Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(14): 7015-7020, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30894487

RESUMEN

Malaria and cryptosporidiosis, caused by apicomplexan parasites, remain major drivers of global child mortality. New drugs for the treatment of malaria and cryptosporidiosis, in particular, are of high priority; however, there are few chemically validated targets. The natural product cladosporin is active against blood- and liver-stage Plasmodium falciparum and Cryptosporidium parvum in cell-culture studies. Target deconvolution in P. falciparum has shown that cladosporin inhibits lysyl-tRNA synthetase (PfKRS1). Here, we report the identification of a series of selective inhibitors of apicomplexan KRSs. Following a biochemical screen, a small-molecule hit was identified and then optimized by using a structure-based approach, supported by structures of both PfKRS1 and C. parvum KRS (CpKRS). In vivo proof of concept was established in an SCID mouse model of malaria, after oral administration (ED90 = 1.5 mg/kg, once a day for 4 d). Furthermore, we successfully identified an opportunity for pathogen hopping based on the structural homology between PfKRS1 and CpKRS. This series of compounds inhibit CpKRS and C. parvum and Cryptosporidium hominis in culture, and our lead compound shows oral efficacy in two cryptosporidiosis mouse models. X-ray crystallography and molecular dynamics simulations have provided a model to rationalize the selectivity of our compounds for PfKRS1 and CpKRS vs. (human) HsKRS. Our work validates apicomplexan KRSs as promising targets for the development of drugs for malaria and cryptosporidiosis.


Asunto(s)
Criptosporidiosis , Cryptosporidium parvum/enzimología , Inhibidores Enzimáticos/farmacología , Lisina-ARNt Ligasa/antagonistas & inhibidores , Malaria Falciparum , Plasmodium falciparum/enzimología , Proteínas Protozoarias/antagonistas & inhibidores , Animales , Criptosporidiosis/tratamiento farmacológico , Criptosporidiosis/enzimología , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/química , Humanos , Lisina-ARNt Ligasa/metabolismo , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/enzimología , Ratones SCID , Proteínas Protozoarias/metabolismo
2.
Biochemistry ; 58(17): 2250-2259, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30946781

RESUMEN

Signaling pathways that involve diatomic gases in photosynthetic organisms are not well understood. Exposure to nitric oxide or carbon monoxide is known to elicit certain responses in some photosynthetic organisms. For example, Chlamydomonas reinhardtii grown in low-iron media responds to exogenous carbon monoxide by increasing cell growth and intracellular chlorophyll levels. Here, we characterize Cyg11, a gas-responsive soluble guanylate cyclase from the eukaryotic green alga C. reinhardtii that converts GTP to cGMP. Cyg11 transcription is upregulated when C. reinhardtii is grown in iron-limited media, suggesting its importance in nutrient-limited environments. Cyg11 is purified as a homodimer and is activated by nitric oxide (2.5-fold over basal activity) and carbon monoxide (6.3-fold). The heme binding stoichiometry of Cyg11 was found to be one heme per homodimer, an unexpected result based on the sequence and oligomerization state of the enzyme. Gas binding properties, the kinetics of gas binding, and the ligand-modulated activity of Cyg11 are consistent with CO as the relevant physiological ligand.


Asunto(s)
Proteínas Algáceas/metabolismo , Monóxido de Carbono/metabolismo , Chlamydomonas reinhardtii/enzimología , Guanilil Ciclasa Soluble/metabolismo , Proteínas Algáceas/química , Proteínas Algáceas/genética , Dióxido de Carbono/metabolismo , Chlamydomonas reinhardtii/genética , Hemo/química , Hemo/metabolismo , Cinética , Óxido Nítrico/metabolismo , Unión Proteica , Multimerización de Proteína , Transducción de Señal , Guanilil Ciclasa Soluble/química , Guanilil Ciclasa Soluble/genética , Regulación hacia Arriba
3.
Nitric Oxide ; 77: 65-74, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29704567

RESUMEN

Soluble guanylate cyclase (sGC) is responsible for transducing the gaseous signaling molecule nitric oxide (NO) into the ubiquitous secondary signaling messenger cyclic guanosine monophosphate in eukaryotic organisms. sGC is exquisitely tuned to respond to low levels of NO, allowing cells to respond to non-toxic levels of NO. In this review, the structure of sGC is discussed in the context of sGC activation and deactivation. The sequence of events in the activation pathway are described into a comprehensive model of in vivo sGC activation as elucidated both from studies with purified enzyme and those done in cells. This model is then used to discuss the deactivation of sGC, as well as the molecular mechanisms of pathophysiological deactivation.


Asunto(s)
Guanilil Ciclasa Soluble/metabolismo , Animales , Activación Enzimática , Humanos , Óxido Nítrico/metabolismo , Transducción de Señal
4.
Soft Matter ; 12(35): 7364-71, 2016 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-27510092

RESUMEN

Giant unilamellar vesicles are a powerful and common tool employed in biophysical studies of lipid membranes. Here we evaluate a recently introduced method of vesicle formation, "continuous droplet interface crossing encapsulation" (cDICE). This method produces monodisperse giant unilamellar vesicles of controlled sizes and high encapsulation efficiencies, using readily available instrumentation. We find that mixtures of phospholipids within vesicle membranes produced by cDICE undergo phase separation at the same characteristic temperatures as lipids in vesicles formed by a complementary technique. We find that the cDICE method is effective both when vesicles are produced from charged lipids and when the surrounding buffer contains a high concentration of salt. A shortcoming of the technique is that cholesterol is not substantially incorporated into vesicle membranes.


Asunto(s)
Lípidos/química , Liposomas Unilamelares , Colesterol , Iones , Temperatura
5.
Elife ; 82019 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-31566566

RESUMEN

Soluble guanylate cyclase (sGC) is the primary receptor for nitric oxide (NO) in mammalian nitric oxide signaling. We determined structures of full-length Manduca sexta sGC in both inactive and active states using cryo-electron microscopy. NO and the sGC-specific stimulator YC-1 induce a 71° rotation of the heme-binding ß H-NOX and PAS domains. Repositioning of the ß H-NOX domain leads to a straightening of the coiled-coil domains, which, in turn, use the motion to move the catalytic domains into an active conformation. YC-1 binds directly between the ß H-NOX domain and the two CC domains. The structural elongation of the particle observed in cryo-EM was corroborated in solution using small angle X-ray scattering (SAXS). These structures delineate the endpoints of the allosteric transition responsible for the major cyclic GMP-dependent physiological effects of NO.


Asunto(s)
Microscopía por Crioelectrón , Manduca/enzimología , Guanilil Ciclasa Soluble/ultraestructura , Regulación Alostérica , Animales , Indazoles/metabolismo , Óxido Nítrico/metabolismo , Conformación Proteica
6.
ACS Infect Dis ; 3(1): 34-44, 2017 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-27798837

RESUMEN

Plasmodium falciparum (Pf) prolyl-tRNA synthetase (ProRS) is one of the few chemical-genetically validated drug targets for malaria, yet highly selective inhibitors have not been described. In this paper, approximately 40,000 compounds were screened to identify compounds that selectively inhibit PfProRS enzyme activity versus Homo sapiens (Hs) ProRS. X-ray crystallography structures were solved for apo, as well as substrate- and inhibitor-bound forms of PfProRS. We identified two new inhibitors of PfProRS that bind outside the active site. These two allosteric inhibitors showed >100 times specificity for PfProRS compared to HsProRS, demonstrating this class of compounds could overcome the toxicity related to HsProRS inhibition by halofuginone and its analogues. Initial medicinal chemistry was performed on one of the two compounds, guided by the cocrystallography of the compound with PfProRS, and the results can instruct future medicinal chemistry work to optimize these promising new leads for drug development against malaria.


Asunto(s)
Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Antimaláricos/farmacología , Inhibidores Enzimáticos/farmacología , Plasmodium falciparum/enzimología , Sitios de Unión , Clonación Molecular , Descubrimiento de Drogas , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Modelos Moleculares , Plasmodium falciparum/efectos de los fármacos , Conformación Proteica , Bibliotecas de Moléculas Pequeñas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA