Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 98(1): e0179123, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38168672

RESUMEN

In the United States (US), biosafety and biosecurity oversight of research on viruses is being reappraised. Safety in virology research is paramount and oversight frameworks should be reviewed periodically. Changes should be made with care, however, to avoid impeding science that is essential for rapidly reducing and responding to pandemic threats as well as addressing more common challenges caused by infectious diseases. Decades of research uniquely positioned the US to be able to respond to the COVID-19 crisis with astounding speed, delivering life-saving vaccines within a year of identifying the virus. We should embolden and empower this strength, which is a vital part of protecting the health, economy, and security of US citizens. Herein, we offer our perspectives on priorities for revised rules governing virology research in the US.


Asunto(s)
Investigación Biomédica , Contención de Riesgos Biológicos , Virología , Humanos , COVID-19 , Estados Unidos , Virus , Investigación Biomédica/normas
2.
J Infect Dis ; 230(2): 382-393, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38581432

RESUMEN

BACKGROUND: With coronavirus disease 2019 (COVID-19) vaccination no longer mandated by many businesses/organizations, it is now up to individuals to decide whether to get any new boosters/updated vaccines going forward. METHODS: We developed a Markov model representing the potential clinical/economic outcomes from an individual perspective in the United States of getting versus not getting an annual COVID-19 vaccine. RESULTS: For an 18-49 year old, getting vaccinated at its current price ($60) can save the individual on average $30-$603 if the individual is uninsured and $4-$437 if the individual has private insurance, as long as the starting vaccine efficacy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is ≥50% and the weekly risk of getting infected is ≥0.2%, corresponding to an individual interacting with 9 other people in a day under Winter 2023-2024 Omicron SARS-CoV-2 variant conditions with an average infection prevalence of 10%. For a 50-64 year old, these cost-savings increase to $111-$1278 and $119-$1706 for someone without and with insurance, respectively. The risk threshold increases to ≥0.4% (interacting with 19 people/day), when the individual has 13.4% preexisting protection against infection (eg, vaccinated 9 months earlier). CONCLUSIONS: There is both clinical and economic incentive for the individual to continue to get vaccinated against COVID-19 each year.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Análisis Costo-Beneficio , Cadenas de Markov , SARS-CoV-2 , Vacunación , Humanos , COVID-19/prevención & control , COVID-19/economía , COVID-19/epidemiología , Vacunas contra la COVID-19/economía , Vacunas contra la COVID-19/administración & dosificación , Persona de Mediana Edad , Adulto , Adolescente , SARS-CoV-2/inmunología , Vacunación/economía , Adulto Joven , Estados Unidos/epidemiología , Masculino , Femenino
3.
Mol Med ; 30(1): 37, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491420

RESUMEN

My scientific life in translational medicine runs in two parallel, yet often converging paths. The first, is four-decade-long commitment to develop new vaccines for parasitic and neglected tropical diseases, as well as pandemic threats. This includes a vaccine for human hookworm infection that I began as an MD-PhD student in New York City in the 1980s, and a new low-cost COVID vaccine that reached almost 100 million people in low- and middle-income countries. Alongside this life in scientific research, is one in public engagement for vaccine and neglected disease diplomacy to ensure that people who live in extreme poverty can benefit from access to biomedical innovations. A troubling element has been the daunting task of countering rising antivaccine activism, which threatens to undermine our global vaccine ecosystem. Yet, this activity may turn out to become just as important for saving lives as developing new vaccines.


Asunto(s)
Vacunas contra la COVID-19 , Infecciones por Uncinaria , Niño , Humanos , Salud Infantil , Salud Global , Infecciones por Uncinaria/prevención & control , Vacunas Sintéticas
4.
Protein Expr Purif ; 218: 106458, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38423156

RESUMEN

Trypanosoma cruzi is the causative agent of Chagas disease, a global public health problem. New therapeutic drugs and biologics are needed. The TSA-1 recombinant protein of T. cruzi is one such promising antigen for developing a therapeutic vaccine. However, it is overexpressed in E. coli as inclusion bodies, requiring an additional refolding step. As an alternative, in this study, we propose the endogenous cysteine protease inhibitor chagasin as a molecular scaffold to generate chimeric proteins. These proteins will contain combinations of two of the five conserved epitopes (E1 to E5) of TSA-1 in the L4 and L6 chagasin loops. Twenty chimeras (Q1-Q20) were designed, and their solubility was predicted using bioinformatics tools. Nine chimeras with different degrees of solubility were selected and expressed in E. coli BL21 (DE3). Western blot assays with anti-6x-His and anti-chagasin antibodies confirmed the expression of soluble recombinant chimeras. Both theoretically and experimentally, the Q12 (E5-E3) chimera was the most soluble, and the Q20 (E4-E5) the most insoluble protein. Q4 (E5-E1) and Q8 (E5-E2) chimeras were classified as proteins with medium solubility that exhibited the highest yield in the soluble fraction. Notably, Q4 has a yield of 239 mg/L, well above the yield of recombinant chagasin (16.5 mg/L) expressed in a soluble form. The expression of the Q4 chimera was scaled up to a 7 L fermenter obtaining a yield of 490 mg/L. These data show that chagasin can serve as a molecular scaffold for the expression of TSA-1 epitopes in the form of soluble chimeras.


Asunto(s)
Proteínas de la Membrana , Trypanosoma cruzi , Trypanosoma cruzi/genética , Cisteína Endopeptidasas/metabolismo , Epítopos/genética , Epítopos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
6.
Am J Trop Med Hyg ; 110(3): 457-459, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38350146

RESUMEN

The amounts of parasite DNA in soil samples from different playgrounds and other public areas can help identify areas of possible microbe transmission and give indications of the possible occurrence of parasite infection in nearby communities. We collected 207 soil samples from parks in Paiute indigenous tribal areas in southwestern Utah and from the higher income city of St. George, Utah, and tested them for 11 parasites that can cause human disease. Molecular tests revealed an elevated odds ratio (OR) of 3.072 (range, 1.114-8.065) for detecting the helminth Trichuris trichiura and an elevated OR of 3.036 (range, 1.101-7.966) for any protozoa (not including Acanthamoeba) in the tribal land playgrounds compared with St. George parks. These findings support previous studies showing that areas in lower socioeconomic communities, especially marginalized communities, tend to have more parasites in the soil, which may lead to higher disease prevalence rates.


Asunto(s)
Helmintos , Parásitos , Animales , Humanos , Parásitos/genética , Suelo/parasitología , Prevalencia , Ambiente , Heces/parasitología
7.
Am J Trop Med Hyg ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043177

RESUMEN

Parasites are generally associated with lower income countries in tropical and subtropical areas. Still, they are also prevalent in low-income communities in the southern United States. Studies characterizing the epidemiology of parasites in the United States are limited, resulting in little comprehensive understanding of the problem. This study investigated the environmental contamination of parasites in the southern United States by determining each parasite's contamination rate and burden in five low-income communities. A total of 499 soil samples of approximately 50 g were collected from public parks and private residences in Alabama, Louisiana, Mississippi, South Carolina, and Texas. A technique using parasite floatation, filtration, and bead-beating was applied to dirt samples to concentrate and extract parasite DNA from samples and detected via multiparallel quantitative polymerase chain reaction (qPCR). qPCR detected total sample contamination of Blastocystis spp. (19.03%), Toxocara cati (6.01%), Toxocara canis (3.61%), Strongyloides stercoralis (2.00%), Trichuris trichiura (1.80%), Ancylostoma duodenale (1.42%), Giardia intestinalis (1.40%), Cryptosporidium spp. (1.01%), Entamoeba histolytica (0.20%), and Necator americanus (0.20%). The remaining samples had no parasitic contamination. Overall parasite contamination rates varied significantly between communities: western Mississippi (46.88%), southwestern Alabama (39.62%), northeastern Louisiana (27.93%), southwestern South Carolina (27.93%), and south Texas (6.93%) (P <0.0001). T. cati DNA burdens were more significant in communities with higher poverty rates, including northeastern Louisiana (50.57%) and western Mississippi (49.60%) compared with southwestern Alabama (30.05%) and southwestern South Carolina (25.01%) (P = 0.0011). This study demonstrates the environmental contamination of parasites and their relationship with high poverty rates in communities in the southern United States.

8.
EClinicalMedicine ; 68: 102369, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38545093

RESUMEN

Background: With efforts underway to develop a universal coronavirus vaccine, otherwise known as a pan-coronavirus vaccine, this is the time to offer potential funders, researchers, and manufacturers guidance on the potential value of such a vaccine and how this value may change with differing vaccine and vaccination characteristics. Methods: Using a computational model representing the United States (U.S.) population, the spread of SARS-CoV-2 and the various clinical and economic outcomes of COVID-19 such as hospitalisations, deaths, quality-adjusted life years (QALYs) lost, productivity losses, direct medical costs, and total societal costs, we explored the impact of a universal vaccine under different circumstances. We developed and populated this model using data reported by the CDC as well as observational studies conducted during the COVID-19 pandemic. Findings: A pan-coronavirus vaccine would be cost saving in the U.S. as a standalone intervention as long as its vaccine efficacy is ≥10% and vaccination coverage is ≥10%. Every 1% increase in efficacy between 10% and 50% could avert an additional 395,000 infections and save $1.0 billion in total societal costs ($45.3 million in productivity losses, $1.1 billion in direct medical costs). It would remain cost saving even when a strain-specific coronavirus vaccine would be subsequently available, as long as it takes at least 2-3 months to develop, test, and bring that more specific vaccine to the market. Interpretation: Our results provide support for the development and stockpiling of a pan-coronavirus vaccine and help delineate the vaccine characteristics to aim for in development of such a vaccine. Funding: The National Science Foundation, the Agency for Healthcare Research and Quality, the National Institute of General Medical Sciences, the National Center for Advancing Translational Sciences, and the City University of New York.

9.
ACS Appl Mater Interfaces ; 16(13): 15832-15846, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38518375

RESUMEN

Chagas disease (CD) (American trypanosomiasis caused by Trypanosoma cruzi) is a parasitic disease endemic in 21 countries in South America, with increasing global spread. When administered late in the infection, the current antiparasitic drugs do not prevent the onset of cardiac illness leading to chronic Chagasic cardiomyopathy. Therefore, new therapeutic vaccines or immunotherapies are under development using multiple platforms. In this study, we assessed the feasibility of developing an mRNA-based therapeutic CD vaccine targeting two known T. cruzi vaccine antigens (Tc24─a flagellar antigen and ASP-2─an amastigote antigen). We present the mRNA engineering steps, preparation, and stability of the lipid nanoparticles and evaluation of their uptake by dendritic cells, as well as their biodistribution in c57BL/J mice. Furthermore, we assessed the immunogenicity and efficacy of two mRNA-based candidates as monovalent and bivalent vaccine strategies using an in vivo chronic mouse model of CD. Our results show several therapeutic benefits, including reductions in parasite burdens and cardiac inflammation, with each mRNA antigen, especially with the mRNA encoding Tc24, and Tc24 in combination with ASP-2. Therefore, our findings demonstrate the potential of mRNA-based vaccines as a therapeutic option for CD and highlight the opportunities for developing multivalent vaccines using this approach.


Asunto(s)
Enfermedad de Chagas , Vacunas Antiprotozoos , Ratones , Animales , ARN , Distribución Tisular , Enfermedad de Chagas/prevención & control , Antígenos de Protozoos/genética , ARN Mensajero , Tecnología
10.
Expert Rev Vaccines ; 23(1): 535-545, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38664959

RESUMEN

INTRODUCTION: Zebrafishes represent a proven model for human diseases and systems biology, exhibiting physiological and genetic similarities and having innate and adaptive immune systems. However, they are underexplored for human vaccinology, vaccine development, and testing. Here we summarize gaps and challenges. AREAS COVERED: Zebrafish models have four potential applications: 1) Vaccine safety: The past successes in using zebrafishes to test xenobiotics could extend to vaccine and adjuvant formulations for general safety or target organs due to the zebrafish embryos' optical transparency. 2) Innate immunity: The zebrafish offers refined ways to examine vaccine effects through signaling via Toll-like or NOD-like receptors in zebrafish myeloid cells. 3) Adaptive immunity: Zebrafishes produce IgM, IgD,and two IgZ immunoglobulins, but these are understudied, due to a lack of immunological reagents for challenge studies. 4) Systems vaccinology: Due to the availability of a well-referenced zebrafish genome, transcriptome, proteome, and epigenome, this model offers potential here. EXPERT OPINION: It remains unproven whether zebrafishes can be employed for testing and developing human vaccines. We are still at the hypothesis-generating stage, although it is possible to begin outlining experiments for this purpose. Through transgenic manipulation, zebrafish models could offer new paths for shaping animal models and systems vaccinology.


Asunto(s)
Inmunidad Adaptativa , Adyuvantes Inmunológicos , Inmunidad Innata , Modelos Animales , Desarrollo de Vacunas , Vacunas , Pez Cebra , Pez Cebra/inmunología , Animales , Adyuvantes Inmunológicos/administración & dosificación , Humanos , Vacunas/inmunología , Vacunas/administración & dosificación , Vacunología/métodos
11.
NPJ Vaccines ; 9(1): 132, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39034332

RESUMEN

The development of broad-spectrum coronavirus vaccines is essential to prepare for future respiratory virus pandemics. We demonstrated broad neutralization by a trivalent subunit vaccine, formulating the receptor-binding domains of SARS-CoV, MERS-CoV, and SARS-CoV-2 XBB.1.5 with Alum and CpG55.2. Vaccinated mice produced cross-neutralizing antibodies against all three human Betacoronaviruses and others currently exclusive to bats, indicating the epitope preservation of the individual antigens during co-formulation and the potential for epitope broadening.

12.
Lancet Infect Dis ; 24(7): 760-774, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38513684

RESUMEN

BACKGROUND: A human hookworm vaccine is being developed to protect children against iron deficiency and anaemia associated with chronic infection with hookworms. Necator americanus aspartic protease-1 (Na-APR-1) and N americanus glutathione S-transferase-1 (Na-GST-1) are components of the blood digestion pathway critical to hookworm survival in the host. Recombinant Na-GST-1 and catalytically inactive Na-APR-1 (Na-APR-1[M74]) adsorbed to Alhydrogel were safe and immunogenic when delivered separately or co-administered to adults in phase 1 trials in non-endemic and endemic areas. We aimed to investigate the safety and immunogenicity of these antigens in healthy children in a hookworm-endemic area. METHODS: This was a randomised, controlled, observer-blind, phase 1, dose-escalation trial, conducted in a clinical research centre, in 60 children aged six to ten years in Lambaréné, a hookworm-endemic region of Gabon. Healthy children (determined by clinical examination and safety laboratory testing) were randomised 4:1 to receive co-administered Na-GST-1 on Alhydrogel plus Na-APR-1(M74) on Alhydrogel and glucopyranosyl lipid A in aqueous formulation (GLA-AF), or co-administered ENGERIX-B hepatitis B vaccine (HBV) and saline placebo, injected into the deltoid of each arm. Allocation to vaccine groups was observer-masked. In each vaccine group, children were randomised 1:1 to receive intramuscular injections into each deltoid on two vaccine schedules, one at months 0, 2, and 4 or at months 0, 2, and 6. 10 µg, 30 µg, and 100 µg of each antigen were administered in the first, second, and third cohorts, respectively. The intention-to-treat population was used for safety analyses; while for immunogenicity analyses, the per-protocol population was used (children who received all scheduled vaccinations). The primary outcome was to evaluate the vaccines' safety and reactogenicity in healthy children aged between six and ten years. The secondary outcome was to measure antigen-specific serum IgG antibody levels at pre-vaccination and post-vaccination timepoints by qualified ELISAs. The trial is registered with ClinicalTrials.gov, NCT02839161, and is completed. FINDINGS: Between Jan 23 and Oct 3, 2017, 137 children were screened, of whom 76 were eligible for this trial. 60 children were recruited, and allocated to either 10 µg of the co-administered antigens (n=8 for each injection schedule), 30 µg (n=8 for each schedule), 100 µg (n=8 for each schedule), or HBV and placebo (n=6 for each schedule) in three sequential cohorts. Co-administration of the vaccines was well tolerated; the most frequent solicited adverse events were mild-to-moderate injection-site pain, observed in up to 12 (75%) of 16 participants per vaccine group, and mild headache (12 [25%] of 48) and fever (11 [23%] of 48). No vaccine-related serious adverse events were observed. Significant anti-Na-APR-1(M74) and anti-Na-GST-1 IgG levels were induced in a dose-dependent manner, with peaks seen 14 days after the third vaccinations, regardless of dose (for Na-APR-1[M74], geometric mean levels [GML]=2295·97 arbitrary units [AU] and 726·89 AU, while for Na-GST-1, GMLs=331·2 AU and 21·4 AU for the month 0, 2, and 6 and month 0, 2, and 4 schedules, respectively). The month 0, 2, and 6 schedule induced significantly higher IgG responses to both antigens (p=0·01 and p=0·04 for Na-APR-1[M74] and Na-GST-1, respectively). INTERPRETATION: Co-administration of recombinant Na-APR-1(M74) and Na-GST-1 to school-aged Gabonese children was well tolerated and induced significant IgG responses. These results justify further evaluation of this antigen combination in proof-of-concept controlled-infection and efficacy studies in hookworm-endemic areas. FUNDING: European Union Seventh Framework Programme.


Asunto(s)
Necator americanus , Humanos , Masculino , Niño , Femenino , Gabón , Necator americanus/inmunología , Animales , Infecciones por Uncinaria/prevención & control , Infecciones por Uncinaria/inmunología , Antígenos Helmínticos/inmunología , Anticuerpos Antihelmínticos/sangre , Glutatión Transferasa/inmunología , Glutatión Transferasa/genética , Método Simple Ciego , Vacunas/inmunología , Vacunas/administración & dosificación , Inmunogenicidad Vacunal
14.
Bol. méd. Hosp. Infant. Méx ; 68(2): 150-158, mar.-abr. 2011. ilus, tab
Artículo en Inglés | LILACS | ID: lil-700895

RESUMEN

The neglected tropical diseases (NTDs) represent a group of chronic parasitic and related infections that promote poverty because of their impact on child development, pregnancy, and worker productivity. The estimated 20 million Mexicans who live below the poverty line suffer disproportionately from a high prevalence of neglected tropical diseases such as amebiasis, Chagas disease, dengue, leishmaniasis, soil-transmitted helminth infections, trachoma, and vivax malaria. However, because the NTDs occur predominantly among the poor, new industrial and financial models are required to establish innovative technologies to address these conditions in Mexico and elsewhere in Latin America. In response, the Slim Initiative for Antipoverty Vaccine Development was established to foster a public/private partnership between key academic, government, and industrial institutions in the U.S. and Mexico. Initial emphasis will be placed on developing new vaccines for Chagas disease and leishmaniasis, two of the highest burden NTDs in Mexico and Mesoamerica.

15.
Mem. Inst. Oswaldo Cruz ; 94(5): 583-6, Sept. 1999. graf
Artículo en Inglés | LILACS | ID: lil-241313

RESUMEN

A cross-sectional study in Itagua, Paraguay tested 192 people for the presence, intensity and species of hookworm infection. Fifty-nine percent of these individuals were found to be infected. Intensity of infection was determined on 92 per cent of infected individuals by quantitative egg counts. The high intensity hookworm infections, which cause the greatest morbidity, were clustered between the ages of five and 14 years. No differences were seen between genders. The species of hookworm was determined for parasites reared from 72 per cent of infected individuals. Both Necator americanus and Ancylostoma duodenale were identified, although the former species predominated. We conclude that hookworm infection continues to be a public health problem in Paraguay, particularly among children and adolescents who suffer from high intensity infections. A. duodenale continues to persist in the Western Hemisphere and has not been completely displaced by N. americanus.


Asunto(s)
Humanos , Masculino , Femenino , Lactante , Niño , Preescolar , Adolescente , Adulto , Persona de Mediana Edad , Ancylostoma/aislamiento & purificación , Infecciones por Uncinaria/epidemiología , Anciano de 80 o más Años , Estudios Transversales , Paraguay/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA