Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Pathog ; 17(7): e1009797, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34324601

RESUMEN

Coenzyme A is synthesised from pantothenate via five enzyme-mediated steps. The first step is catalysed by pantothenate kinase (PanK). All PanKs characterised to date form homodimers. Many organisms express multiple PanKs. In some cases, these PanKs are not functionally redundant, and some appear to be non-functional. Here, we investigate the PanKs in two pathogenic apicomplexan parasites, Plasmodium falciparum and Toxoplasma gondii. Each of these organisms express two PanK homologues (PanK1 and PanK2). We demonstrate that PfPanK1 and PfPanK2 associate, forming a single, functional PanK complex that includes the multi-functional protein, Pf14-3-3I. Similarly, we demonstrate that TgPanK1 and TgPanK2 form a single complex that possesses PanK activity. Both TgPanK1 and TgPanK2 are essential for T. gondii proliferation, specifically due to their PanK activity. Our study constitutes the first examples of heteromeric PanK complexes in nature and provides an explanation for the presence of multiple PanKs within certain organisms.


Asunto(s)
Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Plasmodium falciparum/enzimología , Toxoplasma/enzimología , Isoenzimas , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo
2.
PLoS Pathog ; 14(4): e1006918, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29614109

RESUMEN

The malaria-causing blood stage of Plasmodium falciparum requires extracellular pantothenate for proliferation. The parasite converts pantothenate into coenzyme A (CoA) via five enzymes, the first being a pantothenate kinase (PfPanK). Multiple antiplasmodial pantothenate analogues, including pantothenol and CJ-15,801, kill the parasite by targeting CoA biosynthesis/utilisation. Their mechanism of action, however, remains unknown. Here, we show that parasites pressured with pantothenol or CJ-15,801 become resistant to these analogues. Whole-genome sequencing revealed mutations in one of two putative PanK genes (Pfpank1) in each resistant line. These mutations significantly alter PfPanK activity, with two conferring a fitness cost, consistent with Pfpank1 coding for a functional PanK that is essential for normal growth. The mutants exhibit a different sensitivity profile to recently-described, potent, antiplasmodial pantothenate analogues, with one line being hypersensitive. We provide evidence consistent with different pantothenate analogue classes having different mechanisms of action: some inhibit CoA biosynthesis while others inhibit CoA-utilising enzymes.


Asunto(s)
Antimaláricos/farmacología , Resistencia a Medicamentos , Malaria/tratamiento farmacológico , Mutación , Ácido Pantoténico/análogos & derivados , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Plasmodium falciparum/efectos de los fármacos , Animales , Coenzima A/biosíntesis , Eritrocitos/parasitología , Malaria/parasitología , Ácido Pantoténico/farmacología , Pruebas de Sensibilidad Parasitaria , Fosforilación , Proteínas Protozoarias/genética
3.
Antimicrob Agents Chemother ; 60(12): 7146-7152, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27645235

RESUMEN

The biosynthesis of coenzyme A (CoA) from pantothenate and the utilization of CoA in essential biochemical pathways represent promising antimalarial drug targets. Pantothenamides, amide derivatives of pantothenate, have potential as antimalarials, but a serum enzyme called pantetheinase degrades pantothenamides, rendering them inactive in vivo In this study, we characterize a series of 19 compounds that mimic pantothenamides with a stable triazole group instead of the labile amide. Two of these pantothenamides are active against the intraerythrocytic stage parasite with 50% inhibitory concentrations (IC50s) of ∼50 nM, and three others have submicromolar IC50s. We show that the compounds target CoA biosynthesis and/or utilization. We investigated one of the compounds for its ability to interact with the Plasmodium falciparum pantothenate kinase, the first enzyme involved in the conversion of pantothenate to CoA, and show that the compound inhibits the phosphorylation of [14C]pantothenate by the P. falciparum pantothenate kinase, but the inhibition does not correlate with antiplasmodial activity. Furthermore, the compounds are not toxic to human cells and, importantly, are not degraded by pantetheinase.


Asunto(s)
Antimaláricos/química , Antimaláricos/farmacología , Plasmodium falciparum/efectos de los fármacos , Triazoles/química , Amidas/química , Coenzima A/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Humanos , Concentración 50 Inhibidora , Ácido Pantoténico/química , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Plasmodium falciparum/metabolismo , Relación Estructura-Actividad
4.
Artículo en Inglés | MEDLINE | ID: mdl-37004488

RESUMEN

Toxoplasma gondii is a pervasive apicomplexan parasite that can cause severe disease and death in immunocompromised individuals and the developing foetus. The treatment of toxoplasmosis often leads to serious side effects and novel drugs and drug targets are therefore actively sought. In 2014, Mageed and colleagues suggested that the T. gondii pantothenate synthetase, the enzyme responsible for the synthesis of the vitamin B5 (pantothenate), the precursor of the important cofactor, coenzyme A, is a good drug target. Their conclusion was based on the ability of potent inhibitors of the M. tuberculosis pantothenate synthetase to inhibit the proliferation of T. gondii tachyzoites. They also reported that the inhibitory effect of the compounds could be antagonised by supplementing the medium with pantothenate, supporting their conclusion that the compounds were acting on the intended target. Contrary to these observations, we find that compound SW314, one of the compounds used in the Mageed et al. study and previously shown to be active against M. tuberculosis pantothenate synthetase in vitro, is inactive against the T. gondii pantothenate synthetase and does not inhibit tachyzoite proliferation, despite gaining access into the parasite in situ. Furthermore, we validate the recent observation that the pantothenate synthetase gene in T. gondii can be disrupted without detrimental effect to the survival of the tachyzoite-stage parasite in the presence or absence of extracellular pantothenate. We conclude that the T. gondii pantothenate synthetase is not essential during the tachyzoite stage of the parasite and it is therefore not a target for drug discovery against T. gondii tachyzoites.


Asunto(s)
Parásitos , Toxoplasma , Toxoplasmosis , Tuberculosis , Humanos , Animales , Toxoplasma/genética , Toxoplasmosis/tratamiento farmacológico , Coenzima A
5.
J Med Chem ; 64(8): 4478-4497, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33792339

RESUMEN

Malaria-causing Plasmodium parasites are developing resistance to antimalarial drugs, providing the impetus for new antiplasmodials. Although pantothenamides show potent antiplasmodial activity, hydrolysis by pantetheinases/vanins present in blood rapidly inactivates them. We herein report the facile synthesis and biological activity of a small library of pantothenamide analogues in which the labile amide group is replaced with a heteroaromatic ring. Several of these analogues display nanomolar antiplasmodial activity against Plasmodium falciparum and/or Plasmodium knowlesi, and are stable in the presence of pantetheinase. Both a known triazole and a novel isoxazole derivative were further characterized and found to possess high selectivity indices, medium or high Caco-2 permeability, and medium or low microsomal clearance in vitro. Although they fail to suppress Plasmodium berghei proliferation in vivo, the pharmacokinetic and contact time data presented provide a benchmark for the compound profile likely required to achieve antiplasmodial activity in mice and should facilitate lead optimization.


Asunto(s)
Antimaláricos/química , Isoxazoles/química , Ácido Pantoténico/análogos & derivados , Tiadiazoles/química , Triazoles/química , Animales , Antimaláricos/metabolismo , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Células CACO-2 , Proliferación Celular/efectos de los fármacos , Estabilidad de Medicamentos , Eritrocitos/citología , Eritrocitos/parasitología , Femenino , Semivida , Humanos , Malaria Falciparum/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , Ácido Pantoténico/química , Ácido Pantoténico/metabolismo , Ácido Pantoténico/farmacología , Ácido Pantoténico/uso terapéutico , Plasmodium falciparum/efectos de los fármacos , Plasmodium knowlesi/efectos de los fármacos , Relación Estructura-Actividad
6.
ChemMedChem ; 13(24): 2677-2683, 2018 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-30370998

RESUMEN

Pantothenamides are potent growth inhibitors of the malaria parasite Plasmodium falciparum. Their clinical use is, however, hindered due to the ubiquitous presence of pantetheinases in human serum, which rapidly degrade pantothenamides into pantothenate and the corresponding amine. We previously reported that replacement of the labile amide bond with a triazole ring not only imparts stability toward pantetheinases, but also improves activity against P. falciparum. A small library of new triazole derivatives was synthesized, and their use in establishing structure-activity relationships relevant to antiplasmodial activity of this family of compounds is discussed herein. Overall it was observed that 1,4-substitution on the triazole ring and use of an unbranched, one-carbon linker between the pantoyl group and the triazole are optimal for inhibition of intraerythrocytic P. falciparum growth. Our results imply that the triazole ring may mimic the amide bond with an orientation different from what was previously suggested for this amide bioisostere.


Asunto(s)
Amidas/síntesis química , Antimaláricos/síntesis química , Ácido Pantoténico/análogos & derivados , Ácido Pantoténico/síntesis química , Plasmodium falciparum/efectos de los fármacos , Triazoles/síntesis química , Amidas/farmacología , Antimaláricos/farmacología , Humanos , Concentración 50 Inhibidora , Estructura Molecular , Ácido Pantoténico/farmacología , Relación Estructura-Actividad , Triazoles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA