RESUMEN
BAFopathies are a heterogenous group of neurodevelopmental disorders caused by mutations in genes encoding subunits of the BAF complex, and they exhibit a broad clinical phenotypic spectrum. Pathogenic heterozygous variants in SMARCC2 have been implicated in Coffin-Siris syndrome 8 (MIM 618362) with variable neurodevelopmental presentations. We report here two relatively severely affected patients with two different SMARCC2 variants: one has de novo pathogenic variant, c.1824_1826del, p.(Leu609del), in a suspected hotspot region through reanalysis of previously negative clinical exome data, and the other has a likely pathogenic loss-of-function variant, c.1094_1097delAGAA, p.(Lys365Thrfs*12) through exome analysis in an adopted subject. Regardless of variant type, both patients have severe developmental delays, severe speech delay, short stature, hypotonia, seizures, and craniofacial dysmorphisms, blurring previously speculated genotype-phenotype correlation on missense and loss-of-function variants. This report extends our understanding of the genotypic and phenotypic spectrums of the SMARCC2-related neurodevelopmental disorder.
Asunto(s)
Anomalías Múltiples , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Anomalías Múltiples/genética , Proteínas de Unión al ADN/genética , Exoma/genética , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Mutación , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Fenotipo , Factores de Transcripción/genéticaRESUMEN
Ichthyosis follicularis, atrichia, and photophobia syndrome (IFAP syndrome) is a rare, X-linked disorder caused by pathogenic variants in membrane-bound transcription factor protease, site 2 (MBTPS2). Pathogenic MBTPS2 variants also cause BRESHECK syndrome, characterized by the IFAP triad plus intellectual disability and multiple congenital anomalies. Here we present a patient with ichthyosis, sparse hair, pulmonic stenosis, kidney dysplasia, hypospadias, growth failure, thrombocytopenia, anemia, bone marrow fibrosis, and chronic diarrhea found by research-based exome sequencing to harbor a novel, maternally inherited MBTPS2 missense variant (c.766 G>A; (p.Val256Leu)). In vitro modeling supports variant pathogenicity, with impaired cell growth in cholesterol-depleted media, attenuated activation of the sterol regulatory element-binding protein pathway, and failure to activate the endoplasmic reticulum stress response pathway. Our case expands both the genetic and phenotypic spectrum of BRESHECK syndrome to include a novel MBTPS2 variant and cytopenias, bone marrow fibrosis, and chronic diarrhea.
Asunto(s)
Discapacidad Intelectual , Alopecia/genética , Encéfalo/anomalías , Anomalías Congénitas , Oído/anomalías , Displasia Ectodérmica , Estrés del Retículo Endoplásmico/genética , Enfermedades Genéticas Ligadas al Cromosoma X , Enfermedad de Hirschsprung , Humanos , Discapacidad Intelectual/genética , Riñón/anomalías , Masculino , Metaloendopeptidasas/genética , Péptido Hidrolasas , Esteroles , Factores de TranscripciónRESUMEN
Ring-finger protein 213 (RNF213) encodes a protein of unknown function believed to play a role in cellular metabolism and angiogenesis. Gene variants are associated with susceptibility to moyamoya disease. Here, we describe two children with moyamoya disease who also demonstrated kidney disease, elevated aminotransferases, and recurrent skin lesions found by exome sequencing to have de novo missense variants in RNF213. These cases highlight the ability of RNF213 to cause Mendelian moyamoya disease in addition to acting as a genetic susceptibility locus. The cases also suggest a new, multi-organ RNF213-spectrum disease characterized by liver, skin, and kidney pathology in addition to severe moyamoya disease caused by heterozygous, de novo C-terminal RNF213 missense variants.
Asunto(s)
Adenosina Trifosfatasas/genética , Enfermedades Renales/genética , Enfermedad de Moyamoya/genética , Enfermedades de la Piel/genética , Ubiquitina-Proteína Ligasas/genética , Femenino , Predisposición Genética a la Enfermedad , Humanos , Lactante , Recién Nacido , Enfermedades Renales/complicaciones , Enfermedades Renales/patología , Masculino , Enfermedad de Moyamoya/complicaciones , Enfermedad de Moyamoya/patología , Neovascularización Fisiológica/genética , Enfermedades de la Piel/complicaciones , Enfermedades de la Piel/patología , Transaminasas/genética , Secuenciación del ExomaRESUMEN
Central conducting lymphatic anomaly (CCLA) is one of the complex lymphatic anomalies characterized by dilated lymphatic channels, lymphatic channel dysmotility and distal obstruction affecting lymphatic drainage. We performed whole exome sequencing (WES) of DNA from a four-generation pedigree and examined the consequences of the variant by transfection of mammalian cells and morpholino and rescue studies in zebrafish. WES revealed a heterozygous mutation in EPHB4 (RefSeq NM_004444.4; c.2334 + 1G>C) and RNA-Seq demonstrated that the EPHB4 mutation destroys the normal donor site, which leads to the use of a cryptic splice donor that results in retention of the intervening 12-bp intron sequence. Transient co-expression of the wild-type and mutant EPHB4 proteins showed reduced phosphorylation of tyrosine, consistent with a loss-of-function effect. Zebrafish ephb4a morpholino resulted in vessel misbranching and deformities in the lymphatic vessel development, indicative of possible differentiation defects in lymphatic vessels, mimicking the lymphatic presentations of the patients. Immunoblot analysis using zebrafish lysates demonstrated over-activation of mTORC1 as a consequence of reduced EPHB4 signaling. Strikingly, drugs that inhibit mTOR signaling or RAS-MAPK signaling effectively rescued the misbranching phenotype in a comparable manner. Moreover, knock-in of EPHB4 mutation in HEK293T cells also induced mTORC1 activity. Our data demonstrate the pathogenicity of the identified EPHB4 mutation as a novel cause of CCLA and suggesting that ERK inhibitors may have therapeutic benefits in such patients with complex lymphatic anomalies.
Asunto(s)
Secuenciación del Exoma , Anomalías Linfáticas/genética , Vasos Linfáticos/metabolismo , Receptor EphB4/genética , Animales , Modelos Animales de Enfermedad , Células HEK293 , Heterocigoto , Humanos , Anomalías Linfáticas/metabolismo , Anomalías Linfáticas/patología , Vasos Linfáticos/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Linaje , Fosforilación , Proteínas Tirosina Quinasas Receptoras/genética , Transducción de Señal , Pez Cebra/genéticaRESUMEN
Neuroblastoma is a cancer of the developing sympathetic nervous system that most commonly presents in young children and accounts for approximately 12% of pediatric oncology deaths. Here, we report on a genome-wide association study (GWAS) in a discovery cohort or 2,101 cases and 4,202 controls of European ancestry. We identify two new association signals at 3q25 and 4p16 that replicated robustly in multiple independent cohorts comprising 1,163 cases and 4,396 controls (3q25: rs6441201 combined P = 1.2x10-11, Odds Ratio 1.23, 95% CI:1.16-1.31; 4p16: rs3796727 combined P = 1.26x10-12, Odds Ratio 1.30, 95% CI: 1.21-1.40). The 4p16 signal maps within the carboxypeptidase Z (CPZ) gene. The 3q25 signal resides within the arginine/serine-rich coiled-coil 1 (RSRC1) gene and upstream of the myeloid leukemia factor 1 (MLF1) gene. Increased expression of MLF1 was observed in neuroblastoma cells homozygous for the rs6441201 risk allele (P = 0.02), and significant growth inhibition was observed upon depletion of MLF1 (P < 0.0001) in neuroblastoma cells. Taken together, we show that common DNA variants within CPZ at 4p16 and upstream of MLF1 at 3q25 influence neuroblastoma susceptibility and MLF1 likely plays an important role in neuroblastoma tumorigenesis.
Asunto(s)
Carboxipeptidasas/genética , Cromosomas Humanos Par 3/genética , Cromosomas Humanos Par 4/genética , Neuroblastoma/genética , Polimorfismo de Nucleótido Simple , Proteínas/genética , Estudios de Casos y Controles , Proteínas de Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Proteínas de Unión al ADN , Femenino , Silenciador del Gen , Homocigoto , Humanos , Masculino , Proteínas Nucleares/genética , Proteínas/metabolismoRESUMEN
BACKGROUND: Genome-wide association studies (GWASs) have identified multiple susceptibility loci for migraine in European adults. However, no large-scale genetic studies have been performed in children or African Americans with migraine. METHODS: We conducted a GWAS of 380 African-American children and 2129 ancestry-matched controls to identify variants associated with migraine. We then attempted to replicate our primary analysis in an independent cohort of 233 African-American patients and 4038 non-migraine control subjects. RESULTS: The results of this study indicate that common variants at 5q33.1 associated with migraine risk in African-American children (rs72793414, p=1.94×10-9). The association was validated in an independent study (p=3.87×10-3) for an overall meta-analysis p value of 3.81×10-10. eQTL (Expression quantitative trait loci) analysis of the Genotype-Tissue Expression data also shows the genotypes of rs72793414 were strongly correlated with the mRNA expression levels of NMUR2 at 5q33.1. NMUR2 encodes a G protein-coupled receptor of neuromedin-U (NMU). NMU, a highly conserved neuropeptide, participates in diverse physiological processes of the central nervous system. CONCLUSIONS: This study provides new insights into the genetic basis of childhood migraine and allow for precision therapeutic development strategies targeting migraine patients of African-American ancestry.
Asunto(s)
Negro o Afroamericano/genética , Cromosomas Humanos Par 5 , Variación Genética , Trastornos Migrañosos/diagnóstico , Trastornos Migrañosos/genética , Sitios de Carácter Cuantitativo , Alelos , Niño , Biología Computacional/métodos , Femenino , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo , Genómica/métodos , Genotipo , Humanos , Desequilibrio de Ligamiento , Masculino , Trastornos Migrañosos/epidemiología , Polimorfismo de Nucleótido Simple , Estados Unidos/epidemiologíaRESUMEN
In 1964, Baird described a family with adermatoglyphia, facial milia, and skin fragility. Using whole exome sequencing, genotyping, and Sanger sequencing, we identified a 116-kb heterozygous deletion involving exons 1-9 of SMARCAD1 in descendants of this kindred. This contrasts with point mutations within exon 9 in all other reported families.
Asunto(s)
ADN Helicasas/genética , Displasia Ectodérmica/genética , Uñas Malformadas/genética , Enfermedades Cutáneas Genéticas/genética , Femenino , Técnicas de Genotipaje/métodos , Heterocigoto , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Recién Nacido , Masculino , Linaje , Eliminación de Secuencia , Secuenciación del Exoma/métodosRESUMEN
Braddock-Carey Syndrome (BCS) is characterized by microcephaly, congenital thrombocytopenia, Pierre-Robin sequence (PRS), and agenesis of the corpus callosum. BCS has been shown to be caused by a 21q22.11 microdeletion that encompasses multiple genes. Here, we report a BCS genocopy characterized by congenital thrombocytopenia and PRS that is caused by a loss-of-function mutation in KIF15 in a consanguineous Saudi Arabian family. Mutations of mitotic kinesins are a well-established cause of microcephaly. To our knowledge, KIF15 is the first kinesin to be associated with congenital thrombocytopenia.
Asunto(s)
Agenesia del Cuerpo Calloso/diagnóstico , Agenesia del Cuerpo Calloso/genética , Genotipo , Trastornos del Crecimiento/diagnóstico , Trastornos del Crecimiento/genética , Cinesinas/genética , Mutación , Fenotipo , Síndrome de Pierre Robin/diagnóstico , Síndrome de Pierre Robin/genética , Trombocitopenia/congénito , Alelos , Preescolar , Análisis Mutacional de ADN , Facies , Femenino , Frecuencia de los Genes , Estudios de Asociación Genética , Humanos , Cinesinas/metabolismo , Linaje , Arabia Saudita , Trombocitopenia/diagnóstico , Trombocitopenia/genéticaRESUMEN
Food allergy is a significant public health concern, especially among children. Previous candidate gene studies suggested a few susceptibility loci for food allergy, but no study investigated the contribution of copy number variations (CNVs) to food allergy on a genome-wide scale. To investigate the genetics of food allergy, we performed CNV assessment using high-resolution genome-wide single nucleotide polymorphism arrays. CNV calls from a total of 357 cases with confirmed food allergy and 3980 controls were analyzed within a discovery cohort, followed by a replication analysis composed of 167 cases and 1573 controls. We identified that CNVs in CTNNA3 were significantly associated with food allergy in both the discovery cohort and the replication cohort. Of particular interest, CTNNA3 CNVs hit exons or intron regions rich in histone marker H3K4Me1. CNVs in a second gene (RBFOX1) showed a significant association (p = 7.35 × 10(-5)) with food allergy at the genome-wide level in our meta-analysis of the European ancestry cohorts. The presence of these CNVs was confirmed by quantitative PCR. Furthermore, knockdown of CTNNA3 resulted in upregulation of CD63 and CD203c in mononuclear cells upon PMA stimulation, suggesting a role in sensitization to allergen. We uncovered at least two plausible genes harboring CNV loci that are enriched in pediatric patients with food allergies. The novel gene candidates discovered in this study by genome-wide CNV analysis are compelling drug and diagnostic targets for food allergy.
Asunto(s)
Variaciones en el Número de Copia de ADN , Hipersensibilidad a los Alimentos/genética , Hipersensibilidad a los Alimentos/inmunología , Predisposición Genética a la Enfermedad , Proteínas de Unión al ARN/genética , alfa Catenina/genética , Adolescente , Factores de Edad , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Eliminación de Gen , Estudios de Asociación Genética , Humanos , Masculino , Metaanálisis como Asunto , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Factores de Empalme de ARN , ARN Interferente Pequeño , Reproducibilidad de los ResultadosRESUMEN
Neuroblastoma is a childhood cancer of the sympathetic nervous system that accounts for approximately 10% of all paediatric oncology deaths. To identify genetic risk factors for neuroblastoma, we performed a genome-wide association study (GWAS) on 2,251 patients and 6,097 control subjects of European ancestry from four case series. Here we report a significant association within LIM domain only 1 (LMO1) at 11p15.4 (rs110419, combined P = 5.2 × 10(-16), odds ratio of risk allele = 1.34 (95% confidence interval 1.25-1.44)). The signal was enriched in the subset of patients with the most aggressive form of the disease. LMO1 encodes a cysteine-rich transcriptional regulator, and its paralogues (LMO2, LMO3 and LMO4) have each been previously implicated in cancer. In parallel, we analysed genome-wide DNA copy number alterations in 701 primary tumours. We found that the LMO1 locus was aberrant in 12.4% through a duplication event, and that this event was associated with more advanced disease (P < 0.0001) and survival (P = 0.041). The germline single nucleotide polymorphism (SNP) risk alleles and somatic copy number gains were associated with increased LMO1 expression in neuroblastoma cell lines and primary tumours, consistent with a gain-of-function role in tumorigenesis. Short hairpin RNA (shRNA)-mediated depletion of LMO1 inhibited growth of neuroblastoma cells with high LMO1 expression, whereas forced expression of LMO1 in neuroblastoma cells with low LMO1 expression enhanced proliferation. These data show that common polymorphisms at the LMO1 locus are strongly associated with susceptibility to developing neuroblastoma, but also may influence the likelihood of further somatic alterations at this locus, leading to malignant progression.
Asunto(s)
Proteínas de Unión al ADN/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Neuroblastoma/genética , Oncogenes/genética , Factores de Transcripción/genética , Alelos , Línea Celular Tumoral , Proliferación Celular , Cromosomas Humanos Par 11/genética , Variaciones en el Número de Copia de ADN/genética , Progresión de la Enfermedad , Europa (Continente)/etnología , Duplicación de Gen/genética , Regulación Neoplásica de la Expresión Génica/genética , Genoma Humano/genética , Genómica , Genotipo , Humanos , Proteínas con Dominio LIM , Neuroblastoma/patología , Oportunidad Relativa , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Tasa de SupervivenciaRESUMEN
BACKGROUND: Genome-wide association studies have shown a pattern of rare copy number variations and single nucleotide polymorphisms in patients with common variable immunodeficiency disorder (CVID), which was recognizable by a support vector machine (SVM) algorithm. However, rare monogenic causes of CVID might lack such a genetic fingerprint. OBJECTIVE: We sought to identify a unique monogenic cause of familial immunodeficiency and evaluate the use of SVM to identify patients with possible monogenic disorders. METHODS: A family with multiple members with a diagnosis of CVID was screened by using whole-exome sequencing. The proband and other subjects with mutations associated with CVID-like phenotypes were screened through the SVM algorithm from our recent CVID genome-wide association study. RT-PCR, protein immunoblots, and in vitro plasmablast differentiation assays were performed on patient and control EBV lymphoblastoids cell lines. RESULTS: Exome sequencing identified a novel heterozygous mutation in IRF2BP2 (c.1652G>A:p.[S551N]) in affected family members. Transduction of the mutant gene into control human B cells decreased production of plasmablasts in vitro, and IRF2BP2 transcripts and protein expression were increased in proband versus control EBV-immortalized lymphoblastoid cell lines. The SVM algorithm categorized the proband and subjects with other immunodeficiency-associated gene variants in TACI, BAFFR, ICOS, CD21, LRBA, and CD27 as genetically dissimilar from polygenic CVID. CONCLUSION: A novel IRFBP2 mutation was identified in a family with autosomal dominant CVID. Transduction experiments suggest that the mutant protein has an effect on B-cell differentiation and is likely a monogenic cause of the family's CVID phenotype. Successful grouping by the SVM algorithm suggests that our family and other subjects with rare immunodeficiency disorders cluster separately and lack the genetic pattern present in polygenic CVID cases.
Asunto(s)
Proteínas Portadoras/genética , Inmunodeficiencia Variable Común/genética , Inmunodeficiencia Variable Común/inmunología , Predisposición Genética a la Enfermedad , Mutación , Proteínas Nucleares/genética , Adolescente , Adulto , Anciano , Subgrupos de Linfocitos B/inmunología , Subgrupos de Linfocitos B/metabolismo , Biomarcadores , Proteínas Portadoras/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Inmunodeficiencia Variable Común/diagnóstico , Proteínas de Unión al ADN , Exoma , Familia , Femenino , Estudios de Asociación Genética , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Isotipos de Inmunoglobulinas/sangre , Isotipos de Inmunoglobulinas/inmunología , Inmunofenotipificación , Masculino , Persona de Mediana Edad , Proteínas Nucleares/metabolismo , Linaje , Fenotipo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Factores de Transcripción , Adulto JovenRESUMEN
Hydrogenolysis of the scorpionate-supported barium alkyl complex (TpAd,iPr )Ba[CH(SiMe3 )2 ](THF) (TpAd,iPr =hydrotris(3-adamantyl-5-isopropyl-pyrazolyl)borate) afforded the dinuclear barium hydrido complex [(TpAd,iPr )Ba(µ-H)]2 (2), which was characterized by NMR spectroscopy and single-crystal X-ray analysis. Exposure of 2 with 1â atm of CO resulted in a reductive coupling process to form the cis-ethendiolate dianion (3). Reaction of 2 with one equivalent of PhC≡C-C≡CPh gave barium 1,4-diphenyl-2-butyne-1,4-diyl complex {[(TpAd,iPr )Ba]2 (PhCH-C≡C-CHPh) (4).
RESUMEN
Infantile myofibromatosis (IM) is a disorder of mesenchymal proliferation characterized by the development of nonmetastasizing tumors in the skin, muscle, bone, and viscera. Occurrence within families across multiple generations is suggestive of an autosomal-dominant (AD) inheritance pattern, but autosomal-recessive (AR) modes of inheritance have also been proposed. We performed whole-exome sequencing (WES) in members of nine unrelated families clinically diagnosed with AD IM to identify the genetic origin of the disorder. In eight of the families, we identified one of two disease-causing mutations, c.1978C>A (p.Pro660Thr) and c.1681C>T (p.Arg561Cys), in PDGFRB. Intriguingly, one family did not have either of these PDGFRB mutations but all affected individuals had a c.4556T>C (p.Leu1519Pro) mutation in NOTCH3. Our studies suggest that mutations in PDGFRB are a cause of IM and highlight NOTCH3 as a candidate gene. Further studies of the crosstalk between PDGFRB and NOTCH pathways may offer new opportunities to identify mutations in other genes that result in IM and is a necessary first step toward understanding the mechanisms of both tumor growth and regression and its targeted treatment.
Asunto(s)
Genes Dominantes , Mutación Missense , Miofibromatosis/congénito , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Secuencia de Aminoácidos , Secuencia de Bases , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Miofibromatosis/genética , Linaje , Receptor Notch3 , Receptores Notch/genética , Análisis de Secuencia de ADNRESUMEN
BACKGROUND: Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic disease among children, the etiology of which involves a strong genetic component, but much of the underlying genetic determinants still remain unknown. Our aim was to identify novel genetic variants that predispose to JIA. METHODS: We performed a genome-wide association study (GWAS) and replication in a total of 1166 JIA cases and 9500 unrelated controls of European ancestry. Correlation of SNP genotype and gene expression was investigated. Then we conducted targeted resequencing of a candidate locus, among a subset of 480 cases and 480 controls. SUM test was performed to evaluate the association of the identified rare functional variants. RESULTS: The CXCR4 locus on 2q22.1 was found to be significantly associated with JIA, peaking at SNP rs953387. However, this result is subjected to subpopulation stratification within the subjects of European ancestry. After adjusting for principal components, nominal significant association remained (p < 10(-4)). Because of its interesting known function in immune regulation, we carried out further analyses to assess its relationship with JIA. Expression of CXCR4 was correlated with CXCR4 rs953387 genotypes in lymphoblastoid cell lines (p = 0.014) and T-cells (p = 0.0054). In addition, rare non-synonymous and stop-gain sequence variants in CXCR4, putatively damaging for CXCR4 function, were significantly enriched in JIA cases (p = 0.015). CONCLUSION: Our results suggest the association of CXCR4 variants with JIA, implicating that this gene may be involved in the pathogenesis of autoimmune disease. However, because this locus is subjected to population stratification within the subjects of European ancestry, additional replication is still necessary for this locus to be considered a true risk locus for JIA. This cell-surface chemokine receptor has already been targeted in other diseases and may serve as a tractable therapeutic target for a specific subset of pediatric arthritis patients with additional replication and functional validation of the locus.
Asunto(s)
Artritis Juvenil/genética , Predisposición Genética a la Enfermedad , Receptores CXCR4/genética , Adolescente , Secuencia de Aminoácidos , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Técnicas de Genotipaje , Humanos , Masculino , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Análisis de Componente Principal , Análisis de Secuencia de ADN , Población Blanca/genéticaRESUMEN
BACKGROUND: Ehlers Danlos Syndrome is a rare form of inherited connective tissue disorder, which primarily affects skin, joints, muscle, and blood cells. The current study aimed at finding the mutation that causing EDS type VII C also known as "Dermatosparaxis" in this family. METHODS: Through systematic data querying of the electronic medical records (EMRs) of over 80,000 individuals, we recently identified an EDS family that indicate an autosomal dominant inheritance. The family was consented for genomic analysis of their de-identified data. After a negative screen for known mutations, we performed whole genome sequencing on the male proband, his affected father, and unaffected mother. We filtered the list of non-synonymous variants that are common between the affected individuals. RESULTS: The analysis of non-synonymous variants lead to identifying a novel mutation in the ADAMTSL2 (p. Gly421Ser) gene in the affected individuals. Sanger sequencing confirmed the mutation. CONCLUSION: Our work is significant not only because it sheds new light on the pathophysiology of EDS for the affected family and the field at large, but also because it demonstrates the utility of unbiased large-scale clinical recruitment in deciphering the genetic etiology of rare mendelian diseases. With unbiased large-scale clinical recruitment we strive to sequence as many rare mendelian diseases as possible, and this work in EDS serves as a successful proof of concept to that effect.
Asunto(s)
Proteínas ADAM/genética , Minería de Datos/métodos , Bases de Datos Genéticas , Síndrome de Ehlers-Danlos/genética , Variación Genética/genética , Proteínas ADAMTS , Niño , Síndrome de Ehlers-Danlos/diagnóstico , Femenino , Humanos , Masculino , LinajeRESUMEN
BACKGROUND: Systemic sclerosis (SSc) is a rheumatologic disease with a multifactorial etiology. Genome-wide association studies imply a polygenic, complex mode of inheritance with contributions from variation at the human leukocyte antigen locus and non-coding variation at a locus on chromosome 6p21, among other modestly impactful loci. Here we describe an 8-year-old female proband presenting with diffuse cutaneous SSc/scleroderma and a family history of SSc in a grandfather and maternal aunt. METHODS: We employed whole exome sequencing (WES) of three members of this family. We examined rare missense, nonsense, splice-altering, and coding indels matching an autosomal dominant inheritance model. We selected one missense variant for Sanger sequencing confirmation based on its predicted impact on gene function and location in a known SSc genetic locus. RESULTS: Bioinformatic analysis found eight candidate variants meeting our criteria. We identified a very rare missense variant in the regulatory NODP domain of NOTCH4 located at the 6p21 locus, c.4245G > A:p.Met1415Ile, segregating with the phenotype. This allele has a frequency of 1.83 × 10-5 by the data of the Exome Aggregation Consortium. CONCLUSION: This family suggests a novel mechanism of SSc pathogenesis in which a rare and penetrant coding variation can substantially elevate disease risk in contrast to the more modest non-coding variation typically found at this locus. These results suggest that modulation of the NOTCH4 gene might be responsible for the association signal at chromosome 6p21 in SSc.
Asunto(s)
Exoma/genética , Genes Dominantes/genética , Mutación Missense , Receptor Notch4/genética , Esclerodermia Sistémica/genética , Alelos , Niño , Cromosomas Humanos Par 6/genética , Biología Computacional , Femenino , Predisposición Genética a la Enfermedad , Abuelos , Heterocigoto , Humanos , Masculino , Linaje , Penetrancia , Dominios Proteicos/genética , Análisis de Secuencia de ADNRESUMEN
BACKGROUND: Common variable immunodeficiency (CVID) is characterized clinically by inadequate quantity and quality of serum immunoglobulins with increased susceptibility to infections, resulting in significant morbidity and mortality. Only a few genes have been uncovered, and the genetic background of CVID remains elusive to date for the majority of patients. OBJECTIVE: We sought to seek novel associations of genes and genetic variants with CVID. METHODS: We performed association analyses in a discovery cohort of 164 patients with CVID and 19,542 healthy control subjects genotyped on the Immuno BeadChip from Illumina platform; replication of findings was examined in an independent cohort of 135 patients with CVID and 2,066 healthy control subjects, followed by meta-analysis. RESULTS: We identified 11 single nucleotide polymorphisms (SNPs) at the 16p11.2 locus associated with CVID at a genome-wide significant level in the discovery cohort. The most significant SNP, rs929867 (P = 6.21 × 10(-9)), is in the gene fused-in-sarcoma (FUS), with 4 other SNPs mapping to integrin CD11b (ITGAM). Results were confirmed in our replication cohort. Conditional association analysis suggests a single association signal at the 16p11.2 locus. A strong trend of association was also seen for 38 SNPs (P < 5 × 10(-5)) in the MHC region, supporting that this is a genuine CVID locus. Interestingly, we found that 80% of patients with the rare ITGAM variants have reduced switched memory B-cell counts. CONCLUSION: We report a novel association of CVID with rare variants at the FUS/ITGAM (CD11b) locus on 16p11.2. The association signal is enriched for promoter/enhancer markers in the ITGAM gene. ITGAM encodes the integrin CD11b, a part of complement receptor 3, a novel candidate gene implicated here for the first time in the pathogenesis of CVID.
Asunto(s)
Antígeno CD11b/genética , Cromosomas Humanos Par 16 , Inmunodeficiencia Variable Común/genética , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Proteína FUS de Unión a ARN/genética , Adulto , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos B/patología , Antígeno CD11b/inmunología , Estudios de Casos y Controles , Preescolar , Estudios de Cohortes , Inmunodeficiencia Variable Común/diagnóstico , Inmunodeficiencia Variable Común/inmunología , Inmunodeficiencia Variable Común/patología , Elementos de Facilitación Genéticos , Femenino , Sitios Genéticos , Humanos , Memoria Inmunológica , Desequilibrio de Ligamiento , Masculino , Regiones Promotoras Genéticas , Proteína FUS de Unión a ARN/inmunologíaRESUMEN
Hematological traits are important clinical indicators, the genetic determinants of which have not been fully investigated. Common measures of hematological traits include red blood cell (RBC) count, hemoglobin concentration (HGB), hematocrit (HCT), mean corpuscular hemoglobin (MCH), MCH concentration (MCHC), mean corpuscular volume (MCV), platelet count (PLT) and white blood cell (WBC) count. We carried out a genome-wide association study of the eight common hematological traits among 7943 African-American children and 6234 Caucasian children. In African Americans, we report five novel associations of HBE1 variants with HCT and MCHC, the alpha-globin gene cluster variants with RBC and MCHC, and a variant at the ARHGEF3 locus with PLT, as well as replication of four previously reported loci at genome-wide significance. In Caucasians, we report a novel association of variants at the COPZ1 locus with PLT as well as replication of four previously reported loci at genome-wide significance. Extended analysis of an association observed between MCH and the alpha-globin gene cluster variants demonstrated independent effects and epistatic interaction at the locus, impacting the risk of iron deficiency anemia in African Americans with specific genotype states. In summary, we extend the understanding of genetic variants underlying hematological traits based on analyses in African-American children.
Asunto(s)
Anemia Ferropénica/genética , Negro o Afroamericano/genética , Epistasis Genética , Estudio de Asociación del Genoma Completo , Población Blanca/genética , Anemia Ferropénica/sangre , Anemia Ferropénica/etnología , Índices de Eritrocitos , Eritrocitos/metabolismo , Sitios Genéticos , Predisposición Genética a la Enfermedad , Genotipo , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Polimorfismo de Nucleótido Simple , Factores de Intercambio de Guanina Nucleótido Rho , Globinas alfa/genéticaRESUMEN
Common copy number variations (CNVs) represent a significant source of genetic diversity, yet their influence on phenotypic variability, including disease susceptibility, remains poorly understood. To address this problem in human cancer, we performed a genome-wide association study of CNVs in the childhood cancer neuroblastoma, a disease in which single nucleotide polymorphism variations are known to influence susceptibility. We first genotyped 846 Caucasian neuroblastoma patients and 803 healthy Caucasian controls at approximately 550,000 single nucleotide polymorphisms, and performed a CNV-based test for association. We then replicated significant observations in two independent sample sets comprised of a total of 595 cases and 3,357 controls. Here we describe the identification of a common CNV at chromosome 1q21.1 associated with neuroblastoma in the discovery set, which was confirmed in both replication sets. This CNV was validated by quantitative polymerase chain reaction, fluorescent in situ hybridization and analysis of matched tumour specimens, and was shown to be heritable in an independent set of 713 cancer-free parent-offspring trios. We identified a previously unknown transcript within the CNV that showed high sequence similarity to several neuroblastoma breakpoint family (NBPF) genes and represents a new member of this gene family (NBPF23). This transcript was preferentially expressed in fetal brain and fetal sympathetic nervous tissues, and the expression level was strictly correlated with CNV state in neuroblastoma cells. These data demonstrate that inherited copy number variation at 1q21.1 is associated with neuroblastoma and implicate a previously unknown neuroblastoma breakpoint family gene in early tumorigenesis of this childhood cancer.
Asunto(s)
Cromosomas Humanos Par 1/genética , Dosificación de Gen/genética , Variación Genética/genética , Neuroblastoma/genética , Niño , Rotura Cromosómica , Feto/metabolismo , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Hibridación Fluorescente in Situ , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple/genética , ARN Mensajero/genética , Reproducibilidad de los Resultados , Población Blanca/genéticaRESUMEN
Autism spectrum disorders (ASDs) represent a group of childhood neurodevelopmental and neuropsychiatric disorders characterized by deficits in verbal communication, impairment of social interaction, and restricted and repetitive patterns of interests and behaviour. To identify common genetic risk factors underlying ASDs, here we present the results of genome-wide association studies on a cohort of 780 families (3,101 subjects) with affected children, and a second cohort of 1,204 affected subjects and 6,491 control subjects, all of whom were of European ancestry. Six single nucleotide polymorphisms between cadherin 10 (CDH10) and cadherin 9 (CDH9)-two genes encoding neuronal cell-adhesion molecules-revealed strong association signals, with the most significant SNP being rs4307059 (P = 3.4 x 10(-8), odds ratio = 1.19). These signals were replicated in two independent cohorts, with combined P values ranging from 7.4 x 10(-8) to 2.1 x 10(-10). Our results implicate neuronal cell-adhesion molecules in the pathogenesis of ASDs, and represent, to our knowledge, the first demonstration of genome-wide significant association of common variants with susceptibility to ASDs.