compared all high-quality C. difficile genomes and identified that ST1 genomes have gained and lost a number of genomic regions compared to all other C. difficile genomes; analyses of other toxigenic C. difficile sequence types demonstrate that this loss may be anomalous and could be related to niche specialization. These results suggest that a combination of antimicrobial resistance and gain and loss of specific genes may explain the prominent association of this sequence type with C. difficile infection cases worldwide. The degree of genetic variability in ST1 suggests that classifying all ST1 genomes into a quinolone-resistant hypervirulent clone category may not be appropriate. Whole genome sequencing of clinical C. difficile isolates provides a high-resolution surveillance strategy for monitoring persistence and transmission of C. difficile and for assessing the performance of infection prevention and control strategies.


Asunto(s)
Clostridioides difficile/aislamiento & purificación , Infecciones por Clostridium/microbiología , Infecciones por Clostridium/transmisión , Infección Hospitalaria/microbiología , Infección Hospitalaria/transmisión , Arizona , Clostridioides difficile/clasificación , Clostridioides difficile/genética , Infecciones por Clostridium/prevención & control , Infección Hospitalaria/prevención & control , ADN Bacteriano/genética , Genoma Bacteriano , Genómica , Humanos , Filogenia , Ribotipificación/métodos , Secuenciación Completa del Genoma
11.
Vector Borne Zoonotic Dis ; 16(9): 588-94, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27304166

RESUMEN

Coxiella burnetii is a gram-negative bacterium that is the etiologic agent of the zoonotic disease Q fever. Common reservoirs of C. burnetii include sheep, goats, and cattle. These animals shed C. burnetii into the environment, and humans are infected by inhalation of aerosols. A survey of 1622 environmental samples taken across the United States in 2006-2008 found that 23.8% of the samples contained C. burnetii DNA. To identify the strains circulating in the U.S. environment, DNA from these environmental samples was genotyped using an SNP-based approach to derive sequence types (ST) that are also compatible with multispacer sequence typing methods. Three different sequence types were observed in 31 samples taken from 19 locations. ST8 was associated with goats and ST20 with dairy cattle. ST16/26 was detected in locations with exposure to various animals and also in locations with no direct animal contact. Viable isolates were obtained for all three sequence types, but only the ST20 and ST16/26 isolates grew in acidified citrate cysteine medium (ACCM)-2 axenic media. Examination of a variety of isolates with different sequence types showed that ST8 and closely related isolates did not grow in ACCM-2. These results suggest that a limited number of C. burnetii sequence types are circulating in the U.S. environment and these strains have close associations with specific reservoir species. Growth in ACCM-2 may not be suitable for isolation of many C. burnetii strains.


Asunto(s)
Coxiella burnetii/genética , Coxiella burnetii/fisiología , Genotipo , Animales , ADN Bacteriano/genética , Microbiología Ambiental , Vivienda para Animales , Humanos , Estados Unidos
12.
PLoS One ; 7(3): e32866, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22438886

RESUMEN

Single nucleotide polymorphisms (SNPs) are abundant in genomes of all species and biologically informative markers extensively used across broad scientific disciplines. Newly identified SNP markers are publicly available at an ever-increasing rate due to advancements in sequencing technologies. Efficient, cost-effective SNP genotyping methods to screen sample populations are in great demand in well-equipped laboratories, but also in developing world situations. Dual Probe TaqMan assays are robust but can be cost-prohibitive and require specialized equipment. The Mismatch Amplification Mutation Assay, coupled with melt analysis (Melt-MAMA), is flexible, efficient and cost-effective. However, Melt-MAMA traditionally suffers from high rates of assay design failures and knowledge gaps on assay robustness and sensitivity. In this study, we identified strategies that improved the success of Melt-MAMA. We examined the performance of 185 Melt-MAMAs across eight different pathogens using various optimization parameters. We evaluated the effects of genome size and %GC content on assay development. When used collectively, specific strategies markedly improved the rate of successful assays at the first design attempt from ~50% to ~80%. We observed that Melt-MAMA accurately genotypes across a broad DNA range (~100 ng to ~0.1 pg). Genomic size and %GC content influence the rate of successful assay design in an independent manner. Finally, we demonstrated the versatility of these assays by the creation of a duplex Melt-MAMA real-time PCR (two SNPs) and conversion to a size-based genotyping system, which uses agarose gel electrophoresis. Melt-MAMA is comparable to Dual Probe TaqMan assays in terms of design success rate and accuracy. Although sensitivity is less robust than Dual Probe TaqMan assays, Melt-MAMA is superior in terms of cost-effectiveness, speed of development and versatility. We detail the parameters most important for the successful application of Melt-MAMA, which should prove useful to the wider scientific community.


Asunto(s)
Bacterias/genética , Técnicas Bacteriológicas , Polimorfismo de Nucleótido Simple , Alelos , Bacterias/patogenicidad , Técnicas Bacteriológicas/economía , Composición de Base , Disparidad de Par Base , Secuencia de Bases , Análisis Costo-Beneficio , Análisis Mutacional de ADN , Cartilla de ADN/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Genoma Bacteriano , Genotipo , Humanos , Modelos Genéticos , Técnicas de Amplificación de Ácido Nucleico , Desnaturalización de Ácido Nucleico , Reacción en Cadena en Tiempo Real de la Polimerasa
14.
PLoS One ; 6(11): e26201, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22073151

RESUMEN

Coxiella burnetii has the potential to cause serious disease and is highly prevalent in the environment. Despite this, epidemiological data are sparse and isolate collections are typically small, rare, and difficult to share among laboratories as this pathogen is governed by select agent rules and fastidious to culture. With the advent of whole genome sequencing, some of this knowledge gap has been overcome by the development of genotyping schemes, however many of these methods are cumbersome and not readily transferable between institutions. As comparisons of the few existing collections can dramatically increase our knowledge of the evolution and phylogeography of the species, we aimed to facilitate such comparisons by extracting SNP signatures from past genotyping efforts and then incorporated these signatures into assays that quickly and easily define genotypes and phylogenetic groups. We found 91 polymorphisms (SNPs and indels) among multispacer sequence typing (MST) loci and designed 14 SNP-based assays that could be used to type samples based on previously established phylogenetic groups. These assays are rapid, inexpensive, real-time PCR assays whose results are unambiguous. Data from these assays allowed us to assign 43 previously untyped isolates to established genotypes and genomic groups. Furthermore, genotyping results based on assays from the signatures provided here are easily transferred between institutions, readily interpreted phylogenetically and simple to adapt to new genotyping technologies.


Asunto(s)
Coxiella burnetii/clasificación , Secuencia de Bases , Coxiella burnetii/genética , Coxiella burnetii/aislamiento & purificación , Cartilla de ADN , Genes Bacterianos , Geografía , Filogenia , Polimorfismo de Nucleótido Simple
15.
PLoS Negl Trop Dis ; 5(10): e1347, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22028940

RESUMEN

Melioidosis is caused by Burkholderia pseudomallei, a Gram-negative bacillus, primarily found in soils in Southeast Asia and northern Australia. A recent case of melioidosis in non-endemic Arizona was determined to be the result of locally acquired infection, as the patient had no travel history to endemic regions and no previous history of disease. Diagnosis of the case was confirmed through multiple microbiologic and molecular techniques. To enhance the epidemiological analysis, we conducted several molecular genotyping procedures, including multi-locus sequence typing, SNP-profiling, and whole genome sequence typing. Each technique has different molecular epidemiologic advantages, all of which provided evidence that the infecting strain was most similar to those found in Southeast Asia, possibly originating in, or around, Malaysia. Advancements in new typing technologies provide genotyping resolution not previously available to public health investigators, allowing for more accurate source identification.


Asunto(s)
Burkholderia pseudomallei/clasificación , Burkholderia pseudomallei/genética , Melioidosis/diagnóstico , Melioidosis/microbiología , Tipificación Molecular , Arizona/epidemiología , Burkholderia pseudomallei/aislamiento & purificación , Análisis por Conglomerados , Genotipo , Humanos , Epidemiología Molecular , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA