Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Comput Biol ; 19(7): e1011244, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37506120

RESUMEN

Upon perceiving sensory errors during movements, the human sensorimotor system updates future movements to compensate for the errors, a phenomenon called sensorimotor adaptation. One component of this adaptation is thought to be driven by sensory prediction errors-discrepancies between predicted and actual sensory feedback. However, the mechanisms by which prediction errors drive adaptation remain unclear. Here, auditory prediction error-based mechanisms involved in speech auditory-motor adaptation were examined via the feedback aware control of tasks in speech (FACTS) model. Consistent with theoretical perspectives in both non-speech and speech motor control, the hierarchical architecture of FACTS relies on both the higher-level task (vocal tract constrictions) as well as lower-level articulatory state representations. Importantly, FACTS also computes sensory prediction errors as a part of its state feedback control mechanism, a well-established framework in the field of motor control. We explored potential adaptation mechanisms and found that adaptive behavior was present only when prediction errors updated the articulatory-to-task state transformation. In contrast, designs in which prediction errors updated forward sensory prediction models alone did not generate adaptation. Thus, FACTS demonstrated that 1) prediction errors can drive adaptation through task-level updates, and 2) adaptation is likely driven by updates to task-level control rather than (only) to forward predictive models. Additionally, simulating adaptation with FACTS generated a number of important hypotheses regarding previously reported phenomena such as identifying the source(s) of incomplete adaptation and driving factor(s) for changes in the second formant frequency during adaptation to the first formant perturbation. The proposed model design paves the way for a hierarchical state feedback control framework to be examined in the context of sensorimotor adaptation in both speech and non-speech effector systems.


Asunto(s)
Adaptación Fisiológica , Habla , Humanos , Retroalimentación , Retroalimentación Sensorial , Movimiento
2.
Hum Brain Mapp ; 44(14): 4833-4847, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37516916

RESUMEN

Overlapping clinical presentations in primary progressive aphasia (PPA) variants present challenges for diagnosis and understanding pathophysiology, particularly in the early stages of the disease when behavioral (speech) symptoms are not clearly evident. Divergent atrophy patterns (temporoparietal degeneration in logopenic variant lvPPA, frontal degeneration in nonfluent variant nfvPPA) can partially account for differential speech production errors in the two groups in the later stages of the disease. While the existing dogma states that neurodegeneration is the root cause of compromised behavior and cortical activity in PPA, the extent to which neurophysiological signatures of speech dysfunction manifest independent of their divergent atrophy patterns remain unknown. We test the hypothesis that nonword deficits in lvPPA and nfvPPA arise from distinct patterns of neural oscillations that are unrelated to atrophy. We use a novel structure-function imaging approach integrating magnetoencephalographic imaging of neural oscillations during a non-word repetition task with voxel-based morphometry-derived measures of gray matter volume to isolate neural oscillation abnormalities independent of atrophy. We find reduced beta band neural activity in left temporal regions associated with the late stages of auditory encoding unique to patients with lvPPA and reduced high-gamma neural activity over left frontal regions associated with the early stages of motor preparation in patients with nfvPPA. Neither of these patterns of reduced cortical oscillations was explained by cortical atrophy in our statistical model. These findings highlight the importance of structure-function imaging in revealing neurophysiological sequelae in early stages of dementia when neither structural atrophy nor behavioral deficits are clinically distinct.


Asunto(s)
Afasia Progresiva Primaria , Afasia Progresiva Primaria no Fluente , Humanos , Afasia Progresiva Primaria/diagnóstico por imagen , Neurofisiología , Imagen por Resonancia Magnética , Sustancia Gris/patología , Atrofia/patología , Afasia Progresiva Primaria no Fluente/diagnóstico por imagen , Afasia Progresiva Primaria no Fluente/complicaciones , Afasia Progresiva Primaria no Fluente/patología
3.
Brain ; 143(8): 2545-2560, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32789455

RESUMEN

Reading aloud requires mapping an orthographic form to a phonological one. The mapping process relies on sublexical statistical regularities (e.g. 'oo' to |uː|) or on learned lexical associations between a specific visual form and a series of sounds (e.g. yacht to/jɑt/). Computational, neuroimaging, and neuropsychological evidence suggest that sublexical, phonological and lexico-semantic processes rely on partially distinct neural substrates: a dorsal (occipito-parietal) and a ventral (occipito-temporal) route, respectively. Here, we investigated the spatiotemporal features of orthography-to-phonology mapping, capitalizing on the time resolution of magnetoencephalography and the unique clinical model offered by patients with semantic variant of primary progressive aphasia (svPPA). Behaviourally, patients with svPPA manifest marked lexico-semantic impairments including difficulties in reading words with exceptional orthographic to phonological correspondence (irregular words). Moreover, they present with focal neurodegeneration in the anterior temporal lobe, affecting primarily the ventral, occipito-temporal, lexical route. Therefore, this clinical population allows for testing of specific hypotheses on the neural implementation of the dual-route model for reading, such as whether damage to one route can be compensated by over-reliance on the other. To this end, we reconstructed and analysed time-resolved whole-brain activity in 12 svPPA patients and 12 healthy age-matched control subjects while reading irregular words (e.g. yacht) and pseudowords (e.g. pook). Consistent with previous findings that the dorsal route is involved in sublexical, phonological processes, in control participants we observed enhanced neural activity over dorsal occipito-parietal cortices for pseudowords, when compared to irregular words. This activation was manifested in the beta-band (12-30 Hz), ramping up slowly over 500 ms after stimulus onset and peaking at ∼800 ms, around response selection and production. Consistent with our prediction, svPPA patients did not exhibit this temporal pattern of neural activity observed in controls this contrast. Furthermore, a direct comparison of neural activity between patients and controls revealed a dorsal spatiotemporal cluster during irregular word reading. These findings suggest that the sublexical/phonological route is involved in processing both irregular and pseudowords in svPPA. Together these results provide further evidence supporting a dual-route model for reading aloud mediated by the interplay between lexico-semantic and sublexical/phonological neurocognitive systems. When the ventral route is damaged, as in the case of neurodegeneration affecting the anterior temporal lobe, partial compensation appears to be possible by over-recruitment of the slower, serial attention-dependent, dorsal one.


Asunto(s)
Afasia Progresiva Primaria/fisiopatología , Mapeo Encefálico/métodos , Encéfalo/fisiopatología , Lectura , Anciano , Afasia Progresiva Primaria/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Magnetoencefalografía/métodos , Masculino , Persona de Mediana Edad
4.
J Acoust Soc Am ; 149(2): 1147, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33639824

RESUMEN

Control of speech formants is important for the production of distinguishable speech sounds and is achieved with both feedback and learned feedforward control. However, it is unclear whether the learning of feedforward control involves the mechanisms of feedback control. Speakers have been shown to compensate for unpredictable transient mid-utterance perturbations of pitch and loudness feedback, demonstrating online feedback control of these speech features. To determine whether similar feedback control mechanisms exist in the production of formants, responses to unpredictable vowel formant feedback perturbations were examined. Results showed similar within-trial compensatory responses to formant perturbations that were presented at utterance onset and mid-utterance. The relationship between online feedback compensation to unpredictable formant perturbations and sensorimotor adaptation to consistent formant perturbations was further examined. Within-trial online compensation responses were not correlated with across-trial sensorimotor adaptation. A detailed analysis of within-trial time course dynamics across trials during sensorimotor adaptation revealed that across-trial sensorimotor adaptation responses did not result from an incorporation of within-trial compensation response. These findings suggest that online feedback compensation and sensorimotor adaptation are governed by distinct neural mechanisms. These findings have important implications for models of speech motor control in terms of how feedback and feedforward control mechanisms are implemented.


Asunto(s)
Percepción del Habla , Habla , Retroalimentación , Retroalimentación Sensorial , Fonética
5.
PLoS Comput Biol ; 15(9): e1007321, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31479444

RESUMEN

We present a new computational model of speech motor control: the Feedback-Aware Control of Tasks in Speech or FACTS model. FACTS employs a hierarchical state feedback control architecture to control simulated vocal tract and produce intelligible speech. The model includes higher-level control of speech tasks and lower-level control of speech articulators. The task controller is modeled as a dynamical system governing the creation of desired constrictions in the vocal tract, after Task Dynamics. Both the task and articulatory controllers rely on an internal estimate of the current state of the vocal tract to generate motor commands. This estimate is derived, based on efference copy of applied controls, from a forward model that predicts both the next vocal tract state as well as expected auditory and somatosensory feedback. A comparison between predicted feedback and actual feedback is then used to update the internal state prediction. FACTS is able to qualitatively replicate many characteristics of the human speech system: the model is robust to noise in both the sensory and motor pathways, is relatively unaffected by a loss of auditory feedback but is more significantly impacted by the loss of somatosensory feedback, and responds appropriately to externally-imposed alterations of auditory and somatosensory feedback. The model also replicates previously hypothesized trade-offs between reliance on auditory and somatosensory feedback and shows for the first time how this relationship may be mediated by acuity in each sensory domain. These results have important implications for our understanding of the speech motor control system in humans.


Asunto(s)
Modelos Biológicos , Destreza Motora/fisiología , Habla/fisiología , Biología Computacional , Retroalimentación Sensorial/fisiología , Humanos , Corteza Sensoriomotora/fisiología
6.
J Acoust Soc Am ; 148(6): 3682, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33379892

RESUMEN

A hallmark feature of speech motor control is its ability to learn to anticipate and compensate for persistent feedback alterations, a process referred to as sensorimotor adaptation. Because this process involves adjusting articulation to counter the perceived effects of altering acoustic feedback, there are a number of factors that affect it, including the complex relationship between acoustics and articulation and non-uniformities of speech perception. As a consequence, sensorimotor adaptation is hypothesised to vary as a function of the direction of the applied auditory feedback alteration in vowel formant space. This hypothesis was tested in two experiments where auditory feedback was altered in real time, shifting the frequency values of the first and second formants (F1 and F2) of participants' speech. Shifts were designed on a subject-by-subject basis and sensorimotor adaptation was quantified with respect to the direction of applied shift, normalised for individual speakers. Adaptation was indeed found to depend on the direction of the applied shift in vowel formant space, independent of shift magnitude. These findings have implications for models of sensorimotor adaptation of speech.


Asunto(s)
Percepción del Habla , Habla , Retroalimentación , Retroalimentación Sensorial , Humanos , Acústica del Lenguaje
7.
J Acoust Soc Am ; 145(5): EL372, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31153297

RESUMEN

Cerebellar degeneration (CD) has deleterious effects on speech motor behavior. Recently, a dissociation between feedback and feedforward control of speaking was observed in CD: Whereas CD patients exhibited reduced adaptation across trials to consistent formant feedback alterations, they showed enhanced within-trial compensation for unpredictable formant feedback perturbations. In this study, it was found that CD patients exhibit abnormally increased within-trial vocal compensation responses to unpredictable pitch feedback perturbations. Taken together with recent findings, the results indicate that CD is associated with a general hypersensitivity to auditory feedback during speaking.


Asunto(s)
Retroalimentación Sensorial/fisiología , Percepción de la Altura Tonal/fisiología , Habla/fisiología , Voz/fisiología , Estimulación Acústica/métodos , Adulto , Retroalimentación , Femenino , Humanos , Masculino , Persona de Mediana Edad , Percepción del Habla/fisiología
8.
J Neurosci ; 37(38): 9249-9258, 2017 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-28842410

RESUMEN

The cerebellum has been hypothesized to form a crucial part of the speech motor control network. Evidence for this comes from patients with cerebellar damage, who exhibit a variety of speech deficits, as well as imaging studies showing cerebellar activation during speech production in healthy individuals. To date, the precise role of the cerebellum in speech motor control remains unclear, as it has been implicated in both anticipatory (feedforward) and reactive (feedback) control. Here, we assess both anticipatory and reactive aspects of speech motor control, comparing the performance of patients with cerebellar degeneration and matched controls. Experiment 1 tested feedforward control by examining speech adaptation across trials in response to a consistent perturbation of auditory feedback. Experiment 2 tested feedback control, examining online corrections in response to inconsistent perturbations of auditory feedback. Both male and female patients and controls were tested. The patients were impaired in adapting their feedforward control system relative to controls, exhibiting an attenuated anticipatory response to the perturbation. In contrast, the patients produced even larger compensatory responses than controls, suggesting an increased reliance on sensory feedback to guide speech articulation in this population. Together, these results suggest that the cerebellum is crucial for maintaining accurate feedforward control of speech, but relatively uninvolved in feedback control.SIGNIFICANCE STATEMENT Speech motor control is a complex activity that is thought to rely on both predictive, feedforward control as well as reactive, feedback control. While the cerebellum has been shown to be part of the speech motor control network, its functional contribution to feedback and feedforward control remains controversial. Here, we use real-time auditory perturbations of speech to show that patients with cerebellar degeneration are impaired in adapting feedforward control of speech but retain the ability to make online feedback corrections; indeed, the patients show an increased sensitivity to feedback. These results indicate that the cerebellum forms a crucial part of the feedforward control system for speech but is not essential for online, feedback control.


Asunto(s)
Percepción Auditiva , Cerebelo/fisiopatología , Retroalimentación Sensorial , Trastornos del Habla/fisiopatología , Habla , Degeneraciones Espinocerebelosas/fisiopatología , Anciano , Anticipación Psicológica , Retroalimentación , Femenino , Humanos , Masculino , Red Nerviosa/fisiopatología , Desempeño Psicomotor , Trastornos del Habla/etiología , Degeneraciones Espinocerebelosas/complicaciones
9.
Brain ; 140(10): 2737-2751, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28969381

RESUMEN

Primary progressive aphasia is a syndrome characterized by progressive loss of language abilities with three main phenotypic clinical presentations, including logopenic, non-fluent/agrammatic, and semantic variants. Previous imaging studies have shown unique anatomic impacts within language networks in each variant. However, direct measures of spontaneous neuronal activity and functional integrity of these impacted neural networks in primary progressive aphasia are lacking. The aim of this study was to characterize the spatial and temporal patterns of resting state neuronal synchronizations in primary progressive aphasia syndromes. We hypothesized that resting state brain oscillations will show unique deficits within language network in each variant of primary progressive aphasia. We examined 39 patients with primary progressive aphasia including logopenic variant (n = 14, age = 61 ± 9 years), non-fluent/agrammatic variant (n = 12, age = 71 ± 8 years) and semantic variant (n = 13, age = 65 ± 7 years) using magnetoencephalographic imaging, compared to a control group that was matched in age and gender to each primary progressive aphasia subgroup (n = 20, age = 65 ± 5 years). Each patient underwent a complete clinical evaluation including a comprehensive battery of language tests. We examined the whole-brain resting state functional connectivity as measured by imaginary coherence in each patient group compared to the control cohort, in three frequency oscillation bands-delta-theta (2-8 Hz); alpha (8-12 Hz); beta (12-30 Hz). Each variant showed a distinct spatiotemporal pattern of altered functional connectivity compared to age-matched controls. Specifically, we found significant hyposynchrony of alpha and beta frequency within the left posterior temporal and occipital cortices in patients with the logopenic variant, within the left inferior frontal cortex in patients with the non-fluent/agrammatic variant, and within the left temporo-parietal junction in patients with the semantic variant. Patients with logopenic variant primary progressive aphasia also showed significant hypersynchrony of delta-theta frequency within bilateral medial frontal and posterior parietal cortices. Furthermore, region of interest-based analyses comparing the spatiotemporal patterns of variant-specific regions of interest identified in comparison to age-matched controls showed significant differences between primary progressive aphasia variants themselves. We also found distinct patterns of regional spectral power changes in each primary progressive aphasia variant, compared to age-matched controls. Our results demonstrate neurophysiological signatures of network-specific neuronal dysfunction in primary progressive aphasia variants. The unique spatiotemporal patterns of neuronal synchrony signify diverse neurophysiological disruptions and pathological underpinnings of the language network in each variant.


Asunto(s)
Afasia Progresiva Primaria/patología , Mapeo Encefálico , Encéfalo/fisiopatología , Anciano , Anciano de 80 o más Años , Afasia Progresiva Primaria/clasificación , Afasia Progresiva Primaria/diagnóstico por imagen , Atrofia/etiología , Atrofia/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Ondas Encefálicas/fisiología , Trastornos del Conocimiento/diagnóstico , Trastornos del Conocimiento/etiología , Femenino , Lateralidad Funcional , Sustancia Gris/patología , Humanos , Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética , Magnetoencefalografía , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Curva ROC
10.
J Acoust Soc Am ; 141(4): 2693, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28464681

RESUMEN

A given speech sound will be realized differently depending on the context in which it is produced. Listeners have been found to compensate perceptually for these coarticulatory effects, yet it is unclear to what extent this effect depends on actual production experience. In this study, whether changes in motor-to-sound mappings induced by adaptation to altered auditory feedback can affect perceptual compensation for coarticulation is investigated. Specifically, whether altering how the vowel [i] is produced can affect the categorization of a stimulus continuum between an alveolar and a palatal fricative whose interpretation is dependent on vocalic context is tested. It was found that participants could be sorted into three groups based on whether they tended to oppose the direction of the shifted auditory feedback, to follow it, or a mixture of the two, and that these articulatory responses, not the shifted feedback the participants heard, correlated with changes in perception. These results indicate that sensorimotor adaptation to altered feedback can affect the perception of unaltered yet coarticulatorily-dependent speech sounds, suggesting a modulatory role of sensorimotor experience on speech perception.


Asunto(s)
Señales (Psicología) , Retroalimentación Sensorial , Acústica del Lenguaje , Calidad de la Voz , Estimulación Acústica , Adulto , Audiometría del Habla , Femenino , Humanos , Masculino , Medición de la Producción del Habla , Adulto Joven
11.
Hum Brain Mapp ; 37(4): 1474-85, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26917046

RESUMEN

Modulation of vocal pitch is a key speech feature that conveys important linguistic and affective information. Auditory feedback is used to monitor and maintain pitch. We examined induced neural high gamma power (HGP) (65-150 Hz) using magnetoencephalography during pitch feedback control. Participants phonated into a microphone while hearing their auditory feedback through headphones. During each phonation, a single real-time 400 ms pitch shift was applied to the auditory feedback. Participants compensated by rapidly changing their pitch to oppose the pitch shifts. This behavioral change required coordination of the neural speech motor control network, including integration of auditory and somatosensory feedback to initiate change in motor plans. We found increases in HGP across both hemispheres within 200 ms of pitch shifts, covering left sensory and right premotor, parietal, temporal, and frontal regions, involved in sensory detection and processing of the pitch shift. Later responses to pitch shifts (200-300 ms) were right dominant, in parietal, frontal, and temporal regions. Timing of activity in these regions indicates their role in coordinating motor change and detecting and processing of the sensory consequences of this change. Subtracting out cortical responses during passive listening to recordings of the phonations isolated HGP increases specific to speech production, highlighting right parietal and premotor cortex, and left posterior temporal cortex involvement in the motor response. Correlation of HGP with behavioral compensation demonstrated right frontal region involvement in modulating participant's compensatory response. This study highlights the bihemispheric sensorimotor cortical network involvement in auditory feedback-based control of vocal pitch.


Asunto(s)
Retroalimentación Sensorial/fisiología , Lateralidad Funcional/fisiología , Red Nerviosa/fisiología , Percepción de la Altura Tonal/fisiología , Corteza Sensoriomotora/fisiología , Habla/fisiología , Estimulación Acústica/métodos , Potenciales Evocados Auditivos/fisiología , Femenino , Humanos , Magnetoencefalografía/métodos , Masculino , Estimulación Luminosa/métodos
12.
Proc Natl Acad Sci U S A ; 110(7): 2653-8, 2013 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-23345447

RESUMEN

The control of vocalization is critically dependent on auditory feedback. Here, we determined the human peri-Sylvian speech network that mediates feedback control of pitch using direct cortical recordings. Subjects phonated while a real-time signal processor briefly perturbed their output pitch (speak condition). Subjects later heard the same recordings of their auditory feedback (listen condition). In posterior superior temporal gyrus, a proportion of sites had suppressed responses to normal feedback, whereas other spatially independent sites had enhanced responses to altered feedback. Behaviorally, speakers compensated for perturbations by changing their pitch. Single-trial analyses revealed that compensatory vocal changes were predicted by the magnitude of both auditory and subsequent ventral premotor responses to perturbations. Furthermore, sites whose responses to perturbation were enhanced in the speaking condition exhibited stronger correlations with behavior. This sensorimotor cortical network appears to underlie auditory feedback-based control of vocal pitch in humans.


Asunto(s)
Retroalimentación Sensorial/fisiología , Fonación/fisiología , Discriminación de la Altura Tonal/fisiología , Lóbulo Temporal/fisiología , Estimulación Acústica , Análisis de Varianza , Humanos , Factores de Tiempo
13.
J Neurosci ; 33(41): 16110-6, 2013 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-24107944

RESUMEN

How precisely does the brain predict the sensory consequences of our actions? Efference copy is thought to reflect the predicted sensation of self-produced motor acts, such as the auditory feedback heard while speaking. Here, we use magnetoencephalographic imaging (MEG-I) in human speakers to demonstrate that efference copy prediction does not track movement variability across repetitions of the same motor task. Specifically, spoken vowels were less accurately predicted when they were less similar to a speaker's median production, even though the prediction is thought to be based on the very motor commands that generate each vowel. Auditory cortical responses to less prototypical speech productions were less suppressed, resembling responses to speech errors, and were correlated with later corrective movement, suggesting that the suppression may be functionally significant for error correction. The failure of the motor system to accurately predict less prototypical speech productions suggests that the efferent-driven suppression does not reflect a sensory prediction, but a sensory goal.


Asunto(s)
Encéfalo/fisiología , Potenciales Evocados Auditivos/fisiología , Percepción del Habla/fisiología , Habla/fisiología , Femenino , Humanos , Magnetoencefalografía , Masculino
14.
J Neurosci ; 33(13): 5439-53, 2013 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-23536060

RESUMEN

Despite significant research and important clinical correlates, direct neural evidence for a phonological loop linking speech perception, short-term memory and production remains elusive. To investigate these processes, we acquired whole-head magnetoencephalographic (MEG) recordings from human subjects performing a variable-length syllable sequence reproduction task. The MEG sensor data were source localized using a time-frequency optimized spatially adaptive filter, and we examined the time courses of cortical oscillatory power and the correlations of oscillatory power with behavior between onset of the audio stimulus and the overt speech response. We found dissociations between time courses of behaviorally relevant activations in a network of regions falling primarily within the dorsal speech stream. In particular, verbal working memory load modulated high gamma power in both Sylvian-parietal-temporal and Broca's areas. The time courses of the correlations between high gamma power and subject performance clearly alternated between these two regions throughout the task. Our results provide the first evidence of a reverberating input-output buffer system in the dorsal stream underlying speech sensorimotor integration, consistent with recent phonological loop, competitive queuing, and speech-motor control models. These findings also shed new light on potential sources of speech dysfunction in aphasia and neuropsychiatric disorders, identifying anatomically and behaviorally dissociable activation time windows critical for successful speech reproduction.


Asunto(s)
Mapeo Encefálico , Corteza Cerebral/fisiología , Memoria a Corto Plazo/fisiología , Fonética , Percepción del Habla/fisiología , Estimulación Acústica , Vías Auditivas/fisiología , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Lingüística , Imagen por Resonancia Magnética , Magnetoencefalografía , Masculino , Tiempo de Reacción/fisiología , Estadística como Asunto , Factores de Tiempo
15.
Neuroimage ; 86: 525-35, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24076223

RESUMEN

Auditory feedback is used to monitor and correct for errors in speech production, and one of the clearest demonstrations of this is the pitch perturbation reflex. During ongoing phonation, speakers respond rapidly to shifts of the pitch of their auditory feedback, altering their pitch production to oppose the direction of the applied pitch shift. In this study, we examine the timing of activity within a network of brain regions thought to be involved in mediating this behavior. To isolate auditory feedback processing relevant for motor control of speech, we used magnetoencephalography (MEG) to compare neural responses to speech onset and to transient (400ms) pitch feedback perturbations during speaking with responses to identical acoustic stimuli during passive listening. We found overlapping, but distinct bilateral cortical networks involved in monitoring speech onset and feedback alterations in ongoing speech. Responses to speech onset during speaking were suppressed in bilateral auditory and left ventral supramarginal gyrus/posterior superior temporal sulcus (vSMG/pSTS). In contrast, during pitch perturbations, activity was enhanced in bilateral vSMG/pSTS, bilateral premotor cortex, right primary auditory cortex, and left higher order auditory cortex. We also found speaking-induced delays in responses to both unaltered and altered speech in bilateral primary and secondary auditory regions, left vSMG/pSTS and right premotor cortex. The network dynamics reveal the cortical processing involved in both detecting the speech error and updating the motor plan to create the new pitch output. These results implicate vSMG/pSTS as critical in both monitoring auditory feedback and initiating rapid compensation to feedback errors.


Asunto(s)
Mapeo Encefálico , Corteza Cerebral/fisiología , Retroalimentación Fisiológica/fisiología , Lateralidad Funcional/fisiología , Red Nerviosa/fisiología , Percepción de la Altura Tonal/fisiología , Habla/fisiología , Estimulación Acústica/métodos , Femenino , Humanos , Masculino
16.
Neuroimage ; 100: 219-36, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24945663

RESUMEN

OBJECT: Within the primary motor cortex, navigated transcranial magnetic stimulation (nTMS) has been shown to yield maps strongly correlated with those generated by direct cortical stimulation (DCS). However, the stimulation parameters for repetitive nTMS (rTMS)-based language mapping are still being refined. For this purpose, the present study compares two rTMS protocols, which differ in the timing of pulse train onset relative to picture presentation onset during object naming. Results were the correlated with DCS language mapping during awake surgery. METHODS: Thirty-two patients with left-sided perisylvian tumors were examined by rTMS prior to awake surgery. Twenty patients underwent rTMS pulse trains starting at 300 ms after picture presentation onset (delayed TMS), whereas another 12 patients received rTMS pulse trains starting at the picture presentation onset (ONSET TMS). These rTMS results were then evaluated for correlation with intraoperative DCS results as gold standard in terms of differential consistencies in receiver operating characteristics (ROC) statistics. Logistic regression analysis by protocols and brain regions were conducted. RESULTS: Within and around Broca's area, there was no difference in sensitivity (onset TMS: 100%, delayed TMS: 100%), negative predictive value (NPV) (onset TMS: 100%, delayed TMS: 100%), and positive predictive value (PPV) (onset TMS: 55%, delayed TMS: 54%) between the two protocols compared to DCS. However, specificity differed significantly (onset TMS: 67%, delayed TMS: 28%). In contrast, for posterior language regions, such as supramarginal gyrus, angular gyrus, and posterior superior temporal gyrus, early pulse train onset stimulation showed greater specificity (onset TMS: 92%, delayed TMS: 20%), NPV (onset TMS: 92%, delayed TMS: 57%) and PPV (onset TMS: 75%, delayed TMS: 30%) with comparable sensitivity (onset TMS: 75%, delayed TMS: 70%). Logistic regression analysis also confirmed the greater fit of the predictions by rTMS that had the pulse train onset coincident with the picture presentation onset when compared to the delayed stimulation. Analyses of differential disruption patterns of mapped cortical regions were further able to distinguish clusters of cortical regions standardly associated with semantic and pre-vocalization phonological networks proposed in various models of word production. Repetitive nTMS predictions by both protocols correlate well with DCS outcomes especially in Broca's region, particularly with regard to TMS negative predictions. CONCLUSIONS: With this study, we have demonstrated that rTMS stimulation onset coincident with picture presentation onset improves the accuracy of preoperative language maps, particularly within posterior language areas. Moreover, immediate and delayed pulse train onsets may have complementary disruption patterns that could differentially capture cortical regions causally necessary for semantic and pre-vocalization phonological networks.


Asunto(s)
Mapeo Encefálico/métodos , Lenguaje , Neuronavegación/métodos , Estimulación Transcraneal de Corriente Directa/normas , Estimulación Magnética Transcraneal/normas , Adulto , Anciano , Mapeo Encefálico/normas , Neoplasias Encefálicas/cirugía , Corteza Cerebral , Femenino , Humanos , Monitorización Neurofisiológica Intraoperatoria , Masculino , Persona de Mediana Edad , Neuronavegación/normas , Cuidados Preoperatorios/métodos , Cuidados Preoperatorios/normas , Estimulación Transcraneal de Corriente Directa/métodos , Estimulación Magnética Transcraneal/métodos
17.
Sci Rep ; 14(1): 5108, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429404

RESUMEN

Self-agency is the awareness of being the agent of one's own thoughts and actions. Self-agency is essential for interacting with the outside world (reality-monitoring). The medial prefrontal cortex (mPFC) is thought to be one neural correlate of self-agency. We investigated whether mPFC activity can causally modulate self-agency on two different tasks of speech-monitoring and reality-monitoring. The experience of self-agency is thought to result from making reliable predictions about the expected outcomes of one's own actions. This self-prediction ability is necessary for the encoding and memory retrieval of one's own thoughts during reality-monitoring to enable accurate judgments of self-agency. This self-prediction ability is also necessary for speech-monitoring where speakers consistently compare auditory feedback (what we hear ourselves say) with what we expect to hear while speaking. In this study, 30 healthy participants are assigned to either 10 Hz repetitive transcranial magnetic stimulation (rTMS) to enhance mPFC excitability (N = 15) or 10 Hz rTMS targeting a distal temporoparietal site (N = 15). High-frequency rTMS to mPFC enhanced self-predictions during speech-monitoring that predicted improved self-agency judgments during reality-monitoring. This is the first study to provide robust evidence for mPFC underlying a causal role in self-agency, that results from the fundamental ability of improving self-predictions across two different tasks.


Asunto(s)
Memoria , Habla , Humanos , Memoria/fisiología , Estimulación Magnética Transcraneal/métodos , Corteza Prefrontal/fisiología , Juicio
18.
Neuroimage ; 82: 260-72, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23702420

RESUMEN

OBJECTIVE: Lesion-based mapping of speech pathways has been possible only during invasive neurosurgical procedures using direct cortical stimulation (DCS). However, navigated transcranial magnetic stimulation (nTMS) may allow for lesion-based interrogation of language pathways noninvasively. Although not lesion-based, magnetoencephalographic imaging (MEGI) is another noninvasive modality for language mapping. In this study, we compare the accuracy of nTMS and MEGI with DCS. METHODS: Subjects with lesions around cortical language areas underwent preoperative nTMS and MEGI for language mapping. nTMS maps were generated using a repetitive TMS protocol to deliver trains of stimulations during a picture naming task. MEGI activation maps were derived from adaptive spatial filtering of beta-band power decreases prior to overt speech during picture naming and verb generation tasks. The subjects subsequently underwent awake language mapping via intraoperative DCS. The language maps obtained from each of the 3 modalities were recorded and compared. RESULTS: nTMS and MEGI were performed on 12 subjects. nTMS yielded 21 positive language disruption sites (11 speech arrest, 5 anomia, and 5 other) while DCS yielded 10 positive sites (2 speech arrest, 5 anomia, and 3 other). MEGI isolated 32 sites of peak activation with language tasks. Positive language sites were most commonly found in the pars opercularis for all three modalities. In 9 instances the positive DCS site corresponded to a positive nTMS site, while in 1 instance it did not. In 4 instances, a positive nTMS site corresponded to a negative DCS site, while 169 instances of negative nTMS and DCS were recorded. The sensitivity of nTMS was therefore 90%, specificity was 98%, the positive predictive value was 69% and the negative predictive value was 99% as compared with intraoperative DCS. MEGI language sites for verb generation and object naming correlated with nTMS sites in 5 subjects, and with DCS sites in 2 subjects. CONCLUSION: Maps of language function generated with nTMS correlate well with those generated by DCS. Negative nTMS mapping also correlates with negative DCS mapping. In our study, MEGI lacks the same level of correlation with intraoperative mapping; nevertheless it provides useful adjunct information in some cases. nTMS may offer a lesion-based method for noninvasively interrogating language pathways and be valuable in managing patients with peri-eloquent lesions.


Asunto(s)
Mapeo Encefálico/métodos , Vías Nerviosas/fisiopatología , Habla/fisiología , Estimulación Magnética Transcraneal/métodos , Adulto , Anciano , Neoplasias Encefálicas/complicaciones , Corteza Cerebral/fisiopatología , Femenino , Humanos , Lenguaje , Imagen por Resonancia Magnética , Magnetoencefalografía , Masculino , Persona de Mediana Edad , Procesamiento de Señales Asistido por Computador , Trastornos del Habla/etiología , Trastornos del Habla/fisiopatología , Adulto Joven
19.
Ann Neurol ; 71(5): 668-86, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22522481

RESUMEN

OBJECTIVE: The goal of the current study was to examine the dynamics of language lateralization using magnetoencephalographic (MEG) imaging, to determine the sensitivity and specificity of MEG imaging, and to determine whether MEG imaging can become a viable alternative to the intracarotid amobarbital procedure (IAP), the current gold standard for preoperative language lateralization in neurosurgical candidates. METHODS: MEG was recorded during an auditory verb generation task and imaging analysis of oscillatory activity was initially performed in 21 subjects with epilepsy, brain tumor, or arteriovenous malformation who had undergone IAP and MEG. Time windows and brain regions of interest that best discriminated between IAP-determined left or right dominance for language were identified. Parameters derived in the retrospective analysis were applied to a prospective cohort of 14 patients and healthy controls. RESULTS: Power decreases in the beta frequency band were consistently observed following auditory stimulation in inferior frontal, superior temporal, and parietal cortices; similar power decreases were also seen in inferior frontal cortex prior to and during overt verb generation. Language lateralization was clearly observed to be a dynamic process that is bilateral for several hundred milliseconds during periods of auditory perception and overt speech production. Correlation with the IAP was seen in 13 of 14 (93%) prospective patients, with the test demonstrating a sensitivity of 100% and specificity of 92%. INTERPRETATION: Our results demonstrate excellent correlation between MEG imaging findings and the IAP for language lateralization, and provide new insights into the spatiotemporal dynamics of cortical speech processing.


Asunto(s)
Mapeo Encefálico/métodos , Dominancia Cerebral/fisiología , Magnetoencefalografía/métodos , Neuroimagen/métodos , Adolescente , Adulto , Neoplasias Encefálicas/cirugía , Epilepsia/cirugía , Femenino , Humanos , Lenguaje , Masculino , Persona de Mediana Edad , Sensibilidad y Especificidad , Procesamiento de Señales Asistido por Computador , Adulto Joven
20.
bioRxiv ; 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37961099

RESUMEN

The human sensorimotor system has a remarkable ability to quickly and efficiently learn movements from sensory experience. A prominent example is sensorimotor adaptation, learning that characterizes the sensorimotor system's response to persistent sensory errors by adjusting future movements to compensate for those errors. Despite being essential for maintaining and fine-tuning motor control, mechanisms underlying sensorimotor adaptation remain unclear. A component of sensorimotor adaptation is implicit (i.e., the learner is unaware of the learning process) which has been suggested to result from sensory prediction errors-the discrepancies between predicted sensory consequences of motor commands and actual sensory feedback. However, to date no direct neurophysiological evidence that sensory prediction errors drive adaptation has been demonstrated. Here, we examined prediction errors via magnetoencephalography (MEG) imaging of the auditory cortex during sensorimotor adaptation of speech to altered auditory feedback, an entirely implicit adaptation task. Specifically, we measured how speaking-induced suppression (SIS)--a neural representation of auditory prediction errors--changed over the trials of the adaptation experiment. SIS refers to the suppression of auditory cortical response to speech onset (in particular, the M100 response) to self-produced speech when compared to the response to passive listening to identical playback of that speech. SIS was reduced (reflecting larger prediction errors) during the early learning phase compared to the initial unaltered feedback phase. Furthermore, reduction in SIS positively correlated with behavioral adaptation extents, suggesting that larger prediction errors were associated with more learning. In contrast, such a reduction in SIS was not found in a control experiment in which participants heard unaltered feedback and thus did not adapt. In addition, in some participants who reached a plateau in the late learning phase, SIS increased (reflecting smaller prediction errors), demonstrating that prediction errors were minimal when there was no further adaptation. Together, these findings provide the first neurophysiological evidence for the hypothesis that prediction errors drive human sensorimotor adaptation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA