Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 524
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(2): 404-421.e16, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33357445

RESUMEN

Hepatocellular carcinoma (HCC) has high relapse and low 5-year survival rates. Single-cell profiling in relapsed HCC may aid in the design of effective anticancer therapies, including immunotherapies. We profiled the transcriptomes of ∼17,000 cells from 18 primary or early-relapse HCC cases. Early-relapse tumors have reduced levels of regulatory T cells, increased dendritic cells (DCs), and increased infiltrated CD8+ T cells, compared with primary tumors, in two independent cohorts. Remarkably, CD8+ T cells in recurrent tumors overexpressed KLRB1 (CD161) and displayed an innate-like low cytotoxic state, with low clonal expansion, unlike the classical exhausted state observed in primary HCC. The enrichment of these cells was associated with a worse prognosis. Differential gene expression and interaction analyses revealed potential immune evasion mechanisms in recurrent tumor cells that dampen DC antigen presentation and recruit innate-like CD8+ T cells. Our comprehensive picture of the HCC ecosystem provides deeper insights into immune evasion mechanisms associated with tumor relapse.


Asunto(s)
Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Recurrencia Local de Neoplasia/patología , Análisis de la Célula Individual , Linfocitos T CD8-positivos/inmunología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/inmunología , Regulación Neoplásica de la Expresión Génica , Humanos , Células Asesinas Naturales/inmunología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/inmunología , Células Mieloides/metabolismo , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/inmunología , Fenotipo , RNA-Seq , Microambiente Tumoral
2.
Nature ; 630(8018): 943-949, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38898271

RESUMEN

Spatial transcriptomics measures in situ gene expression at millions of locations within a tissue1, hitherto with some trade-off between transcriptome depth, spatial resolution and sample size2. Although integration of image-based segmentation has enabled impactful work in this context, it is limited by imaging quality and tissue heterogeneity. By contrast, recent array-based technologies offer the ability to measure the entire transcriptome at subcellular resolution across large samples3-6. Presently, there exist no approaches for cell type identification that directly leverage this information to annotate individual cells. Here we propose a multiscale approach to automatically classify cell types at this subcellular level, using both transcriptomic information and spatial context. We showcase this on both targeted and whole-transcriptome spatial platforms, improving cell classification and morphology for human kidney tissue and pinpointing individual sparsely distributed renal mouse immune cells without reliance on image data. By integrating these predictions into a topological pipeline based on multiparameter persistent homology7-9, we identify cell spatial relationships characteristic of a mouse model of lupus nephritis, which we validate experimentally by immunofluorescence. The proposed framework readily generalizes to new platforms, providing a comprehensive pipeline bridging different levels of biological organization from genes through to tissues.


Asunto(s)
Células , Perfilación de la Expresión Génica , Espacio Intracelular , Riñón , Transcriptoma , Animales , Femenino , Humanos , Ratones , Células/clasificación , Células/metabolismo , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica/métodos , Riñón/citología , Riñón/inmunología , Riñón/metabolismo , Riñón/patología , Nefritis Lúpica/genética , Nefritis Lúpica/inmunología , Nefritis Lúpica/metabolismo , Nefritis Lúpica/patología , Reproducibilidad de los Resultados , Espacio Intracelular/genética , Espacio Intracelular/metabolismo
3.
Cell ; 148(5): 873-85, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22385957

RESUMEN

Tumor heterogeneity presents a challenge for inferring clonal evolution and driver gene identification. Here, we describe a method for analyzing the cancer genome at a single-cell nucleotide level. To perform our analyses, we first devised and validated a high-throughput whole-genome single-cell sequencing method using two lymphoblastoid cell line single cells. We then carried out whole-exome single-cell sequencing of 90 cells from a JAK2-negative myeloproliferative neoplasm patient. The sequencing data from 58 cells passed our quality control criteria, and these data indicated that this neoplasm represented a monoclonal evolution. We further identified essential thrombocythemia (ET)-related candidate mutations such as SESN2 and NTRK1, which may be involved in neoplasm progression. This pilot study allowed the initial characterization of the disease-related genetic architecture at the single-cell nucleotide level. Further, we established a single-cell sequencing method that opens the way for detailed analyses of a variety of tumor types, including those with high genetic complex between patients.


Asunto(s)
Evolución Clonal , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Janus Quinasa 2/genética , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/patología , Análisis de la Célula Individual/métodos , Trombocitemia Esencial/genética , Exoma , Genoma Humano , Humanos , Masculino , Persona de Mediana Edad , Mutación
4.
Cell ; 148(5): 886-95, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22385958

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is the most common kidney cancer and has very few mutations that are shared between different patients. To better understand the intratumoral genetics underlying mutations of ccRCC, we carried out single-cell exome sequencing on a ccRCC tumor and its adjacent kidney tissue. Our data indicate that this tumor was unlikely to have resulted from mutations in VHL and PBRM1. Quantitative population genetic analysis indicates that the tumor did not contain any significant clonal subpopulations and also showed that mutations that had different allele frequencies within the population also had different mutation spectrums. Analyses of these data allowed us to delineate a detailed intratumoral genetic landscape at a single-cell level. Our pilot study demonstrates that ccRCC may be more genetically complex than previously thought and provides information that can lead to new ways to investigate individual tumors, with the aim of developing more effective cellular targeted therapies.


Asunto(s)
Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/patología , Análisis de la Célula Individual/métodos , Proteínas de Unión al ADN , Exoma , Frecuencia de los Genes , Humanos , Masculino , Persona de Mediana Edad , Mutación , Proteínas Nucleares/genética , Filogenia , Proyectos Piloto , Análisis de Componente Principal , Factores de Transcripción/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética
5.
Hum Mol Genet ; 33(4): 342-354, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37944069

RESUMEN

Peripheral blood mononuclear cells (PBMCs) reflect systemic immune response during cancer progression. However, a comprehensive understanding of the composition and function of PBMCs in cancer patients is lacking, and the potential of these features to assist cancer diagnosis is also unclear. Here, the compositional and status differences between cancer patients and healthy donors in PBMCs were investigated by single-cell RNA sequencing (scRNA-seq), involving 262,025 PBMCs from 68 cancer samples and 14 healthy samples. We observed an enhanced activation and differentiation of most immune subsets in cancer patients, along with reduction of naïve T cells, expansion of macrophages, impairment of NK cells and myeloid cells, as well as tumor promotion and immunosuppression. Based on characteristics including differential cell type abundances and/or hub genes identified from weight gene co-expression network analysis (WGCNA) modules of each major cell type, we applied logistic regression to construct cancer diagnosis models. Furthermore, we found that the above models can distinguish cancer patients and healthy donors with high sensitivity. Our study provided new insights into using the features of PBMCs in non-invasive cancer diagnosis.


Asunto(s)
Leucocitos Mononucleares , Neoplasias , Humanos , Análisis de Expresión Génica de una Sola Célula , Neoplasias/diagnóstico , Neoplasias/genética , Diferenciación Celular , Transformación Celular Neoplásica
6.
Nature ; 578(7793): 129-136, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32025019

RESUMEN

Transcript alterations often result from somatic changes in cancer genomes1. Various forms of RNA alterations have been described in cancer, including overexpression2, altered splicing3 and gene fusions4; however, it is difficult to attribute these to underlying genomic changes owing to heterogeneity among patients and tumour types, and the relatively small cohorts of patients for whom samples have been analysed by both transcriptome and whole-genome sequencing. Here we present, to our knowledge, the most comprehensive catalogue of cancer-associated gene alterations to date, obtained by characterizing tumour transcriptomes from 1,188 donors of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA)5. Using matched whole-genome sequencing data, we associated several categories of RNA alterations with germline and somatic DNA alterations, and identified probable genetic mechanisms. Somatic copy-number alterations were the major drivers of variations in total gene and allele-specific expression. We identified 649 associations of somatic single-nucleotide variants with gene expression in cis, of which 68.4% involved associations with flanking non-coding regions of the gene. We found 1,900 splicing alterations associated with somatic mutations, including the formation of exons within introns in proximity to Alu elements. In addition, 82% of gene fusions were associated with structural variants, including 75 of a new class, termed 'bridged' fusions, in which a third genomic location bridges two genes. We observed transcriptomic alteration signatures that differ between cancer types and have associations with variations in DNA mutational signatures. This compendium of RNA alterations in the genomic context provides a rich resource for identifying genes and mechanisms that are functionally implicated in cancer.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , ARN/genética , Variaciones en el Número de Copia de ADN , ADN de Neoplasias , Genoma Humano , Genómica , Humanos , Transcriptoma
7.
Proc Natl Acad Sci U S A ; 120(21): e2300066120, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37186821

RESUMEN

It is now well known that solids under ultra-high-pressure shock compression will enter the warm dense matter (WDM) regime which connects condensed matter and hot plasma. How condensed matter turns into the WDM, however, remains largely unexplored due to the lack of data in the transition pressure range. In this letter, by employing the unique high-Z three-stage gas gun launcher technique developed recently, we compress gold into TPa shock pressure to fill the gap inaccessible by the two-stage gas gun and laser shock experiments. With the aid of high-precision Hugoniot data obtained experimentally, we observe a clear softening behavior beyond ~560 GPa. The state-of-the-art ab-initio molecular dynamics calculations reveal that the softening is caused by the ionization of 5d electrons in gold. This work quantifies the partial ionization effect of electrons under extreme conditions, which is critical to model the transition region between condensed matter and WDM.

8.
Nano Lett ; 24(26): 7953-7961, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38888317

RESUMEN

The physical properties of nanoscale cell-extracellular matrix (ECM) ligands profoundly impact biological processes, such as adhesion, motility, and differentiation. While the mechanoresponse of cells to static ligands is well-studied, the effect of dynamic ligand presentation with "adaptive" properties on cell mechanotransduction remains less understood. Utilizing a controllable diffusible ligand interface, we demonstrated that cells on surfaces with rapid ligand mobility could recruit ligands through activating integrin α5ß1, leading to faster focal adhesion growth and spreading at the early adhesion stage. By leveraging UV-light-sensitive anchor molecules to trigger a "dynamic to static" transformation of ligands, we sequentially activated α5ß1 and αvß3 integrins, significantly promoting osteogenic differentiation of mesenchymal stem cells. This study illustrates how manipulating molecular dynamics can directly influence stem cell fate, suggesting the potential of "sequentially" controlled mobile surfaces as adaptable platforms for engineering smart biomaterial coatings.


Asunto(s)
Adhesión Celular , Diferenciación Celular , Mecanotransducción Celular , Células Madre Mesenquimatosas , Propiedades de Superficie , Células Madre Mesenquimatosas/citología , Humanos , Integrina alfa5beta1/metabolismo , Osteogénesis , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Integrina alfaVbeta3/metabolismo , Ligandos , Adhesiones Focales
10.
J Environ Manage ; 361: 121268, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38820787

RESUMEN

Carbon dioxide (CO2) production and emissions from inland waters play considerable roles in global atmospheric CO2 sources, while there are still uncertainties regarding notable nutrient inputs and anthropogenic activities. Urban inland waters, with frequently anthropogenic modifications and severely nitrogen loadings, were hotspots for CO2 emissions. Here, we investigated the spatiotemporal patterns of partial pressure of CO2 (pCO2) and CO2 fluxes (FCO2) in typical urban inland waters in Tianjin, China. Our observation indicated that pCO2 values were oversaturated in highly polluted waters, particularly in sewage rivers and urban rivers, exhibiting approximately 9 times higher than the atmosphere equilibrium concentration during sampling campaigns. Obviously, the spatiotemporal distributions of pCO2 and FCO2 emphasized that the water environmental conditions and anthropogenic activities jointly adjusted primary productivity and biological respiration of inland waters. Meanwhile, statistically positive correlations between pCO2/FCO2 and NH4+-N/NO3--N (p < 0.05) suggested that nitrogen biogeochemical processes, especially the nitrification, played a dominant role in CO2 emissions attributing to the water acidification that stimulated CO2 production and emissions. Except for slight CO2 sinks in waters with low organic contents, the total CO2 emissions from the urban surface waters of Tianjin were remarkable (286.8 Gg yr-1). The results emphasized that the reductions of nitrogen loadings, sewage draining waters, and agricultural pollution could alleviate CO2 emissions from urban inland waters.


Asunto(s)
Dióxido de Carbono , Nitrógeno , Dióxido de Carbono/análisis , Nitrógeno/análisis , Monitoreo del Ambiente , China , Ríos/química
11.
J Proteome Res ; 22(10): 3254-3263, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37639699

RESUMEN

Systemic sclerosis (SSc) is a systemic autoimmune disorder that leads to vasculopathy and tissue fibrosis. A lack of reliable biomarkers has been a challenge for clinical diagnosis of the disease. We employed a protein array-based approach to identify and validate SSc-specific autoantibodies. Phase I involved profiled autoimmunity using human proteome microarray (HuProt arrays) with 90 serum samples: 40 patients with SSc, 30 patients diagnosed with autoimmune diseases, and 20 healthy subjects. In Phase II, we constructed a focused array with candidates identified antigens and used this to profile a much larger cohort comprised of serum samples. Finally, we used a western blot analysis to validate the serum of validated proteins with high signal values. Bioinformatics analysis allowed us to identify 113 candidate autoantigens that were significantly associated with SSc. This two-phase strategy allowed us to identify and validate anti-small nuclear ribonucleoprotein polypeptide A (SNRPA) as a novel SSc-specific serological biomarker. The observed positive rate of anti-SNRPA antibody in patients with SSc was 11.25%, which was significantly higher than that of any disease control group (3.33%) or healthy controls (1%). In conclusion, anti-SNRPA autoantibody serves as a novel biomarker for SSc diagnosis and may be promising for clinical applications.


Asunto(s)
Enfermedades Autoinmunes , Esclerodermia Sistémica , Humanos , Esclerodermia Sistémica/diagnóstico , Esclerodermia Sistémica/metabolismo , Autoanticuerpos , Biomarcadores/metabolismo , Autoinmunidad , Péptidos
12.
Anal Chem ; 95(25): 9697-9705, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37300490

RESUMEN

T-cell receptor (TCR)-engineered T cells can precisely recognize a broad repertoire of targets derived from both intracellular and surface proteins of tumor cells. TCR-T adoptive cell therapy has shown safety and promising efficacy in solid tumor immunotherapy. However, antigen-specific functional TCR screening is time-consuming and expensive, which limits its application clinically. Here, we developed a novel integrated antigen-TCR screening platform based on droplet microfluidic technology, enabling high-throughput peptide-major histocompatibility complex (pMHC)-to-TCR paired screening with a high sensitivity and low background signal. We introduced DNA barcoding technology to label peptide antigen candidate-loaded antigen-presenting cells and Jurkat reporter cells to check the specificity of pMHC-TCR candidates. Coupled with the next-generation sequencing pipeline, interpretation of the DNA barcodes and the gene expression level of the Jurkat T-cell activation pathway provided a clear peptide-MHC-TCR recognition relationship. Our proof-of-principle study demonstrates that the platform could achieve pMHC-TCR paired high-throughput screening, which is expected to be used in the cross-reactivity and off-target high-throughput paired testing of candidate pMHC-TCRs in clinical applications.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Microfluídica , Humanos , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Antígenos , Péptidos/metabolismo
13.
Artículo en Inglés | MEDLINE | ID: mdl-37934151

RESUMEN

OBJECTIVE: Airway obstruction can occur in patients with relapsing polychondritis (RP) with laryngeal involvement, occasionally requiring tracheostomy to avoid serious complications. Herein, we assessed the risk factors for tracheostomy and developed a risk prediction model. METHODS: Clinical characteristics of patients with RP, with and without tracheostomy, were compared using multivariate logistic regression analysis to identify risk factors. A nomogram was developed to predict the population at risk of requiring tracheostomy. RESULTS: In total, 232 patients with RP were reviewed, of whom 146 had laryngeal involvement. Among them, 21 underwent a tracheostomy. Multivariate logistic analysis identified ages ≤ 25 or ≥ 65 (p< 0.001, OR: 24.584, 95% CI: 5.310-113.815), laryngotracheal oedema (p< 0.001, OR: 26.685, 95% CI: 4.208-169.228), and pulmonary infection (p= 0.001, OR: 18.834, 95% CI: 3.172-111.936) as independent risk factors for tracheostomy. A nomogram with a C-index of 0.936 (95% CI: 0.894-0.977) was established based on the multivariate analysis. Internal bootstrap resampling (1000 repetitions) confirmed sufficient discriminatory power with a C-index of 0.926. Decision curve analysis indicated a superior net benefit of the nomogram. Tracheostomy was associated with a significant increase in the in-hospital mortality rate (p= 0.021), but it did not affect the long-term survival rate (p= 0.706). CONCLUSION: Tracheostomy is associated with an increase in the short-term mortality rate but does not affect the long-term survival rate. The nomogram developed in this study may help identify patients at high risk for tracheostomy and aid in clinical decision-making.

14.
Insect Mol Biol ; 32(3): 251-262, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36636859

RESUMEN

Animal behaviour regulation is a complex process involving many factors, and the nervous system is an essential factor in this process. In many species, pathogens can alter host behaviour by affecting the host's nervous system. An interesting example is that the silkworm shows enhanced locomotor behaviour after being infected with the nucleopolyhedrosis virus. In this study, we analysed the transcriptome of the silkworm brain at different time points after infection and found that various genes related to behaviour regulation changed after infection. In-depth analysis showed that the tyrosine hydroxylase gene might be a key candidate gene, and the content of dopamine, its downstream metabolite, increased significantly in the brain of silkworms infected with the virus. After the injection of tyrosine hydroxylase inhibitor into the infected silkworm, the dopamine content in the silkworm brain decreased and the locomotor behaviour caused by the virus was blocked successfully. These results confirm that tyrosine hydroxylase is involved in regulating enhanced locomotor behaviour after virus infection in silkworms. Furthermore, the tyrosine hydroxylase gene was specifically overexpressed in the brain of the silkworm, and the transgenic silkworm was enhanced in locomotor behaviour and foraging behaviour. These results suggest that the tyrosine hydroxylase gene plays a vital role in regulating insect behaviour.


Asunto(s)
Bombyx , Depresores del Sistema Nervioso Central , Animales , Bombyx/genética , Bombyx/metabolismo , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo , Dopamina/metabolismo , Encéfalo/metabolismo , Animales Modificados Genéticamente
15.
Anesth Analg ; 136(6): 1075-1083, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37058430

RESUMEN

BACKGROUND: Intravenous dexmedetomidine has been reported to decrease the occurrence of postoperative delirium (POD) in elderly patients. Nevertheless, some previous studies have indicated that intratracheal dexmedetomidine and intranasal dexmedetomidine are also effective and convenient. The current study aimed to compare the effect of different administration routes of dexmedetomidine on POD in elderly patients. METHODS: We randomly allocated 150 patients (aged 60 years or more) scheduled for spinal surgery to receive intravenous dexmedetomidine (0.6 µg/kg), intranasal dexmedetomidine (1 µg/kg) before anesthesia induction, or intratracheal dexmedetomidine (0.6 µg/kg) after anesthesia induction. The primary outcome was the frequency of delirium during the first 3 postoperative days. The secondary outcomes were the incidence of postoperative sore throat (POST) and sleep quality. Adverse events were recorded, and routine treatment was performed. RESULTS: Compared with the intranasal group, the intravenous group had a significantly lower occurrence of POD within 3 days (3 of 49 [6.1%] vs 14 of 50 [28.0%]; odds ratio [OR], 0.17; 95% confidence intervals [CIs], 0.05-0.63; P < .017). Meanwhile, patients in the intratracheal group had a lower incidence of POD than those in the intranasal group (5 of 49 [10.2%] vs 14 of 50 [28.0%]; OR, 0.29; 95% CI, 0.10-0.89; P < .017). Whereas, there was no difference between the intratracheal and intravenous groups (5 of 49 [10.2%] vs 3 of 49 [6.1%]; OR, 1.74; 95% CI, 0.40-7.73; P > .017). The rate of POST was lower in the intratracheal group than that in the other 2 groups at 2 hours after surgery (7 of 49 [14.3%] vs 12 of 49 [24.5%] vs 18 of 50 [36.0%], P < .017, respectively). Intravenous dexmedetomidine had the lowest Pittsburgh Sleep Quality Index score on the second morning after surgery (median [interquartile range {IQR}]: 4 [3-5] vs 6 [4-7] vs 6 [4-7], P < .017, respectively). Compared with the intranasal group, the intravenous group had a higher rate of bradycardia and a lower incidence of postoperative nausea and vomiting ( P < .017). The intranasal group was associated with the highest incidence of hypertension ( P < .017). CONCLUSIONS: For patients aged ≥60 years undergoing spinal surgery, compared with the intranasal route of dexmedetomidine, intravenous and intratracheal dexmedetomidine reduced the incidence of early POD. Meanwhile, intravenous dexmedetomidine was associated with better sleep quality after surgery, and intratracheal dexmedetomidine resulted in a lower incidence of POST. Adverse events were mild in all 3 administration routes of dexmedetomidine.


Asunto(s)
Delirio , Dexmedetomidina , Delirio del Despertar , Anciano , Humanos , Delirio del Despertar/diagnóstico , Delirio del Despertar/epidemiología , Delirio del Despertar/prevención & control , Dexmedetomidina/efectos adversos , Estudios Prospectivos , Delirio/diagnóstico , Delirio/epidemiología , Delirio/etiología , Anestesia General/efectos adversos , Dolor/etiología , Método Doble Ciego
16.
Nano Lett ; 22(18): 7714-7723, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35946594

RESUMEN

Measuring the mechanical interplay between cells and their surrounding microenvironment is vital in cell biology and disease diagnosis. Most current methods can only capture the translational motion of fiduciary markers in the deformed matrix, but their rotational motions are normally ignored. Here, by utilizing single nitrogen-vacancy (NV) centers in nanodiamonds (NDs) as fluorescent markers, we propose a linear polarization modulation (LPM) method to monitor in-plane rotational and translational motions of the substrate caused by cell traction forces. Specifically, precise orientation measurement and localization with background suppression were achieved via optical polarization selective excitation of single NV centers with precisions of ∼0.5°/7.5 s and 2 nm/min, respectively. Additionally, we successfully applied this method to monitor the multidimensional movements of NDs attached to the vicinity of cell focal adhesions. The experimental results agreed well with our theoretical calculations, demonstrating the practicability of the NV-based LPM method in studying mechanobiology and cell-material interactions.


Asunto(s)
Nanodiamantes , Movimiento (Física) , Nitrógeno , Tracción
17.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37895026

RESUMEN

Despite rapid improvements in the accessibility of whole-genome sequencing (WGS), understanding the extent of human genetic variation is limited by the scarce availability of genome sequences from underrepresented populations. Developing the population-scale reference database of Latvian genetic variation may fill the gap in European genomes and improve human genomics research. In this study, we analysed a high-coverage WGS dataset comprising 502 individuals selected from the Genome Database of the Latvian Population. An assessment of variant type, location in the genome, function, medical relevance, and novelty was performed, and a population-specific imputation reference panel (IRP) was developed. We identified more than 18.2 million variants in total, of which 3.3% so far are not represented in gnomAD and dbSNP databases. Moreover, we observed a notable though distinct clustering of the Latvian cohort within the European subpopulations. Finally, our findings demonstrate the improved performance of imputation of variants using the Latvian population-specific reference panel in the Latvian population compared to established IRPs. In summary, our study provides the first WGS data for a regional reference genome that will serve as a resource for the development of precision medicine and complement the global genome dataset, improving the understanding of human genetic variation.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Humanos , Letonia , Secuenciación Completa del Genoma , Genoma Humano , Variación Genética , Genotipo
18.
Biochem Biophys Res Commun ; 608: 14-22, 2022 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-35381424

RESUMEN

The characteristics of neonatal immune cells display intrinsic differences compared with adult immune cells. Therefore, a comprehensive analysis of key gene expression regulation is required to understand the response of the human fetal immune system to infections. Here, we applied single-cell RNA sequencing (scRNA-seq) and single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) to systematically profile umbilical cord blood (UCB) nucleated cells and peripheral blood mononuclear cells (PBMCs) to identify their composition and differentially expressed genes. The immune cells in neonatal UCB demonstrated the expression of key genes, such as HBG2, NFKBIA, JUN, FOS, and TNFAIP3. In contrast, natural killer and T cells, which are constituents of adult PBMCs, exhibited high cytotoxic gene expression. Furthermore, we obtained similar results from the data of scATAC-seq by identifying the status of chromatin accessibility of key genes. Therefore, scRNA-seq and scATAC-seq of neonatal UCB nucleated cells and adult PBMCs could serve as an invaluable resource for elucidating the regulatory mechanisms of responses of distinct immune cell types and further identifying the differences between neonatal and adult immune responses to predict the potential underlying mechanism for neonatal immune tolerance.


Asunto(s)
Sangre Fetal , Análisis de la Célula Individual , Adulto , Cromatina/metabolismo , Humanos , Tolerancia Inmunológica/genética , Recién Nacido , Leucocitos Mononucleares/metabolismo , Análisis de la Célula Individual/métodos , Transposasas/genética
19.
BMC Med ; 20(1): 490, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36536359

RESUMEN

BACKGROUND: Leukocyte telomere length (LTL) is suggested to be a biomarker of biological age and reported to be associated with metabolic diseases such as type 2 diabetes. Glucose metabolic traits including glucose and insulin levels have been reported to be associated with LTL in adulthood. However, there is relatively little research focusing on children's LTL and the association with prenatal exposures. This study investigates the relationship between maternal and offspring glucose metabolism with offspring LTL in early life. METHODS: This study included 882 mother-child pairs from the HAPO Hong Kong Field Centre, with children evaluated at age 7.0 ± 0.4 (mean ± SD) years. Glucose metabolic traits including maternal post-load glucose during pregnancy, children's glucose and insulin levels, and their derived indices at follow-up were measured or calculated. Offspring LTL was assessed using real-time polymerase chain reaction. RESULTS: Sex- and age-adjusted children's LTL was found to be associated with children's HOMA-IR (ß=-0.046 ± 0.016, p=0.005). Interestingly, both children's and maternal post-load glucose levels were positively associated with children's LTL. However, negative associations were observed between children's LTL and children's OGTT insulin levels. In addition, the LTL in females was more strongly associated with pancreatic beta-cell function whilst LTL in males was more strongly associated with OGTT glucose levels. CONCLUSIONS: Our findings suggest a close association between maternal and offspring glucose metabolic traits with early life LTL, with the offspring sex as an important modifier of the disparate relationships in insulin production and response.


Asunto(s)
Diabetes Mellitus Tipo 2 , Masculino , Embarazo , Femenino , Humanos , Adulto , Niño , Estudios Longitudinales , Caracteres Sexuales , Leucocitos , Insulina/metabolismo , Glucosa/metabolismo , Telómero
20.
Bioinformatics ; 37(24): 4704-4711, 2021 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-34289030

RESUMEN

MOTIVATION: Computational reconstruction of clonal evolution in cancers has become a crucial tool for understanding how tumors initiate and progress and how this process varies across patients. The field still struggles, however, with special challenges of applying phylogenetic methods to cancers, such as the prevalence and importance of copy number alteration (CNA) and structural variation events in tumor evolution, which are difficult to profile accurately by prevailing sequencing methods in such a way that subsequent reconstruction by phylogenetic inference algorithms is accurate. RESULTS: In this work, we develop computational methods to combine sequencing with multiplex interphase fluorescence in situ hybridization to exploit the complementary advantages of each technology in inferring accurate models of clonal CNA evolution accounting for both focal changes and aneuploidy at whole-genome scales. By integrating such information in an integer linear programming framework, we demonstrate on simulated data that incorporation of FISH data substantially improves accurate inference of focal CNA and ploidy changes in clonal evolution from deconvolving bulk sequence data. Analysis of real glioblastoma data for which FISH, bulk sequence and single cell sequence are all available confirms the power of FISH to enhance accurate reconstruction of clonal copy number evolution in conjunction with bulk and optionally single-cell sequence data. AVAILABILITY AND IMPLEMENTATION: Source code is available on Github at https://github.com/CMUSchwartzLab/FISH_deconvolution. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Neoplasias , Programas Informáticos , Humanos , Hibridación Fluorescente in Situ , Filogenia , Algoritmos , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA