Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 31(9): 1417-1429, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-34761268

RESUMEN

The common null polymorphism (R577X) in the ACTN3 gene is present in over 1.5 billion people worldwide and results in the absence of the protein α-actinin-3 from the Z-discs of fast-twitch skeletal muscle fibres. We have previously reported that this polymorphism is a modifier of dystrophin-deficient Duchenne Muscular Dystrophy. To investigate the mechanism underlying this, we use a double knockout (dk)Actn3KO/mdx (dKO) mouse model, which lacks both dystrophin and sarcomere α-actinin-3. We used dKO mice and mdx dystrophic mice at 12 months (aged) to investigate the correlation between morphological changes to the fast-twitch dKO EDL and the reduction in force deficit produced by an in vitro eccentric contraction protocol. In the aged dKO mouse, we found a marked reduction in fibre branching complexity that correlated with protection from eccentric contraction induced force deficit. Complex branches in the aged dKO EDL fibres (28%) were substantially reduced compared to aged mdx EDL fibres (68%), and this correlates with a graded force loss over three eccentric contractions for dKO muscles (~36% after first contraction, ~66% overall) compared to an abrupt drop in mdx upon the first eccentric contraction (~75% after first contraction, ~89% after three contractions). In dKO, protection from eccentric contraction damage was linked with a doubling of SERCA1 pump density the EDL. We propose that the increased oxidative metabolism of fast-twitch glycolytic fibres characteristic of the null polymorphism (R577X) and increase in SR Ca2+ pump proteins reduces muscle fibre branching and decreases susceptibility to eccentric injury in the dystrophinopathies.


Asunto(s)
Distrofina , Distrofia Muscular de Duchenne , Actinina/genética , Actinina/metabolismo , Anciano , Animales , Distrofina/metabolismo , Humanos , Ratones , Ratones Endogámicos mdx , Contracción Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo
2.
Am J Hum Genet ; 108(3): 446-457, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33600773

RESUMEN

The protein α-actinin-3 expressed in fast-twitch skeletal muscle fiber is absent in 1.5 billion people worldwide due to homozygosity for a nonsense polymorphism in ACTN3 (R577X). The prevalence of the 577X allele increased as modern humans moved to colder climates, suggesting a link between α-actinin-3 deficiency and improved cold tolerance. Here, we show that humans lacking α-actinin-3 (XX) are superior in maintaining core body temperature during cold-water immersion due to changes in skeletal muscle thermogenesis. Muscles of XX individuals displayed a shift toward more slow-twitch isoforms of myosin heavy chain (MyHC) and sarcoplasmic reticulum (SR) proteins, accompanied by altered neuronal muscle activation resulting in increased tone rather than overt shivering. Experiments on Actn3 knockout mice showed no alterations in brown adipose tissue (BAT) properties that could explain the improved cold tolerance in XX individuals. Thus, this study provides a mechanism for the positive selection of the ACTN3 X-allele in cold climates and supports a key thermogenic role of skeletal muscle during cold exposure in humans.


Asunto(s)
Actinina/genética , Termogénesis/genética , Tejido Adiposo Pardo/metabolismo , Animales , Temperatura Corporal/genética , Codón sin Sentido/genética , Evolución Molecular , Humanos , Masculino , Ratones , Ratones Noqueados , Músculo Esquelético/metabolismo , Selección Genética/genética
3.
Am J Physiol Cell Physiol ; 321(4): C704-C720, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34432537

RESUMEN

Duchenne muscular dystrophy (DMD) is the second most common fatal genetic disease in humans and is characterized by the absence of a functional copy of the protein dystrophin from skeletal muscle. In dystrophin-negative humans and rodents, regenerated skeletal muscle fibers show abnormal branching. The number of fibers with branches and the complexity of branching increases with each cycle of degeneration/regeneration. Previously, using the mdx mouse model of DMD, we have proposed that once the number and complexity of branched fibers present in dystrophic fast-twitch EDL muscle surpasses a stable level, we term the "tipping point," the branches, in and of themselves, mechanically weaken the muscle by rupturing when subjected to high forces during eccentric contractions. Here, we use the slow-twitch soleus muscle from the dystrophic mdx mouse to study prediseased "periambulatory" dystrophy at 2-3 wk, the peak regenerative "adult" phase at 6-9 wk, and "old" at 58-112 wk. Using isolated mdx soleus muscles, we examined contractile function and response to eccentric contraction correlated with the amount and complexity of regenerated branched fibers. The intact muscle was enzymatically dispersed into individual fibers in order to count fiber branching and some muscles were optically cleared to allow laser scanning confocal microscopy. We demonstrate throughout the lifespan of the mdx mouse that dystrophic slow-twitch soleus muscle is no more susceptible to eccentric contraction-induced injury than age-matched littermate controls and that this is correlated with a reduction in the number and complexity of branched fibers compared with fast-twitch dystrophic EDL muscles.


Asunto(s)
Distrofina/deficiencia , Contracción Muscular , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Lenta/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Factores de Edad , Animales , Modelos Animales de Enfermedad , Distrofina/genética , Cinética , Masculino , Ratones Endogámicos mdx , Fibras Musculares de Contracción Rápida/patología , Fibras Musculares de Contracción Lenta/patología , Fuerza Muscular , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/fisiopatología , Mutación
4.
Am J Hum Genet ; 102(5): 845-857, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29706347

RESUMEN

Loss of expression of ACTN3, due to homozygosity of the common null polymorphism (p.Arg577X), is underrepresented in elite sprint/power athletes and has been associated with reduced muscle mass and strength in humans and mice. To investigate ACTN3 gene dosage in performance and whether expression could enhance muscle force, we performed meta-analysis and expression studies. Our general meta-analysis using a Bayesian random effects model in elite sprint/power athlete cohorts demonstrated a consistent homozygous-group effect across studies (per allele OR = 1.4, 95% CI 1.3-1.6) but substantial heterogeneity in heterozygotes. In mouse muscle, rAAV-mediated gene transfer overexpressed and rescued α-actinin-3 expression. Contrary to expectation, in vivo "doping" of ACTN3 at low to moderate doses demonstrated an absence of any change in function. At high doses, ACTN3 is toxic and detrimental to force generation, to demonstrate gene doping with supposedly performance-enhancing isoforms of sarcomeric proteins can be detrimental for muscle function. Restoration of α-actinin-3 did not enhance muscle mass but highlighted the primary role of α-actinin-3 in modulating muscle metabolism with altered fatiguability. This is the first study to express a Z-disk protein in healthy skeletal muscle and measure the in vivo effect. The sensitive balance of the sarcomeric proteins and muscle function has relevant implications in areas of gene doping in performance and therapy for neuromuscular disease.


Asunto(s)
Actinina/genética , Músculo Esquelético/fisiología , Anaerobiosis , Animales , Animales Recién Nacidos , Atletas , Calcineurina/metabolismo , Dependovirus/metabolismo , Regulación hacia Abajo/genética , Estudio de Asociación del Genoma Completo , Heterocigoto , Homocigoto , Humanos , Ratones Endogámicos C57BL , Fatiga Muscular , Fibras Musculares Esqueléticas/metabolismo , Tamaño de los Órganos , Oxidación-Reducción
6.
Hum Mutat ; 39(12): 1774-1787, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30281865

RESUMEN

A common null polymorphism in the ACTN3 gene (rs1815739:C>T) results in replacement of an arginine (R) with a premature stop codon (X) at amino acid 577 in the fast muscle protein α-actinin-3. The ACTN3 p.Arg577Ter allele (aka p.R577* or R577X) has undergone positive selection, with an increase in the X allele frequency as modern humans migrated out of Africa into the colder, less species-rich Eurasian climates suggesting that the absence of α-actinin-3 may be beneficial in these conditions. Approximately 1.5 billion people worldwide are completely deficient in α-actinin-3. While the absence of α-actinin-3 influences skeletal muscle function and metabolism this does not result in overt muscle disease. α-Actinin-3 deficiency (ACTN3 XX genotype) is constantly underrepresented in sprint/power performance athletes. However, recent findings from our group and others suggest that the ACTN3 R577X genotype plays a role beyond athletic performance with effects observed in ageing, bone health, and inherited muscle disorders such as McArdle disease and Duchenne muscle dystrophy. In this review, we provide an update on the current knowledge regarding the influence of ACTN3 R577X on skeletal muscle function and its potential biological and clinical implications. We also outline future research directions to explore the role of α-actinin-3 in healthy and diseased populations.


Asunto(s)
Actinina/genética , Envejecimiento/genética , Enfermedades Musculares/genética , Polimorfismo de Nucleótido Simple , África , Rendimiento Atlético , Genotipo , Migración Humana , Humanos , Selección Genética
7.
Am J Physiol Cell Physiol ; 314(6): C662-C674, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29412689

RESUMEN

A striking pathological feature of dystrophinopathies is the presence of morphologically abnormal branched skeletal muscle fibers. The deterioration of muscle contractile function in Duchenne muscular dystrophy is accompanied by both an increase in number and complexity of these branched fibers. We propose that when number and complexity of branched fibers reaches a critical threshold, or "tipping point," the branches in and of themselves are the site of contraction-induced rupture. In the present study, we use the dystrophic mdx mouse and littermate controls to study the prediseased dystrophic fast-twitch extensor digitorum longus (EDL) muscle at 2-3 wk, the peak myonecrotic phase at 6-9 wk, and finally, "old," at 58-112 wk. Using a combination of isolated muscle function contractile measurements coupled with single-fiber imaging and confocal microscope imaging of cleared whole muscles, we identified a distinct pathophysiology, acute fiber rupture at branch nodes, which occurs in "old" fast-twitch EDL muscle approaching the end stage of the dystrophinopathy muscle disease, where the EDL muscles are entirely composed of complexed branched fibers. This evidence supports our concept of "tipping point" where the number and extent of fiber branching reach a level where the branching itself terminally compromises muscle function, irrespective of the absence of dystrophin.


Asunto(s)
Fibras Musculares de Contracción Rápida/patología , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/patología , Factores de Edad , Animales , Modelos Animales de Enfermedad , Estimulación Eléctrica , Contracción Isométrica , Cinética , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Microscopía Confocal , Fuerza Muscular , Músculo Esquelético/fisiopatología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/fisiopatología , Necrosis , Análisis de la Célula Individual
8.
BMC Genomics ; 19(1): 13, 2018 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-29298672

RESUMEN

BACKGROUND: Studies investigating associations between ACTN3 R577X and ACE I/D genotypes and endurance athletic status have been limited by small sample sizes from mixed sport disciplines and lack quantitative measures of performance. AIM: To examine the association between ACTN3 R577X and ACE I/D genotypes and best personal running times in a large homogeneous cohort of endurance runners. METHODS: We collected a total of 1064 personal best 1500, 3000, 5000 m and marathon running times of 698 male and female Caucasian endurance athletes from six countries (Australia, Greece, Italy, Poland, Russia and UK). Athletes were genotyped for ACTN3 R577X and ACE ID variants. RESULTS: There was no association between ACTN3 R577X or ACE I/D genotype and running performance at any distance in men or women. Mean (SD) marathon times (in s) were for men: ACTN3 RR 9149 (593), RX 9221 (582), XX 9129 (582) p = 0.94; ACE DD 9182 (665), ID 9214 (549), II 9155 (492) p = 0.85; for women: ACTN3 RR 10796 (818), RX 10667 (695), XX 10675 (553) p = 0.36; ACE DD 10604 (561), ID 10766 (740), II 10771 (708) p = 0.21. Furthermore, there were no associations between these variants and running time for any distance in a sub-analysis of athletes with personal records within 20% of world records. CONCLUSIONS: Thus, consistent with most case-control studies, this multi-cohort quantitative analysis demonstrates it is unlikely that ACTN3 XX genotype provides an advantage in competitive endurance running performance. For ACE II genotype, some prior studies show an association but others do not. Our data indicate it is also unlikely that ACE II genotype provides an advantage in endurance running.


Asunto(s)
Actinina/genética , Atletas , Peptidil-Dipeptidasa A/genética , Resistencia Física/genética , Polimorfismo Genético , Carrera/fisiología , Femenino , Genotipo , Humanos , Masculino , Población Blanca/genética
9.
Hum Mol Genet ; 25(5): 866-77, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26681802

RESUMEN

A common null polymorphism (R577X) in ACTN3 causes α-actinin-3 deficiency in ∼ 18% of the global population. There is no associated disease phenotype, but α-actinin-3 deficiency is detrimental to sprint and power performance in both elite athletes and the general population. However, despite considerable investigation to date, the functional consequences of heterozygosity for ACTN3 are unclear. A subset of studies have shown an intermediate phenotype in 577RX individuals, suggesting dose-dependency of α-actinin-3, while others have shown no difference between 577RR and RX genotypes. Here, we investigate the effects of α-actinin-3 expression level by comparing the muscle phenotypes of Actn3(+/-) (HET) mice to Actn3(+/+) [wild-type (WT)] and Actn3(-/-) [knockout (KO)] littermates. We show reduction in α-actinin-3 mRNA and protein in HET muscle compared with WT, which is associated with dose-dependent up-regulation of α-actinin-2, z-band alternatively spliced PDZ-motif and myotilin at the Z-line, and an incremental shift towards oxidative metabolism. While there is no difference in force generation, HET mice have an intermediate endurance capacity compared with WT and KO. The R577X polymorphism is associated with changes in ACTN3 expression consistent with an additive model in the human genotype-tissue expression cohort, but does not influence any other muscle transcripts, including ACTN2. Overall, ACTN3 influences sarcomeric composition in a dose-dependent fashion in mouse skeletal muscle, which translates directly to function. Variance in fibre type between biopsies likely masks this phenomenon in human skeletal muscle, but we suggest that an additive model is the most appropriate for use in testing ACTN3 genotype associations.


Asunto(s)
Actinina/genética , Dosificación de Gen , Músculo Esquelético/metabolismo , Resistencia Física/genética , Polimorfismo Genético , Actinina/deficiencia , Actinina/metabolismo , Animales , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Heterocigoto , Homocigoto , Humanos , Masculino , Ratones , Ratones Noqueados , Proteínas de Microfilamentos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Condicionamiento Físico Animal , Sarcómeros/metabolismo
10.
PLoS Genet ; 11(2): e1004862, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25590636

RESUMEN

Over 1.5 billion people lack the skeletal muscle fast-twitch fibre protein α-actinin-3 due to homozygosity for a common null polymorphism (R577X) in the ACTN3 gene. α-Actinin-3 deficiency is detrimental to sprint performance in elite athletes and beneficial to endurance activities. In the human genome, it is very difficult to find single-gene loss-of-function variants that bear signatures of positive selection, yet intriguingly, the ACTN3 null variant has undergone strong positive selection during recent evolution, appearing to provide a survival advantage where food resources are scarce and climate is cold. We have previously demonstrated that α-actinin-3 deficiency in the Actn3 KO mouse results in a shift in fast-twitch fibres towards oxidative metabolism, which would be more "energy efficient" in famine, and beneficial to endurance performance. Prolonged exposure to cold can also induce changes in skeletal muscle similar to those observed with endurance training, and changes in Ca2+ handling by the sarcoplasmic reticulum (SR) are a key factor underlying these adaptations. On this basis, we explored the effects of α-actinin-3 deficiency on Ca2+ kinetics in single flexor digitorum brevis muscle fibres from Actn3 KO mice, using the Ca2+-sensitive dye fura-2. Compared to wild-type, fibres of Actn3 KO mice showed: (i) an increased rate of decay of the twitch transient; (ii) a fourfold increase in the rate of SR Ca2+ leak; (iii) a threefold increase in the rate of SR Ca2+ pumping; and (iv) enhanced maintenance of tetanic Ca2+ during fatigue. The SR Ca2+ pump, SERCA1, and the Ca2+-binding proteins, calsequestrin and sarcalumenin, showed markedly increased expression in muscles of KO mice. Together, these changes in Ca2+ handling in the absence of α-actinin-3 are consistent with cold acclimatisation and thermogenesis, and offer an additional explanation for the positive selection of the ACTN3 577X null allele in populations living in cold environments during recent evolution.


Asunto(s)
Actinina/genética , Evolución Biológica , Calcio/metabolismo , Enfermedades Musculares/genética , Selección Genética , Aclimatación/genética , Actinina/deficiencia , Animales , Frío , Humanos , Cinética , Masculino , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Rápida/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Polimorfismo Genético , Tiempo (Meteorología)
11.
Biochim Biophys Acta ; 1863(4): 686-93, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26802899

RESUMEN

An estimated 1.5 billion people worldwide are deficient in the skeletal muscle protein α-actinin-3 due to homozygosity for the common ACTN3 R577X polymorphism. α-Actinin-3 deficiency influences muscle performance in elite athletes and the general population. The sarcomeric α-actinins were originally characterised as scaffold proteins at the muscle Z-line. Through studying the Actn3 knockout mouse and α-actinin-3 deficient humans, significant progress has been made in understanding how ACTN3 genotype alters muscle function, leading to an appreciation of the diverse roles that α-actinins play in muscle. The α-actinins interact with a number of partner proteins, which broadly fall into three biological pathways-structural, metabolic and signalling. Differences in functioning of these pathways have been identified in α-actinin-3 deficient muscle that together contributes to altered muscle performance in mice and humans. Here we discuss new insights that have been made in understanding the molecular mechanisms that underlie the consequences of α-actinin-3 deficiency.


Asunto(s)
Actinina/genética , Rendimiento Atlético/fisiología , Músculo Esquelético/fisiología , Enfermedades Musculares/genética , Actinina/deficiencia , Animales , Humanos , Ratones , Ratones Noqueados , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología
12.
Biochim Biophys Acta ; 1852(10 Pt B): 2279-86, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26073432

RESUMEN

Studies on naturally occurring New Zealand and Australian ovine models of the neuronal ceroid-lipofuscinoses (Batten disease, NCLs) have greatly aided our understanding of these diseases. Close collaborations between the New Zealand groups at Lincoln University and the University of Otago, Dunedin, and a group at the University of Sydney, Australia, led to the formation of BARN, the Batten Animal Research Network. This review focusses on presentations at the 14th International Conference on Neuronal Ceroid Lipofuscinoses (Batten Disease), recent relevant background work, and previews of work in preparation for publication. Themes include CLN5 and CLN6 neuronal cell culture studies, studies on tissues from affected and control animals and whole animal in vivo studies. Topics include the effect of a CLN6 mutation on endoplasmic reticulum proteins, lysosomal function and the interactions of CLN6 with other lysosomal activities and trafficking, scoping gene-based therapies, a molecular dissection of neuroinflammation, identification of differentially expressed genes in brain tissue, an attempted therapy with an anti-inflammatory drug in vivo and work towards gene therapy in ovine models of the NCLs. This article is part of a Special Issue entitled: "Current Research on the Neuronal Ceroid Lipofuscinoses (Batten Disease)".

13.
BMC Genomics ; 17: 285, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-27075997

RESUMEN

BACKGROUND: To date, studies investigating the association between ACTN3 R577X and ACE I/D gene variants and elite sprint/power performance have been limited by small cohorts from mixed sport disciplines, without quantitative measures of performance. AIM: To examine the association between these variants and sprint time in elite athletes. METHODS: We collected a total of 555 best personal 100-, 200-, and 400-m times of 346 elite sprinters in a large cohort of elite Caucasian or African origin sprinters from 10 different countries. Sprinters were genotyped for ACTN3 R577X and ACE ID variants. RESULTS: On average, male Caucasian sprinters with the ACTN3 577RR or the ACE DD genotype had faster best 200-m sprint time than their 577XX (21.19 ± 0.53 s vs. 21.86 ± 0.54 s, p = 0.016) and ACE II (21.33 ± 0.56 vs. 21.93 ± 0.67 sec, p = 0.004) counterparts and only one case of ACE II, and no cases of ACTN3 577XX, had a faster 200-m time than the 2012 London Olympics qualifying (vs. 12 qualified sprinters with 577RR or 577RX genotype). Caucasian sprinters with the ACE DD genotype had faster best 400-m sprint time than their ACE II counterparts (46.94 ± 1.19 s vs. 48.50 ± 1.07 s, p = 0.003). Using genetic models we found that the ACTN3 577R allele and ACE D allele dominant model account for 0.92 % and 1.48 % of sprint time variance, respectively. CONCLUSIONS: Despite sprint performance relying on many gene variants and environment, the % sprint time variance explained by ACE and ACTN3 is substantial at the elite level and might be the difference between a world record and only making the final.


Asunto(s)
Actinina/genética , Atletas , Rendimiento Atlético , Peptidil-Dipeptidasa A/genética , Carrera , Alelos , Población Negra , Estudios de Cohortes , Femenino , Genotipo , Humanos , Masculino , Polimorfismo Genético , Población Blanca
14.
Calcif Tissue Int ; 97(6): 602-10, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26340892

RESUMEN

Vitamin D deficiency is associated with muscle weakness, pain, and atrophy. Serum vitamin D predicts muscle strength and age-related muscle changes. However, precise mechanisms by which vitamin D affects skeletal muscle are unclear. To address this question, this study characterizes the muscle phenotype and gene expression of mice with deletion of vitamin D receptor (VDRKO) or diet-induced vitamin D deficiency. VDRKO and vitamin D-deficient mice had significantly weaker grip strength than their controls. Weakness progressed with age and duration of vitamin D deficiency, respectively. Histological assessment showed that VDRKO mice had muscle fibers that were significantly smaller in size and displayed hyper-nuclearity. Real-time PCR also indicated muscle developmental changes in VDRKO mice with dysregulation of myogenic regulatory factors (MRFs) and increased myostatin in quadriceps muscle (>2-fold). Vitamin D-deficient mice also showed increases in myostatin and the atrophy marker E3-ubiqutin ligase MuRF1. As a potential explanation for grip strength weakness, both groups of mice had down-regulation of genes encoding calcium-handling and sarco-endoplasmic reticulum calcium transport ATPase (Serca) channels. This is the first report of reduced strength, morphological, and gene expression changes in VDRKO and vitamin D-deficient mice where confounding by calcium, magnesium, and phosphate have been excluded by direct testing. Although suggested in earlier in vitro work, this study is the first to report an in vivo association between vitamin D, myostatin, and the regulation of muscle mass. These findings support a direct role for vitamin D in muscle function and corroborate earlier work on the presence of VDR in this tissue.


Asunto(s)
Fuerza de la Mano , Fibras Musculares Esqueléticas/patología , Miostatina/biosíntesis , Receptores de Calcitriol/deficiencia , Deficiencia de Vitamina D/fisiopatología , Animales , Modelos Animales de Enfermedad , Fuerza de la Mano/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fibras Musculares Esqueléticas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Deficiencia de Vitamina D/metabolismo
15.
Stem Cell Res ; 75: 103313, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38277710

RESUMEN

We used gene editing to introduce DNA sequences encoding the tdTomato fluorescent protein into the α -skeletal actin 1 (ACTA1) locus to develop an ACTA1-tdTomato induced pluripotent stem cell reporter line for monitoring differentiation of skeletal muscle. This cell line will be used to better understand skeletal muscle maturation and development in vitro as well as provide a useful tool for drug screening and the evaluation of novel therapeutics for the treatment of skeletal muscle disease.


Asunto(s)
Sistemas CRISPR-Cas , Células Madre Pluripotentes Inducidas , Proteína Fluorescente Roja , Humanos , Sistemas CRISPR-Cas/genética , Células Madre Pluripotentes Inducidas/metabolismo , Actinas/genética , Actinas/metabolismo , Músculo Esquelético/metabolismo
16.
PLoS One ; 19(1): e0294847, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38271438

RESUMEN

BACKGROUND: ATL1102 is a 2'MOE gapmer antisense oligonucleotide to the CD49d alpha subunit of VLA-4, inhibiting expression of CD49d on lymphocytes, reducing survival, activation and migration to sites of inflammation. Children with DMD have dystrophin deficient muscles susceptible to contraction induced injury, which triggers the immune system, exacerbating muscle damage. CD49d is a biomarker of disease severity in DMD, with increased numbers of high CD49d expressing T cells correlating with more severe and progressive weakess, despite corticosteroid treatment. METHODS: This Phase 2 open label study assessed the safety, efficacy and pharmacokinetic profile of ATL1102 administered as 25 mg weekly by subcutaneous injection for 24 weeks in 9 non-ambulatory boys with DMD aged 10-18 years. The main objective was to assess safety and tolerability of ATL1102. Secondary objectives included the effect of ATL1102 on lymphocyte numbers in the blood, functional changes in upper limb function as assessed by Performance of Upper Limb test (PUL 2.0) and upper limb strength using MyoGrip and MyoPinch compared to baseline. RESULTS: Eight out of nine participants were on a stable dose of corticosteroids. ATL1102 was generally safe and well tolerated. No serious adverse events were reported. There were no participant withdrawals from the study. The most commonly reported adverse events were injection site erythema and skin discoloration. There was no statistically significant change in lymphocyte count from baseline to week 8, 12 or 24 of dosing however, the CD3+CD49d+ T lymphocytes were statistically significantly higher at week 28 compared to week 24, four weeks past the last dose (mean change 0.40x109/L 95%CI 0.05, 0.74; p = 0.030). Functional muscle strength, as measured by the PUL2.0, EK2 and Myoset grip and pinch measures, and MRI fat fraction of the forearm muscles were stable throughout the trial period. CONCLUSION: ATL1102, a novel antisense drug being developed for the treatment of inflammation that exacerbates muscle fibre damage in DMD, appears to be safe and well tolerated in non-ambulant boys with DMD. The apparent stabilisation observed on multiple muscle disease progression parameters assessed over the study duration support the continued development of ATL1102 for the treatment of DMD. TRIAL REGISTRATION: Clinical Trial Registration. Australian New Zealand Clinical Trials Registry Number: ACTRN12618000970246.


Asunto(s)
Distrofia Muscular de Duchenne , Masculino , Niño , Animales , Ratones , Humanos , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/complicaciones , Ratones Endogámicos mdx , Australia , Músculo Esquelético/metabolismo , Corticoesteroides/efectos adversos , Corticoesteroides/metabolismo , Inflamación/metabolismo
17.
Hum Mol Genet ; 20(15): 2914-27, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21536590

RESUMEN

Sarcomeric α-actinins (α-actinin-2 and -3) are a major component of the Z-disk in skeletal muscle, where they crosslink actin and other structural proteins to maintain an ordered myofibrillar array. Homozygosity for the common null polymorphism (R577X) in ACTN3 results in the absence of fast fiber-specific α-actinin-3 in ∼20% of the general population. α-Actinin-3 deficiency is associated with decreased force generation and is detrimental to sprint and power performance in elite athletes, suggesting that α-actinin-3 is necessary for optimal forceful repetitive muscle contractions. Since Z-disks are the structures most vulnerable to eccentric damage, we sought to examine the effects of α-actinin-3 deficiency on sarcomeric integrity. Actn3 knockout mouse muscle showed significantly increased force deficits following eccentric contraction at 30% stretch, suggesting that α-actinin-3 deficiency results in an increased susceptibility to muscle damage at the extremes of muscle performance. Microarray analyses demonstrated an increase in muscle remodeling genes, which we confirmed at the protein level. The loss of α-actinin-3 and up-regulation of α-actinin-2 resulted in no significant changes to the total pool of sarcomeric α-actinins, suggesting that alterations in fast fiber Z-disk properties may be related to differences in functional protein interactions between α-actinin-2 and α-actinin-3. In support of this, we demonstrated that the Z-disk proteins, ZASP, titin and vinculin preferentially bind to α-actinin-2. Thus, the loss of α-actinin-3 changes the overall protein composition of fast fiber Z-disks and alters their elastic properties, providing a mechanistic explanation for the loss of force generation and increased susceptibility to eccentric damage in α-actinin-3-deficient individuals.


Asunto(s)
Actinina/metabolismo , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Actinina/genética , Animales , Conectina , Immunoblotting , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados , Contracción Muscular/genética , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo Genético/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Técnicas del Sistema de Dos Híbridos , Vinculina/genética , Vinculina/metabolismo
19.
Biomedicines ; 10(3)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35327337

RESUMEN

The lack of dystrophin in Duchenne muscular dystrophy (DMD) results in membrane fragility resulting in contraction-induced muscle damage and subsequent inflammation. The impact of inflammation is profound, resulting in fibrosis of skeletal muscle, the diaphragm and heart, which contributes to muscle weakness, reduced quality of life and premature death. To date, the innate immune system has been the major focus in individuals with DMD, and our understanding of the adaptive immune system, specifically T cells, is limited. Targeting the immune system has been the focus of multiple clinical trials for DMD and is considered a vital step in the development of better treatments. However, we must first have a complete picture of the involvement of the immune systems in dystrophic muscle disease to better understand how inflammation influences disease progression and severity. This review focuses on the role of T cells in DMD, highlighting the importance of looking beyond skeletal muscle when considering how the loss of dystrophin impacts disease progression. Finally, we propose that targeting T cells is a potential novel therapeutic in the treatment of DMD.

20.
Skelet Muscle ; 12(1): 14, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35733150

RESUMEN

BACKGROUND: A common polymorphism (R577X) in the ACTN3 gene results in the complete absence of the Z-disc protein α-actinin-3 from fast-twitch muscle fibres in ~ 16% of the world's population. This single gene polymorphism has been subject to strong positive selection pressure during recent human evolution. Previously, using an Actn3KO mouse model, we have shown in fast-twitch muscles, eccentric contractions at L0 + 20% stretch did not cause eccentric damage. In contrast, L0 + 30% stretch produced a significant ~ 40% deficit in maximum force; here, we use isolated single fast-twitch skeletal muscle fibres from the Actn3KO mouse to investigate the mechanism underlying this. METHODS: Single fast-twitch fibres are separated from the intact muscle by a collagenase digest procedure. We use label-free second harmonic generation (SHG) imaging, ultra-fast video microscopy and skinned fibre measurements from our MyoRobot automated biomechatronics system to study the morphology, visco-elasticity, force production and mechanical strength of single fibres from the Actn3KO mouse. Data are presented as means ± SD and tested for significance using ANOVA. RESULTS: We show that the absence of α-actinin-3 does not affect the visco-elastic properties or myofibrillar force production. Eccentric contractions demonstrated that chemically skinned Actn3KO fibres are mechanically weaker being prone to breakage when eccentrically stretched. Furthermore, SHG images reveal disruptions in the myofibrillar alignment of Actn3KO fast-twitch fibres with an increase in Y-shaped myofibrillar branching. CONCLUSIONS: The absence of α-actinin-3 from the Z-disc in fast-twitch fibres disrupts the organisation of the myofibrillar proteins, leading to structural weakness. This provides a mechanistic explanation for our earlier findings that in vitro intact Actn3KO fast-twitch muscles are significantly damaged by L0 + 30%, but not L0 + 20%, eccentric contraction strains. Our study also provides a possible mechanistic explanation as to why α-actinin-3-deficient humans have been reported to have a faster decline in muscle function with increasing age, that is, as sarcopenia reduces muscle mass and force output, the eccentric stress on the remaining functional α-actinin-3 deficient fibres will be increased, resulting in fibre breakages.


Asunto(s)
Actinina , Enfermedades Musculares , Actinina/genética , Actinina/metabolismo , Animales , Calcio/metabolismo , Cinética , Ratones , Ratones Noqueados , Contracción Muscular/fisiología , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Enfermedades Musculares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA