Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Neurochem ; 142(2): 297-304, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28429406

RESUMEN

Autophagy and lysosomal function are important for protein homeostasis and their dysfunction have been associated with Alzheimer's disease (AD). Increased immunoreactivities of an important lysosomal protease, cathepsin D (Cat D), are evident in amyloid plaques and neurons in patients with AD. This study tests the hypothesis that deleting one allele of the cathepsin D gene (Ctsd) impacts cerebral ß-amyloidosis in amyloid-ß precursor protein (APP)sw/PS1dE9 (APP/PS1) double transgenic mice. Despite a significant 38% decrease in Cat D level in APP/PS1/Ctsd+/- compared with APP/PS1/Ctsd+/+ mice, no changes in steady state levels and deposition of Aß were found in the brain. There were also no differences in APP processing, the levels of two other Aß-degrading proteases, the levels of autophagy related protein, such as LAMP2, P62, LC3-I, LC3-II, and Beclin-1, or the markers of neuroinflammation, observed between the APP/PS1/Ctsd+/+ and APP/PS1/Ctsd+/- mice. Our findings demonstrate that in wild-type mice, Cat D protein levels are either in excess or redundant with other factors in the brain, and at least one allele of Ctsd is dispensable for cerebral ß-amyloidosis and autophagy in APP/PS1 transgenic mice.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Autofagia , Encéfalo/metabolismo , Catepsina D/metabolismo , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Autofagia/genética , Autofagia/fisiología , Catepsina D/genética , Modelos Animales de Enfermedad , Ratones Transgénicos , Neuronas/metabolismo , Oligopéptidos/genética , Oligopéptidos/metabolismo , Placa Amiloide/metabolismo
3.
J Biol Chem ; 288(50): 35952-60, 2013 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-24136196

RESUMEN

Isoprenoids and prenylated proteins have been implicated in the pathophysiology of Alzheimer disease (AD), including amyloid-ß precursor protein metabolism, Tau phosphorylation, synaptic plasticity, and neuroinflammation. However, little is known about the relative importance of the two protein prenyltransferases, farnesyltransferase (FT) and geranylgeranyltransferase-1 (GGT), in the pathogenesis of AD. In this study, we defined the impact of deleting one copy of FT or GGT on the development of amyloid-ß (Aß)-associated neuropathology and learning/memory impairments in APPPS1 double transgenic mice, a well established model of AD. Heterozygous deletion of FT reduced Aß deposition and neuroinflammation and rescued spatial learning and memory function in APPPS1 mice. Heterozygous deletion of GGT reduced the levels of Aß and neuroinflammation but had no impact on learning and memory. These results document that farnesylation and geranylgeranylation play differential roles in AD pathogenesis and suggest that specific inhibition of protein farnesylation could be a potential strategy for effectively treating AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Cognición , Farnesiltransferasa/deficiencia , Farnesiltransferasa/genética , Eliminación de Gen , Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Memoria , Ratones , Ratones Transgénicos , Proteolisis
4.
Neurobiol Dis ; 72 Pt A: 22-36, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25131449

RESUMEN

High-density lipoproteins (HDLs) are a heterogeneous group of lipoproteins composed of various lipids and proteins. HDL is formed both in the systemic circulation and in the brain. In addition to being a crucial player in the reverse cholesterol transport pathway, HDL possesses a wide range of other functions including anti-oxidation, anti-inflammation, pro-endothelial function, anti-thrombosis, and modulation of immune function. It has been firmly established that high plasma levels of HDL protect against cardiovascular disease. Accumulating evidence indicates that the beneficial role of HDL extends to many other systems including the central nervous system. Cognition is a complex brain function that includes all aspects of perception, thought, and memory. Cognitive function often declines during aging and this decline manifests as cognitive impairment/dementia in age-related and progressive neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. A growing concern is that no effective therapy is currently available to prevent or treat these devastating diseases. Emerging evidence suggests that HDL may play a pivotal role in preserving cognitive function under normal and pathological conditions. This review attempts to summarize recent genetic, clinical and experimental evidence for the impact of HDL on cognition in aging and in neurodegenerative disorders as well as the potential of HDL-enhancing approaches to improve cognitive function.


Asunto(s)
Encéfalo/metabolismo , Cognición/fisiología , Lipoproteínas HDL/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/psicología , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/psicología , Animales , Apolipoproteínas E/metabolismo , HDL-Colesterol/metabolismo , Femenino , Humanos , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/psicología , Hígado/metabolismo , Receptores X del Hígado , Masculino , Enfermedades Neurodegenerativas/psicología , Receptores Nucleares Huérfanos/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/psicología
5.
Cell Mol Neurobiol ; 34(5): 693-705, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24687455

RESUMEN

The ramifications of statins on plasma cholesterol and coronary heart disease have been well documented. However, there is increasing evidence that inhibition of the mevalonate pathway may provide independent neuroprotective and procognitive pleiotropic effects, most likely via inhibition of isoprenoids, mainly farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). FPP and GGPP are the major donors of prenyl groups for protein prenylation. Modulation of isoprenoid availability impacts a slew of cellular processes including synaptic plasticity in the hippocampus. Our previous work has demonstrated that simvastatin (SV) administration improves hippocampus-dependent spatial memory, rescuing memory deficits in a mouse model of Alzheimer's disease. Treatment of hippocampal slices with SV enhances long-term potentiation (LTP), and this effect is dependent on the activation of Akt (protein kinase B). Further studies showed that SV-induced enhancement of hippocampal LTP is driven by depletion of FPP and inhibition of farnesylation. In the present study, we report the functional consequences of exposure to SV at cellular/synaptic and molecular levels. While application of SV has no effect on intrinsic membrane properties of CA1 pyramidal neurons, including hyperpolarization-activated cyclic-nucleotide channel-mediated sag potentials, the afterhyperpolarization (AHP), and excitability, SV application potentiates the N-methyl D-aspartate receptor (NMDAR)-mediated contribution to synaptic transmission. In mouse hippocampal slices and human neuronal cells, SV treatment increases the surface distribution of the GluN2B subunit of the NMDAR without affecting cellular cholesterol content. We conclude that SV-induced enhancement of synaptic plasticity in the hippocampus is likely mediated by augmentation of synaptic NMDAR components that are largely responsible for driving synaptic plasticity in the CA1 region.


Asunto(s)
Membrana Celular/metabolismo , Subunidades de Proteína/biosíntesis , Receptores de N-Metil-D-Aspartato/biosíntesis , Simvastatina/farmacología , Transmisión Sináptica/fisiología , Regulación hacia Arriba/fisiología , Animales , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Técnicas de Cultivo de Órganos , Receptores de N-Metil-D-Aspartato/fisiología , Transmisión Sináptica/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
6.
Blood Cancer Discov ; 3(2): 103-115, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35015683

RESUMEN

Downregulation of surface epitopes causes postimmunotherapy relapses in B-lymphoblastic leukemia (B-ALL). Here we demonstrate that mRNA encoding CD22 undergoes aberrant splicing in B-ALL. We describe the plasma membrane-bound CD22 Δex5-6 splice isoform, which is resistant to chimeric antigen receptor (CAR) T cells targeting the third immunoglobulin-like domain of CD22. We also describe splice variants skipping the AUG-containing exon 2 and failing to produce any identifiable protein, thereby defining an event that is rate limiting for epitope presentation. Indeed, forcing exon 2 skipping with morpholino oligonucleotides reduced CD22 protein expression and conferred resistance to the CD22-directed antibody-drug conjugate inotuzumab ozogamicin in vitro. Furthermore, among inotuzumab-treated pediatric patients with B-ALL, we identified one nonresponder in whose leukemic blasts Δex2 isoforms comprised the majority of CD22 transcripts. In a second patient, a sharp reduction in CD22 protein levels during relapse was driven entirely by increased CD22 exon 2 skipping. Thus, dysregulated CD22 splicing is a major mechanism of epitope downregulation and ensuing resistance to immunotherapy. SIGNIFICANCE: The mechanism(s) underlying downregulation of surface CD22 following CD22-directed immunotherapy remains underexplored. Our biochemical and correlative studies demonstrate that in B-ALL, CD22 expression levels are controlled by inclusion/skipping of CD22 exon 2. Thus, aberrant splicing of CD22 is an important driver/biomarker of de novo and acquired resistance to CD22-directed immunotherapies. See related commentary by Bourcier and Abdel-Wahab, p. 87. This article is highlighted in the In This Issue feature, p. 85.


Asunto(s)
Deriva y Cambio Antigénico , Leucemia-Linfoma Linfoblástico de Células Precursoras , Niño , Epítopos/uso terapéutico , Humanos , Inmunoterapia , Inotuzumab Ozogamicina , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Lectina 2 Similar a Ig de Unión al Ácido Siálico/genética
7.
Mol Neurobiol ; 50(1): 177-85, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24390573

RESUMEN

Protein prenylation is an important lipid posttranslational modification of proteins. It includes protein farnesylation and geranylgeranylation, in which the 15-carbon farnesyl pyrophosphate or 20-carbon geranylgeranyl pyrophosphate is attached to the C-terminus of target proteins, catalyzed by farnesyl transferase or geranylgeranyl transferases, respectively. Protein prenylation facilitates the anchoring of proteins into the cell membrane and mediates protein-protein interactions. Among numerous proteins that undergo prenylation, small GTPases represent the largest group of prenylated proteins. Small GTPases are involved in regulating a plethora of cellular functions including synaptic plasticity. The prenylation status of small GTPases determines the subcellular locations and functions of the proteins. Dysregulation or dysfunction of small GTPases leads to the development of different types of disorders. Emerging evidence indicates that prenylated proteins, in particular small GTPases, may play important roles in the pathogenesis of Alzheimer's disease. This review focuses on the prenylation of Ras and Rho subfamilies of small GTPases and its relation to synaptic plasticity and Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Prenilación de Proteína/fisiología , Animales , Humanos , Procesamiento Proteico-Postraduccional , Proteínas ras/metabolismo , Proteínas de Unión al GTP rho/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA