Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Appl Clin Med Phys ; 20(6): 45-52, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31081175

RESUMEN

Computed tomography (CT) data are required to calculate the dose distribution in a patient's body. Generally, there are two CT number calibration methods for commercial radiotherapy treatment planning system (RTPS), namely CT number-relative electron density calibration (CT-RED calibration) and CT number-mass density calibration (CT-MD calibration). In a previous study, the tolerance levels of CT-RED calibration were established for each tissue type. The tolerance levels were established when the relative dose error to local dose reached 2%. However, the tolerance levels of CT-MD calibration are not established yet. We established the tolerance levels of CT-MD calibration based on the tolerance levels of CT-RED calibration. In order to convert mass density (MD) to relative electron density (RED), the conversion factors were determined with adult reference computational phantom data available in the International Commission on Radiological Protection publication 110 (ICRP-110). In order to validate the practicability of the conversion factor, the relative dose error and the dose linearity were validated with multiple RTPSes and dose calculation algorithms for two groups, namely, CT-RED calibration and CT-MD calibration. The tolerance levels of CT-MD calibration were determined from the tolerance levels of CT-RED calibration with conversion factors. The converted RED from MD was compared with actual RED calculated from ICRP-110. The conversion error was within ±0.01 for most standard organs. It was assumed that the conversion error was sufficiently small. The relative dose error difference for two groups was less than 0.3% for each tissue type. Therefore, the tolerance levels for CT-MD calibration were determined from the tolerance levels of CT-RED calibration with the conversion factors. The MD tolerance levels for lung, adipose/muscle, and cartilage/spongy-bone corresponded to ±0.044, ±0.022, and ±0.045 g/cm3 , respectively. The tolerance levels were useful in terms of approving the CT-MD calibration table for clinical use.


Asunto(s)
Algoritmos , Fantasmas de Imagen , Fotones/uso terapéutico , Protección Radiológica , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Calibración , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Órganos en Riesgo/efectos de la radiación , Dosificación Radioterapéutica
2.
Rep Pract Oncol Radiother ; 24(2): 233-238, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30858767

RESUMEN

The purpose of this study was to investigate the effect of image quality under various imaging parameters (60, 70, 80, 90, 100, 110, and 120 kV at 200 mA and 10 ms/63, 80, 100, 160, 200, 250, and 320 mA at 120 kV and 10 ms) and the diameter of the fiducial marker (0.25, 0.50, 0.75, and 1.10 mm) on the correlation modeling error for dynamic tumor tracking (DTT) in the Vero4DRT system. Each fiducial marker was inserted into the center of the 30 × 30 × 10 cm3 water-equivalent phantom. A programmable respiratory motion table was used to simulate breathing-induced organ motion, with an amplitude of ±20 mm and a breathing cycle of 4 s. The correlation modeling error was calculated from the absolute difference between the detected and predicted target positions in the cranio-caudal direction. The image contrast of the fiducial marker was enhanced with increasing kV and mA. Increasing the diameter of the fiducial marker also enhanced the image contrast. Correlation-modeling error does not depend on the image quality and fiducial marker diameter. A lower kV setting did not generate a 4D model due to poor image contrast. All fiducial marker diameters were identified as good candidates for DTT in the Vero4DRT system.

3.
J Appl Clin Med Phys ; 19(1): 271-275, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29152898

RESUMEN

The accuracy of computed tomography number to electron density (CT-ED) calibration is a key component for dose calculations in an inhomogeneous medium. In a previous work, it was shown that the tolerance levels of CT-ED calibration became stricter with an increase in tissue thickness and decrease in the effective energy of a photon beam. For the last decade, a low effective energy photon beam (e.g., flattening-filter-free (FFF)) has been used in clinical sites. However, its tolerance level has not been established yet. We established a relative electron density (ED) tolerance level for each tissue type with an FFF beam. The tolerance levels were calculated using the tissue maximum ratio (TMR) and each corresponding maximum tissue thickness. To determine the relative ED tolerance level, TMR data from a Varian accelerator and the adult reference computational phantom data in the International Commission on Radiological Protection publication 110 (ICRP-110 phantom) were used in this study. The 52 tissue components of the ICRP-110 phantom were classified by mass density as five tissues groups including lung, adipose/muscle, cartilage/spongy-bone, cortical bone, and tooth tissue. In addition, the relative ED tolerance level of each tissue group was calculated when the relative dose error to local dose reached 2%. The relative ED tolerances of a 6 MVFFF beam for lung, adipose/muscle, and cartilage/spongy-bone were ±0.044, ±0.022, and ±0.044, respectively. The thicknesses of the cortical bone and tooth groups were too small to define the tolerance levels. Because the tolerance levels of CT-ED calibration are stricter with a decrease in the effective energy of the photon beam, the tolerance levels are determined by the lowest effective energy in useable beams for radiotherapy treatment planning systems.


Asunto(s)
Algoritmos , Electrones , Neoplasias/radioterapia , Fantasmas de Imagen , Fotones , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Calibración , Humanos , Neoplasias/diagnóstico por imagen , Aceleradores de Partículas , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos
4.
Rep Pract Oncol Radiother ; 23(3): 183-188, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29760592

RESUMEN

PURPOSE: The purpose of this study was to verify whether the dynamic tumor tracking (DTT) feature of a Vero4DRT system performs with 10-mm-long and 0.28 mm diameter gold anchor markers. METHODS: Gold anchor markers with a length of 10 mm and a diameter of 0.28 mm were used. Gold anchor markers were injected with short and long types into bolus material. These markers were sandwiched by a Tough Water (TW) phantom in the bolus material. For the investigation of 4-dimensional (4D) modeling feasibility under various phantom thicknesses, the TW phantom was added at 2 cm intervals (in upper and lower each by 1 cm). A programmable respiratory motion table was used to simulate breathing-induced organ motion, with an amplitude of 30 mm and a breathing cycle of 3 s. X-ray imaging parameters of 80 kV and 125 kV (320 mA and 5 ms) were used. The least detection error of the fiducial marker was defined as the 4D-modeling limitation. RESULTS: The 4D modeling process was attempted using short and long marker types and its limitation with the short and long types was with phantom thicknesses of 6 and 10 cm at 80 kV and 125 kV, respectively. However, the loss in detectability of the gold anchor because of 4D-modeling errors was found to be approximately 6% (2/31) with a phantom thickness of 2 cm under 125 kV. 4D-modeling could be performed except under the described conditions. CONCLUSIONS: This work showed that a 10-mm-long gold anchor marker in short and long types can be used with DTT for short water equivalent path length site, such as lung cancer patients, in the Vero4DRT system.

5.
J Appl Clin Med Phys ; 18(1): 49-52, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28291928

RESUMEN

To perform dynamic tumor tracking (DTT) for clinical applications safely and accurately, gimbaled head swing verification is important. We propose a quantitative gimbaled head swing verification method for daily quality assurance (QA), which uses feature point tracking and a web camera. The web camera was placed on a couch at the same position for every gimbaled head swing verification, and could move based on a determined input function (sinusoidal patterns; amplitude: ± 20 mm; cycle: 3 s) in the pan and tilt directions at isocenter plane. Two continuous images were then analyzed for each feature point using the pyramidal Lucas-Kanade (LK) method, which is an optical flow estimation algorithm. We used a tapped hole as a feature point of the gimbaled head. The period and amplitude were analyzed to acquire a quantitative gimbaled head swing value for daily QA. The mean ± SD of the period were 3.00 ± 0.03 (range: 3.00-3.07) s and 3.00 ± 0.02 (range: 3.00-3.07) s in the pan and tilt directions, respectively. The mean ± SD of the relative displacement were 19.7 ± 0.08 (range: 19.6-19.8) mm and 18.9 ± 0.2 (range: 18.4-19.5) mm in the pan and tilt directions, respectively. The gimbaled head swing was reliable for DTT. We propose a quantitative gimbaled head swing verification method for daily QA using the feature point tracking method and a web camera. Our method can quantitatively assess the gimbaled head swing for daily QA from baseline values, measured at the time of acceptance and commissioning.


Asunto(s)
Imagenología Tridimensional/instrumentación , Neoplasias/diagnóstico por imagen , Neoplasias/radioterapia , Fantasmas de Imagen , Garantía de la Calidad de Atención de Salud/normas , Radioterapia Guiada por Imagen/instrumentación , Tomografía Computarizada por Rayos X/instrumentación , Diseño de Equipo , Marcadores Fiduciales , Cabeza/fisiología , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Rayos Infrarrojos , Movimiento , Reconocimiento de Normas Patrones Automatizadas , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos
6.
J Appl Clin Med Phys ; 17(6): 312-322, 2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27929504

RESUMEN

Radiochromic films are important tools for assessing complex dose distributions. Gafchromic EBT-XD films have been designed for optimal performance in the 40-4,000 cGy dose range. We investigated the dosimetric characteristics of these films, including their dose-response, postexposure density growth, and dependence on scanner orientation, beam energy, and dose rate with applications to high-dose volumetric-modulated arc therapy (VMAT) verification. A 10 MV beam from a TrueBeam STx linear accelerator was used to irradiate the films with doses in the 0-4,000 cGy range. Postexposure coloration was analyzed at postirradiation times ranging from several minutes to 48 h. The films were also irradiated with 6 MV (dose rate (DR): 600 MU/min), 6 MV flattening filter-free (FFF) (DR: 1,400 MU/ min), and 10 MV FFF (DR: 2,400 MU/min) beams to determine the energy and dose-rate dependence. For clinical examinations, we compared the dose distribu-tion measured with EBT-XD films and calculated by the planning system for four VMAT cases. The red channel of the EBT-XD film exhibited a wider dynamic range than the green and blue channels. Scanner orientation yielded a variation of ~ 3% in the net optical density (OD). The difference between the film front and back scan orientations was negligible, with variation of ~ 1.3% in the net OD. The net OD increased sharply within the first 6 hrs after irradiation and gradually afterwards. No significant difference was observed for the beam energy and dose rate, with a variation of ~ 1.5% in the net OD. The gamma passing rates (at 3%, 3 mm) between the film- measured and treatment planning system (TPS)-calculated dose distributions under a high dose VMAT plan in the absolute dose mode were more than 98.9%.


Asunto(s)
Dosimetría por Película/instrumentación , Dosimetría por Película/métodos , Neoplasias/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/instrumentación , Calibración , Humanos , Aceleradores de Partículas , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA